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ON A DIFFERENTIAL SEQUENCE IN GEOMETRY

E. Ortaggil

Abstract

We construct an exact differential sequence which indicates certain relations
between curvature, local flatness, torsion and simplicity of higher order connections.
Our formulas are expressed explicity in terms of the Christoffel symbols of dual
g-connections.

1. Introduction

This note is the continuation of [7], [8] and [9]. In [7], we introduced in a completely
elementary way a geometric object of order k& and some differential expressions in terms of
its components. The classical Christoffel symbols (CS) and the curvature tensor emerged
from our expressions for k = 2. In [8], we showed that this geometric object is nothing
but an e-connection already defined by C'. Ehresmann in 1956 in [2] in the case of
semi-holonomic frame bundles and we gave the transformation rule of its components
using the group operation of the jet group GLg(n,R). These objects are in one to one
correspondence with linear connections, as shown in [4], [6], [12], [13]. We introduced in [8]
also the dual object and two “differential operators”. However, it has been communicated
to us by the author of [10] that the operators in [8] are not well defined. In [9] we studied
the relation of our formulas in [8] to the concepts of local flatness, curvature, torsion and
simplicity of e-connections. These concepts are used in relation to mechanics also in the
recent works [1], [3] (see also the references therein). As an interesting fact, our mistake
in [8] appears also in [3] in the framework of linear connections.

We construct in this note an exact differential sequence in terms of the differential
expressions contained in [9], which also corrects the mistake in [8]. The exactness of
this sequence indicates, in our opinion, that the interrelations between CS, local flatness,
curvature, torsion and simplicity of higher order connections are rather intricated and
not well understood. The sequence introduced here seems to be intimately related to the
first nonlinear Spencer sequence defined in [11] and studied extensively, for instance, in
[10]. We hope to clarify this relation in some future work.
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2. Preliminaries

For more details on the notions used in this section, we refer the reader to [2], [6],
[12], [13] and the references therein (where everything is done in terms of frame bundles).

Let M be a differentiable manifold of dimension n and F*¥(M) — M be the
coframe bundle of M of order k. The elements of F*¥(M) are k-jets of local diffeomor-
phisms with source in M and target at the origin of R®. The bundle F¥(M) — M
is a left principle bundle with the structure group GLi(n,R), the jet group of or-
der k. A dual e-connection is a GL;(n,R) invariant section of F¥(M) — F'(M),
where we regard GLi(n,R) as a subgroup of GLi(n,R) by the canonical injection
GLi(n,R) — (GLy(n,R),0,...,0). e- connections are first defined in [2] in the case
of semi-holonomic frame bundles and studied further in [4], [6], [12], [13], [9], [3]. Let
(*,2%,...,2% ;) be local coordinates on F¥(M) and I' a dual e-connection of order
k. A straightforward computation using GLj1(n,R) invariance shows that there exist

functions T% ; (x),...,T%  (z), called the CS of T, such that

[(a® af)iy jo = L% (&%) 2<s<k (1)

The formulas (1) are contained in [12], p. 45 in the case of e- connections. If
v = (j1,...,Js) we will write (somewhat ambigiously) |v| = s and ru = (r,j1,...,7s)-
Now (1) shows that the functions T (z), 2 < |v| < k have a consistent transformation
rule. It is straightforward to show that this rule is given by

(%,o,.. 0) e (8%,T% . (x),...,T% ;. (2)e @

8(Ei 8k$1 7 i
(W""’m) (84,18 (W), Th i @)

where e denotes the group operation of GLg(n,R). Note that for k = 2, (2) gives the
transformation rule of the classical CS. Now (2) implies the following

FACT: For p € M, there exist local coordinates (z*) around p such that the CS T (z)
of T vanish at p.

The above fact is mentioned in [6] for e-connections. Following the classical
terminology, we called such coordinates geodesic coordinates in [9].

Now let €*(M) — M be associated bundle of F*¥(M) — M with respect to
the right action given by (2). The CS become local coordinates on the natural bundle
e¥(M) — M and an e-connection ' becomes a section of (M) — M. Note that CS
considered in this note are symmetric which is essential for the above fact. However, this
restriction can easily be removed using (2).
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3. An exact differential sequence

It is easy to show that I'{(z) appear linearly on the LHS of (2) and therefore
e¥(M) — M is an affine bundle (see step 2 in the proof of the Proposition below). Let
V(e*(M)) — M denote the model vector bundle where V stands for vertical. For each
open set U C M, consider the set ®(U) of all diffetomorphisms f : U — R™. Then
{®(U) : U C M} defines a sheaf of sets on M which will be denoted by Diff (M,R"). If
E — M is a bundle, we will use the same notation E also for the sheaf of local sections
of B — M. We now have

Proposition There exists an exact differential sequence

Dif f(MRY L ran—2 ) ® V(" (M) (3)
(f% (ri) (X%

where k£ > 3 and the operators p, D are given locally by the formulas

Py g, = 94054, f" where g, 8, f" =65,  2<s<k (4)
D(F)TJI -Jt =0 F;I -Jt + Fiarjal -Jt F;L”Jl gt (5)

where 2 <t <k -—1.

Using the above notation, we will define the formal symbol D, by DTFL =
9, + T;,I'% and rewrite (5) in the form D(T)., = DI, —T%,,2 < |u| < k— 1.
Note that the operator p is well also for £ = 2. This will be the case also for D if we
ragard 6; as C'S as already suggested by (2). In this case it turns out that D&% = I't
and D(T') = 0. However this point will not be important for our purpose here. Note that
D[T.Fi] is the classical curvature tensor Ri,.; because I‘fT st = 0.

We will carry out the proof of the proposition in 4 steps.

Step 1. p is well defined: Let (z) be local coordinates in R"™ and (x), (y) be local
coordinates on M. We need to show that if we substitute
oz’ 0% z*

Us = 5 gun g 255K (6)

into (2), then (2) becomes an identity. To see this, consider the group operation of

GLi(n,R), that is, chain rule, which we will denote by (%) l) ( Bu)' Let p :

GLi(n,R) — GL1(n,R) be the projection homomorphism. We have p(92)~1(42)(22 2) =

P2 ()1 (2) or p(22)1p(22) 1 (B2)(2) = p(22)~1(22). Now it is casy to show
that the components of p( m) l(g—;) are the expressions on the RHS of ( 6), which
establishes the claim.

As a very crucial observation, note that pointwise, I' (z) are always of the form
(6) whereas (6) may not hold locally for some given T.
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Step 2. D is well defined: We will write the above chain rule formula (g—;) = (2)(%&)
in the form

vp=m, AL 25 |ul <k, 1< <yl (7)
where we have written (22)! = 3 (22)0 = z' and AY are expressions depending on
, ‘ y/u w \dz /p 7 w g

g—fg,...,ﬁ,s = |p| = [v| + 1. Tt is easy to show that
) 6k [
A lu| =k (8)

Ho Qyir L Oydk
In view of (2) and (7), we have
oyt ., Oyt Olmlge (9)
dxe H Oz dyir ... Oyls
where p = (j1,...,Js), 2 < |u| < k and, this time, 2 < |v| < |u| (see our remark on
I = 6! above).

We now assume that (z) is a geodesic coordinate system at some p € M and (y)
is an arbitrary coordinate system around p. Differentiating (9) at p, we obtain

I (y) =T%(x)

oz® dy* 0%y’ oxb  olklze
Oy Azt M Bxbdze Hyr Byt ... Oyis
oy’ lul+1 0

Oz Gy Oyt ... dyJs

T (y) = B (x) (10)

It follows from (2) that we have ;. (y) = Dyl 0%" ot the point p, as can be

J1---Js T Oz° 9yi1...0yis
: i —n; : %yt az® _ 8%z° 8y’ oyt
seen by setting I'; ; (z) =0 in (2) for 2 < ¢ < k. Since zia5x = BymBg5 Dot Dow )

substituting the last equality into (10), we find that the last two terms in (10) are
—IL ()% (y) +T%,(y) at p. Therefore (10) can now be written in the form

ox® oy*
9y 9 A (11)
Omitting the last term on the RHS of (9), we get the transformation rules of
the coordinates of the vector bundle V(e¥(M)) — M. Comparing these rules with
(11), we see that the differential expressions D,I'l (x) — T'., () transform from geodesic
coordinates to arbitrary coordinates by the transition laws of the vector bundle 7% (M) ®
V(eF=1(M)) — M. Now let (x;U) and (y;V) be arbitrary coordinates neighbourhoods
and p € UNV. Choosing coordinates (z) which is geodesic at p, we have symbolically
(p;x) — (p; 2) — (p;y). The above argument shows that each arrow in (p;z) « (p;2) —
(p;y) is induced by the transition laws of the bundle T*(M)®V (¢¥=1(M). It follows that

D,T}(y) — T, (y) = Doy (2) — T, (2))
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each arrow in (p,z) — (p; 2z) — (p;y) and therefore also the the arrow in the composition
(p,z) — (p,y) is induced by the transition laws of the bundle T*(M) ® V(e¥=1(M)),
which establishes the claim.

Step 3. Im(p) C Ker(D): This is an immediate consequence of the identity

0 (Ba:i 0%z ) = 922% 9z* Ox® 0°z¢ (12)
Oz 0z% Oz ... Ozd=’ Oz Ozb 02% 9z¢ Oxdi ... dxs
(13)
9z gs+1,a
0z% Oz 0xJi ... Qxls
which becomes aT‘Fj'l...js = —anbF?l...js + Ff,jlmjs when (6) is substituted.
This formal computation is contained in [7] and has been our starting point.
Step 4. Ker (D) C Im(p): Suppose that D(I') = 0, that is,
DIl —T%, =0  2<|uf<k-1 (14)

We will show that there exists an invertible function f = (f*) such that g¢ 8, f™ =
[,2 < |v| < k. Consider the following system of PDE

92050k f* =Ty (15)

for the functions f* where g0, f* = 6; Now (14) is equivalent to the first order system

' =15, 9.9ifk =T (16)
for the functions f?, f]’ where g fi= 6; A straightforward (and classical) computation
shows that the integrability conditions of (15) are given by D[jF}C]m =0, Ffjk] = 0, where
the first one follows from (13) and the second one holds by the definition of e¥(M). Solving
for f*, f; with arbitrary initial conditions we obtain (14) which starts the induction
with |v| = 2. Assuming now we have ¢’0,f% = I}, for |v| = k — 1, we differentiate
the last equation which gives, after a straightforward computation in view of (13) and
(14) g.0r, f* = D, I, =T%,, completing the inductive step and also the proof of the
proposition.

Corollary Let T' € e¥(M),k > 3. Then the following are equivalent:

1. D(T) = 0. _

2. For an arbitrary coordinate system (x), we have T . (z) = D;, Dy, ... Dj,_,
IS . @),3<s<k.

3. For p € M, there exists a coordinate system (U;z") around p such that T'? (z)

and 81(;;(:”) vanish at p.
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4. For p € M, there exists a coordinate system (U;x’) around p such that T'(z)
vanish identically on U.

Note that on the level of sz the above corollary corresponds to a fundamental
classical fact.

We would like to make now two brief remarks on the above Proposition.

1. As a peculiar fact, note that the image of D involves only 1-forms and not
2-forms.

2. If D(T') = 0, one is tempted to call I locally flat in view of 4 of the Corollary, but
also simple in view of 2 of the Corollary (see [ 12], [13], [3], [5] for simplicity). However
such names are inconsistent with their common usage within the framework of linear
connections in view of Theorem II. 22 in [12] which states that a linear connections is
locally flat if and only if it is simple and without torsion and curvature (see also [13]).

It also seems to us that there are some discrepancies between the above proposition
and some assertions in [10] about the origin of the classical CS, but we will not enter into
these matters here.
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GEOMETRIDE DIFERANSIYEL BiR CiZELGE UZERINE

ézet

Yiiksek mertebeli baglantilarda yerel diizliik, biikkiim, burulma ve basitlik arasindaki
baz iligkileri gosteren sagin bir ¢izelge inga ediliyor. Kullanilan formiiller e-baglantilarinin
Christoffel sembolleri cinsinden ifade ediliyorlar.
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