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ON SPACES OF GENERALIZED DIRICHLET SERIES

M. Dragilev

Abstract

It is considered the relationship between spaces Ly(\, o) and subspaces of the
space A1(A1) of analytic functions in the open (closed) unit disc, generated by
systems F(anz),n € N, if they constitute a basis in their closure.

1. Introduction

0. Let F' be an entire function, o = (e, )22, a certain sequence of different points
of the complex plane C, and |ay| T co. Let A, be the space of all functions, analytic
on the disk {|z| < r},0 < r < oo, endowed by the topology of uniform convergence on
compact subsets. We consider the closed subspace A,(F,«a) defined by a sequence of
functions

F(anpz),n € N. (1)

If the sequence (1) forms a basis in A, (F,a) then A,(F,a) is called a generalized Dirichlet
series space (GDS). Analogously GDS A, (f, ) is defined as the corresponding subspace
of the space A, of all functions, analitic on the closed disk {|z| < r},0 < r < oo,
considered with the usual inductive topology.

In the present paper we consider a connection between GDS of types Ao, A9 on
the one hand and Kéthe spaces L¢(\, o) on the other hand. Let us recall that Lg(), o)
is the Kothe space defined by the following Kéthe matrix:

apn = exp f(Anop),n,p € N

where f = f(u) is non-decreasing odd function, defined on R and logarithmically convex
as u > 0; A = (A,) is a positive increasing sequence; (op) is an increasing sequence such
that 0, 1 0,—00 < 0 < 0o. Thus Lf(A,0) is the locally convex space of all sequences
t = (tn), tn € C, such that

oo

It llp="_|tnlapn < 00,p € N

n=1
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with the topology defined by the system of seminorms {|{ ¢ ||,,p € N}.

Given f denote by (f)o (respectively (f)s)) the class of all F-spaces, isomorfic
to Lf(A,0) (respectively Lf(A, 00)) with some A. It is known [3] that classes (f)o, (9)oo
are disjoint for any f,g.

The function f is called rapidly increasing if f(6u)/f(u) T oo as u — oo for all
6 > 1. If this condition fails then (f)o = (I)o and (f)oc = (I)oo, where I(u) = u;
othervise (f)oU(I)o =0 and (f)oc U ({)eo = 0.

It is known that every non-degenerated F-space (i.e. it is isomorphic neither to
the space w nor to a Banach space, nor to their Cartesian product) has a subspace which
belongs to some class (f)s and has a quotient space which belongs to some class (f)o [1]
(see also [2, 6, 4]). Our purpose is to show that GDS A,(F,a), A,.(F,a)* are wide-spread
quite as well as spaces of classes (f)o, (f)oo-

1. The convex function h(w) = f(e"),0 < w < oo, has following property

wh_r)noo(h(w)/w) = o0.

Its Young congugate function h*(v) = max{wv — h(w)} is a convex function with the
same property [8].
Consider the following entire function

Ff(z) — Ze—h*(n—l)zn—1-
n:l

Let us use the notation

wp:ﬁgmw»

Lemma 1 The functions |Fy|, and exp f(u) satisfy the following relations:

Vo > 136>0Vu20%expf(%)§ |Fflu < cexp f(ub). (2)

Proof. First we have

oo

ol = 3o

1

max(e*h*(n_l) (u9)"‘1)297"+1

<
n=1
< 71 expmax{—h*(n — 1)+ (n — 1) In(ue)}
< g °XP h(In(u8)) = c1 exp f(uh),0 < u < oo,
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where ¢ depends on & anly, Sinee h is Young conjugate for £*, there exists 1y = 0 such
that

hilnu) = mEx{vJ.n w—h"{v}} = minu— h*(w)

Let ng be an integer such that ng — 1 < vy < . Then

|Fyla = exp(—h*(ng = 1) + (mp — 1) Inu)

expl—h (rg) + winwu = lnw)

explh(lnu) — Inu) = ,r{u]m.( h:t:;])

LT

> =12 —f(5)

Taking ¢ = max{cy,cs} we complete the proof,
Dencte

In = Fy(nz),n e N, (3]

and

]
oy
1]

{# = (i) || £ |||.I= Zlfnuj'nlp = p e .r'l-r} ;

Xy = {u=|:i'-fn]' EI:JIﬂqu nl “}

EM

Al = {u = (1, ) ! lim sup |ug|*™ < r:t}}

A—00

From Lemma 1, we get the relation

wpdy : E'“ lb & oo, (4)

—uly

which means that the Kithe space X is nuclear [9]. Therefore the strong dual space J‘{
can be realized as the space X using the duality

o
< tu>= Eillurlr (5]
1
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where ¢ = (t,) € Xy, u = (un) € X};. Analogously we deal with the spaces A’ (duality
between them is given by the same formula (5) with Ztnz" € Ay and u = (u,) € A ).

mn

O

Lemma 2 (c¢f [5]) The sequence (3) forms a basis in the space Aoo(Fy, N) if and only if
Jor every sequence t = (t,) € X} there exists a function

> _p*(n—1) n—
p(2) =) une T, (6)
1
such that (u,) € A’ and o(n) =t,,n € N.

o0
Proof. For arbitrary t = (t,) € Xy we put T(t) = Ztna:n. The linear operator

1
T: Xy — A is continuos and so its conjugate operator 7" : A, — X} is. Let {xy,} be
a basis in Ay (Fy, N), then it is absolute, because of nuclearity of the space and T is an
isomorphism as well as T"(A,) = X . Hence

o
<T e, >=<u,Te, >=< u,z, >= Zukefh*(k‘l)nk =¢(n)=t,,n € N.
k=1

Thus the necessity is proved. To prove the sufficiency we have to repeat the above
considerations in the inverse order.

a

Theorem 3 The sequence (3) forms a basis in the space As(Fg,N).

Proof. By Lemma 1, for arbitrary sequence (¢,) € X} there exist constants p; and c;
such that the inequality

[tn| < c1exp f(pin),n e N (7)

holds. We construct a function (6) by means of interpolational Lagrange series

1 . e z tr
—— -1 k—1 Z\k
p(z) = —sinmz) (~DFH () (8)
k=1
where vy, is the integer part of f(p1k),k € N. For any py > 7 we have
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Jeg > 0 :sup e < cpexp(p22),0 < r < 00. (9)
K |m(z=k)|,
Consequently
= r rée
[#lr < caexp(par) ()™ Itel < ercacssup(==)/ 10, (10)
k=1

where 6 > 1 is arbitrary and the constant

c3 = Z(G)ﬂplk) < 00
k=1

does not depend on r. To estimate the function

orw) = (T ()

we consider two cases. First, let f(u) be rapidly increasing. Then its maximum cannot be
realized outside of the interval (rf;e,r60e) for some §; < 0 and large enough n. Therefore
the following estimate

msxxcpr(u) < exp f(p10er) (12)

holds asymptotically, i.e. for large enough r. If f(u) is slowly increasing, we use the
following its property:

uf'(w)
f(u)
where f'(u) means a left-side derivative, 0 < a < oco. Since ¢,.(u) > 0 in some

neighbourhood of any point u < rfe'~'/, the function ¢,(u) attains its maximum
in the interval (rfye,76e), where 0 < fe'~1/*. Therefore we have the estimate:

f(p16er)

T «, (13)

maxy,(u) < exp (14)

Taking into account (13) there exists p > p16e such that

por + ﬁpf—er) < f(pr)

holds for big enough r. Combining this with (7)-(12) and (14), we get the following
estimate (with constants ¢ and p, independent of r):

lo|r < cefP 0 < r < .
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Therefore
u e—h*(nfl)l < mln |()0|T' < Cpnflmin GXp(f(pT) _ (TL _ 1) Inpr)
" - ool & r
= ¢p" ' exp(—max((n — 1) Inpr — h(lnpr)))
= Cpn—le—-h*(”—l),n € N. (15)
Hence

lim sup |un|% <p < oo,
n—oo

ie. (up) € A . Therewith ¢(n) = t,,n € N by construction. It remains to apply
Lemma 2.

As follows from Theorem 3, the formula T'(z,) = e, generates an isomorphism of
the space Ao (Ff, N) onto Kothe space X.

a

Corollary 4 The space Ly(N,00) and GDS Ax(Es,N) are diagonally isomorphic.

3. Let us prove an analogue of Theorem 3 for the space A}, dual to Ay.

Theorem 5 Let f(u) be rapidly increasing. Then the sequence (3) forms a basis in the
space Ay(Fr, N).
First introduce some notation:

Al = {(un) lm |u,|® = 0};
n-—o00

X {(tn) 23 > 0 tnl|znlr < oo} ;

1

X} = {u:(un):\fr>0| ““|I~r:Z [un <oo}.
k=1

— |zn|r

D
~
I

The formula (5) sets a duality for the pair of spaces (X'f,)_(}) as well as for the
pair (Ao, AL) (in the latter case Ztnznﬁl € Ay and (uy) € A})). Hence X; is a strong

dual for Kithe space X} and so is Afy for Aq.
The following fact can be proved analogically to Lemma 2.
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Lemma 6 For (3) to be a basis in the space Ao(Ef, N) it is necessary and sufficient
that for every sequence t = (tn) € X} there exists an entire function

> (n—1)
(,O(Z) — Zune—h n Zn_1;
1

such that (u,) € A and p(n) =t,,ne€ N.

Proof of Theorem 5. Given a sequence (t,) € X} take the entire function ¢(z)
defined by (8) with vy chosen as the entire part of the number In |tx|, if it is positive, or
0 otherwise. Let us show that the function (z) satisfies the condition:

Ve > 03c> 0 || @]y < cef 0 < r < . (16)

To do this, for a given €, take n. such that

[tn]| < ef(58) for n > n..

Let 1(2) be the sum of the first n, members of the series (8). Then, clearly, the estimate:

lp1]r < cre®” (17)

holds, where the constant ¢; depends on €. For the sum @o(z) of the rest of members of
(8) we have

9 €N
lpalr < C2€4TSup(%)f(Z) (18)
k

where 1 < 8 < 2 and the constant ¢, depend on € only. As in the proof of Theorem 1,
we were able to ascertain that the maximum M(r) of the function

roe . ¢ cu
TUENf(SE
()yrcs

M

for big enough r, attains on some interval (rfie,rfle) with 1 < 6; < 6. Therefore we
have that, asymptotically, the estimate

erd

o\
I‘P2Ir < (5_> < ef((?")
1

holds. From here and (17), (18) we get (16). Now, by estimation of Taylor cofficients of
the function ¢(z) (cf (15)), we get

. 1
lim sup |u,|™ <e.
n—o

On account of arbitrariness of € we get (u,) € Ajf. Since the condition p(n) =t,,n € N
holds by construction, Theorem is proved.
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Corollary 7 Let f(u) be rapidly increasing. Then Ly(N,0) is diagonally isomorphic to
the space A)(Fy,N), dual to GDS Ay(F¢,N).

4. In connection with Corollaries 4,7 the question aries: is any GDS of type A
(a dual space to GDS of type Ag) isomorphic to some space Lf(X,00) (correspondingly,
L¢(),0)).

Let ¢(z) = expp(z) be an entire function without zeros. Put f(u) = |p|y,0 <
u < oo. Evidentl, f(u) is increasing and logarithmically convex; it is rapidly increasing
if and only if ¢(z) is an entire function of infinite order. It is simple to show that for
each 6 > 1 a constant c exists such that

Bl < - exp f(3)

Therefore the estimate

|6| > exp f(g—) (19)

holds for big enough wu (for each 6 > 1, if f is rapidly increasing, and for some 6 > 1,
otherwise). On the other hand

|$lu < exp f(u) (20)
for all w. Thus we get the following

Theorem 8 The space Lg(\, 00) with f(u) = |¢lu,0 <u < 00 and X, = |al,,n € N
is diagonally isomorphic to GDS A (d,«). Therewith Ax(p,a) € (I)oo iff ¢(z) has a
finite order.

It 1s clear that the restriction on ¢ can be weakened, for example, as follows

u
0
where f(u) is some logarithmically convez function (in particular, Theorem remains true
for entire functions of an order p < 1).

Similarly can be proved the following

1
40> 1,¢> O|Ef( ) <In|dly, < cf(uf),0 < u < oo,

Theorem 9 Let ¢(z) have an infinite order. Then the space Al(é, ), dual to GDS
Al (¢, a), is diagonally isomorphic to the space L¢(X,0), where f(u) = |ply,0 < u < o0,
and A\, = |ap|,n € N.

As will be seen the restriction on the function ¢ is substantial.

5. Let (X,Y) be an ordered pair of locally convex spaces. We say that X
and Y are essentially different (shortly, (X,Y) € R) if each linear continuous operator
T : X — Y is compact. In particular, (X,Y) € R,if X € (I)g and Y € ([)s (Zahariuta,
[10]). We use this fact to bring in some necessary supplements to Theorems 5,9.
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Theorem 10 Let a function ¢(z) have a finite order. Then the system of functions
(d(an2))3, cannot form a basis in the space Ag(p,a) (in other words, Ag(¢,a) cannot
be GDS).

Proof. In fact, ad absurdum, assuming the opposite and taking into account (19),
(20), we get that the dual space Afj(¢,a) must be isomorphic to the space L(),0) with
f(u) = |¢|u,0 <u < oo, and A =|ay|,n € N. We have L¢()\,0) € (I)g since, under the
conditions of Theorem, the function f(u) is not rapidly increasing. On the other hand,
Afy ~ L;(N,00), where f(u) =u. Thus Aj(¢,a) € (I)o, but Af € (I)oo, hence, by [10],
we have

(Ap(¢,a), 4y) € R (21)

The operator J*, conjugate to the identical embedding J : Aj(¢p,a) — Af, is an
endomorphism. But this contradicts to (21).

Taking into account results of [10], [4], we can sum up previous results as follows.

a

Theorem 11 (a) The classes (f)oo((I)oo tncluded) contain GDS of type A ; the classes
(f)o # (I)o contain strong dual to spaces GDS of type Ap.

(b) The space Ay(¢p,a), a strong dual to GDS Ag(¢,a), and the space Al (re-
spectively, As and GDS Ao (¢,), where ¢(z) has an infinite order) are essentially
different. In particular, the space Ag(¢,a)(Aws) cannot be isomorphic to subspace of Al
(respectively, As(¢,a); the space Ax(¢,a)(Al cannot be isomorphic to quotient space
of As (respectively, AL(é,)).

(c) There ezists an infinite set of GDS of type A (or strong dual to GDS of type
Ay ), linearly ordered by relation (X,Y) € R.

(d) Every space Lg(A,00) (respectively, L(),0), non-belonging to (I)g) contains
a complemented subspace, isomorphic to some GDS of type Ay, (respectively, some dual
space to GDS of type Ag ).

Proof. It remains to prove (d) only. To do this, from the sequence A = (A,) we
take a subsequence p = (py,) such that ppy1 — pn < 1 and put v = (v,) where v,
is the entire part of the number p,,n € N. Then the space L;(u,00) can be realized
as a topologically complemented subspace of L¢(A,00) and, obviously, it is isomorphic
to the space L¢(v,00). By Theorem 3 the sequence (Fy(nz)) constitutes a basis in the
space As(Fy,IN); by Theorem 8, the space Ly(IN,00) is quasidiagonally isomorphic to
the space A (Fy,N); its restriction on L(v,00) is an isomorphism of this space onto
GDS A (Ff,v). The second part of (d) relating to L(),0) can be obtained by using
of Theorems 5,9 (since L¢(X,00) does not belong to (I)o the function f(u) is rapidly
increasing).

In conclusion, consider the following three classes of spaces: (a) strong dual spaces
to GDS of type A)), (b) GDS of type A, (c) closed subspaces of the space A;, generated
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by non-closed systems of monomials in A;. Let us recall that F-space X is called non-
degenerated if it is isomorphic neither to the space w of all sequences, nor to a Banach
space, nor to their Cartesian product. It is known that each non-degenerated F-space
X has a subspace from the class (f)o (Shaginian T. [4], see also [2],[6],[1]) and has a
quotient space from the class (f)o (Ahonen H. [1]). Combining this facts with our con-
siderations we get. O

Theorem 12 Let X be a non-degenerated F-space and let (a), (b), (c) be the above
defined classes. Then X has a subspace, belonging to (b) and X has a quotient space
either from(a), or from (c).
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GENELLESTIRILMIS DiRICKLET SERIiLERI UZERINE

Ozet

Sonsuza artarak yaklagan bir {«,} dizisi ve bir F' tam fonksiyonu igin {F(a,z)}
fonksiyon dizisinin birim diskteki analitik fonksiyonlar Frecket uzayinda gerdigi ka-
pali alt uzaylar incelenmig ve bu dizinin alt uzaylar: incelenmis ve bu dizinin alt uzaya
baz tesgkil ettigi hallerde uzayin yapisiyla genel LF uzaylarinin yapilar arasindaki
iligkiler aragtirilmigtir.
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