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Introduction

At last year’s Gokova Conference I reported on a “topological approach” to the “new”
knot invariants, which Cliff Taubes and I had worked out along lines initiated by Axelrod
and Singer [AS] and Kontsevich [K] in their work on 3-manifold invariants.

This year I thought I would comment on how these invariants arise out of physics-
inspired considerations, but in a manner which might be more palatable to matnemati-
cians than other accounts I can point to in the literature.

At the heart of the matter, as I see it, is the quite different role critical point theory
plays in topology and in quantum physics, and I will therefore start with a comparison
of these roles in the simplest instance: that of a compact oriented manifold M equipped
with a “Morse function” f: M — R.

1. The topological case

Recall that the critical points of a Morse function f are assumed to be nondegenerate.

That is,
32
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where the z¢ are smooth ccordinates centered at p. This condition can also be invariantly
expressed by demanding that the natural Hessian quadratic form H,f of f, defined on
the tangent space of M at a critical point p, be nondegenerate.

The Morse index o¢(p), of f at p is then defined as the number of negative eigenvalues

df, = 0 = det

2 . . . . . .
of 24| or equivalently as the dimension of a maximal linear space on which H,f is
Oxtdzl p’ 4

negative definite.
It follows immediately that a Morse function has only a finite number of critical points
on M, so that in particular the “Morse polynomial” of f

M(f) = Zto(m

p

is well-defined.
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The famous Morse inequalities arise by comparing this polynomial to the Poincaré
polynomial P;(M) of M, relative to any field K, where

P(M) =) dim H (M; K)t'.

They can be expressed via the formula

Mi(f) = P(M; K) = (1 +1)Qg(t) (1.1)
and the condition that the coefficients of the polynomial Q¢ (t) are all nonnegative:
Qf(t) =ao+art+... a; > 0.

These inequalities constitute the basic topological constraint on the size and disposition
of the critical set of a generic smooth function on M, and the most elementary approach
to proving them remains Morse’s original one: one studies the growth of the half-spaces

M§ = {m € M|f(m) < a}

and finds that their topological type changes only when « passes a critical value of f, and
that if p is the only critical point with critical value f(p) = ¢, then for suitably small ¢
one has the “crossing formula”

M = M{e U e, (1.2)

Here o(p) is the index of p, the right-hand side indicates M;™° with a o(p)-cell attached,
and 2 indicates homotopy equivalence.

The deformations needed to carry out this program of course depend on the general
existence theorems for the “flow lines” of the negative gradient of f taken relative to some
auxiliary Riemann structure g on M. Thus one studies the ordinary differential equations

dz
i Vf (1.3)
and pushes M in the direction of their solutions.

It was Smale who, in the ’60s, rethought Morse theory in terms of the dynamics of
the differential equations (1.3), and his work implicitly leads to the following refinement
of the Morse inequalities: for a generic metric ¢ — relative to f! — the solutions of
(1.3) can be used to give a chain complex which is very economical for computing the
cohomology of M (relative to any coeflicients!), and the inequalities then follow by quite
standard arguments.

The recipe is as follows: let Cy be the set of critical points of f, graded by the index
o(p) of f at p, and let C} be the corresponding graded free abelian group generated by
Cf. Now under the “f-generic” assumption on g, it follows that the number of solutions
of (1.3) which connect a critical point p of index A and a critical point g of index A + 1 is
finite. Furthermore, there is a natural sign assigned to each such flow-line, or “instanton”,
as the physicists call these. Hence one can define an operator

85 : C% — CP
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by setting
31(p) = _sign(u)g, (1.4)

where p runs over the “instantons” from p to all critical points g of index o(p) + 1.
More precisely, the u are solutions of

dy
oy
7 f
subject to the boundary conditions
t—1}£noo wlt) =p, t-l-}I—Eloo ult) = a,

and the term “instanton” is apt because such a solution spends most of its time near p,
then in a finite time — i.e. an instant — moves to the vicinity of ¢ and then hovers there
for all large t.

In any case, the crucial assertion is that the cohomology of this complex computes the
cohomology of M:

H*(M) ~ H*(C}). (1.5)

The Morse inequalities (1.1) are now seen to be the same ones that always exist between
the dimensions of the finite-dimensional chain complex and its cohomology.

Let me warn you though that this formulation cannot be found explicitly in the earlier
literature. A detailed self-contained account of why 5;".» = 0 can only be found in more
recent papers. Papers written after the work of Witten and Floer focused our attention
on the Morse theory in a quite new and original manner. See for instance [AB].

So much then for the “baby version” of critical point theory in its topological-geometric
setting.

2. Classical mechanics

On the physics side, this critical point theory played a central role from the very start
in the Lagrangian and Hamiltonian formulation of classical mechanics, but immediately
in an infinite-dimensional context, that is, in the framework of the calculus of variations.

Recall that in the Lagrangian formulation, the mechanical problem of interacting par-
ticles is subsumed in a single function L(g,q) defined on the tangent bundle TM of the
“configuration space” M underlying the problem.

The motion of the mechanical system in time thus corresponds to a path on M, and
Hamilton’s principle asserts that a path p(t) joining the configuration p; € M to py € M
in time T will extremize the action functional

o7
S(u) = /0 L(pu(t), 1(t)) dt (2.1)
and be subject to the boundary conditions

w0) =p1,  w(T)=pa. (2.2)

11
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Put differently, let Q = le’pz be the space of smooth paths on M subject to these
boundary conditions. Then (2.1} defines S as a real-valued function on €2, and an extremal

path p(t) corresponds to a critical point of S on . In short,
ds|, =0. (2.3)

In this context, Morse theory predicts solutions of an extremal problem in terms of the
topology of the path space (2, and the theory remains the same as in the finite-dimensional
situation, except that the counting function M;(S) and the Poincaré polynomial P;(QM)
are now usually found to be infinite series. For instance, when M is the n-sphere, and
2 = QS™ is the space of paths with fixed endpoints on S™, Morse computed P;(2) to be
given by

1
P(Q) = e B o A

11—t
and concluded from that computation that there is an infinite number of geodesics joining
two fixed points on S™ endowed with any Riemann structure!

In short, classical mechanics fits quite naturally into the theory of critical points,

and indeed was one of the principal driving forces for the work of both M. Morse and
J. D. Birkhoff.

3. The quantum case

In quantum mechanics, however, critical points and their effects appear in a quite new
and at first unexpected guise. This transformation comes about by what I like to call the
“Dirac-Feynman paradigm”.

In classical physics, the tangent bundle 7'M plays the role of the “phase space” of the
system. Each point of TM describes a state of the system, and in favorable circumstances
the laws of motion given by the extremal condition on S translate into a vector field X
on TM such that the exponential eXs describes the time evolution of the system.

In the simplest instances of quantum mechanics, the phase space — i.e. the “space of
states” — is taken to be H = L?(M), and the time evolution of the system is given by a
unitary operator Ur on H.

Now ideally — if “quantization” were a functor — one would therefore hope to pass
from a classical Lagrangian L on T'M to a unitary operator UX on H in a constructive
manner. Unfortunately such a procedure can not really be hoped for, but the Dirac-
Feynman paradigm nevertheless gives us a remarkably suggestive clue as to the nature of
this relationship. Namely, it proposes the following formula for U = U%. First note that
because this operator acts on functions, it can, in principle, be written in the form:

(Uf)z) = / U, 9)7 (4)dy,
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where U{z,y) corresponds to the Schwartz kernel of U. This granted, Feynman, pressing
an analogy remarked earlier by Dirac, writes the following formula for U(z,y):

Ulz,y) = /eZ”i/h'S(“)D/.z. (3.1)
Here p ranges over all paths on M subject to the boundary conditions

p0) =z,  wT)=y,

and
T
S(u) = / Ly, ) dt.

The integral here is to be taken over all these paths, and is of course mathematically
ill-defined. Still it is a formula of great beauty and has pointed the way of all of modern
quantum physics.

First of all, it correctly predicts the effect of “slit-experiments” with electrons. Here
then there are only a finite number of paths involved, and (3.1) weights them with complez
numbers — the “amplitudes” of quantum mechanics rather than the real probabilities
which common sense and causality would have predicted.

Secondly, (3.1), together with the fact that h is very small, leads to the principle that
(3.1) yields classical mechanics in the limit as A — 0 and that quantum corrections should
be computable by perturbation expansions in terms of h!

Thirdly, (3.1) has the correct “functorial form” with respect to ¢ and partitions of the
space M.

Here let me take the second point as the main lesson that the mathematician has
to learn from this paradigm, and in our finite-dimensional setting this amounts to the
following:

Given a function § : M — R, pass to the function e’*°, but considered as a smooth
distribution (on top-dimensional forms on M with compact support):

2

and derive an asymptotic formula for TA{S} as A — +o0.

That the critical points of S are again decisive in such an expansion is seen quite easily.
For suppose that the support of w is disjoint from the critical set Cg. It is then clearly
possible to construct a vector field X on M such that

TS} :w <i>n/2 /M 50, we QM) (3.2)

X-5=1 on Suppw.

Differentiating in the direction of X, one obtains the identity

0 :/X(e“sw) = i)\/(XS)ei’\Sw +/e”SXw
= i)\/e“‘sw+/ei’\SXo.17

13



BOTT

and, taking absolute values, one has the inequality

/e”sw g/le|.

Thus | [ e*5w| < ¢1/|)], for some constant ¢;, and iterating this procedure we see that
|J e*Sw| decreases faster than any power of A~ as A — co. Hence we have the

A

Proposition. If the support of w is disjoint from the critical set Cs of S, then Th{SHw)
decays faster than any power of 1/A:

¢k (w)
G

It follows that the asymptotics of Th{S} are concentrated on C's, so that if S is Morse,

T)(S) should be asymptotically equivalent to a distribution consisting of a sum of 6-

functions and their derivatives at the points of Cg.
To explain this expansion, we consider the simplest possible example:

S =xz?/2, M =R, (3.3)

so that 0 € R is the only critical point of S. As a first computation, observe that the test
form

[T{SHw) <

fork=0,1,2... .

2_2

a‘z

Yoa=¢€ 2 dz a>0

does not vanish at 0 € R, and that although ¢, is not of compact support, it decays
sufficiently fast for Th{S} to be well-defined on ¢,.
In fact, if we write T for T»{S}, so that

1 % ixe? _ aZ%2?
Thlga) = py e 2 e 2 dz, (3.4)

then (3.4) can be explicitly evaluated in the following manner. The integral (3.4) is the
limit of the integral over the interval [—ry,rp] as r1 and ro tend to 400, taken in the
orientation indicated in Figure 1. By Cauchy’s theorem, we can deform this integral
into the dotted contour of Figure 1, where 3 is the indicated square root of —

R S
—aZ+id’

, _1
that is, 8 = <= (1 + ie®) * For large ) it will point in direction close to e'"/% Now
VX A &

(12’!‘ (121‘

the contributions of ¢; and c¢3 to this integral are seen to decay as e 2" and e” 2
respectively, as soon as A > a. Indeed, on the quarter circle * = ra(cosf + isinf) and
0 < 6 < 7/4, the exponent of (3.4) is given by

S{(~a? + N3 (cos(26) + isin(20))}
and hence has real part
—70—2§(a2 cos 26 + Asin 26).
For A > a, we have the upper bound

14
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FIGURE 1

2 2.2
—%20(2(005 26 +sin26) < Y

Hence our integral is bounded in absolute value by e~"% on c3. Replacing 6 by 6+ x and
ro by r1 preserves this inequality; hence, this estimate also holds on c;.

It follows that in the limit as 71,72 — 00 our integral is given by the integral along the
line 8- r, r € R. But if we set x = Br, then (3.4) is transformed into

TR
T(¢a) = <—> 5/ e " /2dr
27 oo
For large A, Th(pq) therefore has the expansion

i

Bl

27-3

Ty () = .{1#%}_ (3.5)

——e ¢ 1 __fffi +
= 3N cel P

Thus the leading term of the asymptotic expansion of

Ta(pa) = <%> /Oo 6% po(z) do

-0

@
#|

S

S

im/4
€
7
We next test the behavior of T on functions which vanish at 0 to order n, and for this
purpose we compute the value of T on the test forms

is given by

2.2
oo (z) = e 2 z"dx.
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But, just as in the previous case, we now find that

Ty (2" pu(x)) = (?)M (%) /oo T dr (3.6)

We will denote the integral in (3.6) by (r™):

<%>%12e‘§r dr = (™) (3.7)

because in probability terminology it represents the n-th moment of the probability mea-

sure (%)1/2 e /2dr on R.

This granted, we have

g am 2\ —(m+3)
ed (i) ia? 2 2m _
Ty(z"pa(z)) = 4 X (1+ 2 ) (r*™y  forn =2m (3.8)
0

forn=2m+ 1.

Again the leading term of this expression is independent of o and vanishes for n odd.
For n = 2m even, it is given by:

T(paz™) ~ % +... (3.9)

With these preliminaries out of the way, we are ready to write down the complete
asymptotic expansion of T}.

Proposition. The distribution T {%2} =T on R has the asymptotic expansion:

Ty ~ ﬁ {Z (;)m %;L.l 6<2’">(w)} (3.10)

m=0

where §(z) denotes the Dirac function and §*)(z) its kth derivative.

Explicitly, (3.10) states that if ¢ = g(z) dz is a C*° 1-form on R with compact support,

then '
n~ 2T G5 o) (3.1)

Sketch of Proof. Note that if o(z) = g(z)dz is a test form with compact support,
then T () is bounded:

ITx(p)l < M I, (3.12)

where M is the maximum value of f and [ is the length of the support of ¢.
We now use an integration by parts to show that

Tzl < 4. (3.13)

16
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Indeed if X denotes the Lie derivative in the direction a%’ we have

0 :/00 X (e%&g(r)dw>

—o

©0 iz? ©0 iz?
= i)\/ e 2A:vg(a:)da:+/ e 2 ¢'(z)dz,

—0

which implies (3.13) with c(¢p) = / g’ (z)] dz.

-0
Now then, given ¢(z) = g(z) dz, consider the expression ¢ — g(0)¢,, where v, is our

test form ¢, (z) = e~ "2 dzx of old. Clearly this expression vanishes at 0 and hence can
be written as z¢ with ¢ smooth and also of compact support:

¢ ~ 9(0)pa = z3. (3.14)
Applying T and using (3.13) yields

Ty — 9(0) i/% (1—%”55(}\/’—)

which proves that Thp ~ 2(0)\/_%7 up to order % Induction now yields the general case: a

truncation of the right-hand side at degree m + % in A approximates T () up to degree
m+1. QE.D.

Remarks. 1. Formally, the proposition can be remembered by simply making the substi-

im

tution x = 2y in the integral /oo e# g(z)dz, to obtain S / ye il dy
\/X - ) )\ >

and then ezpanding g in a Taylor series about 0 in the y parameter.

2. On a less formal level, we see that the smoothness and compact support of the test
forms allows us to compute the asymptotics of TA{ } by computing those of T ;42
and then sending « to 0.

.Z'Z

3. Note next that the analysis goes through unchanged for the function S = £2- as long
as p > 0. One simply rescales x to ,/pz; choosing ,/p > 0. On the other hand, to compute

the asymptotics of the function S = —%2 we must conjugate T :

so that (3.10) yields
2 _ e‘%’ st (_Z)m (7,2m> o
TA{——2 }— % { E gl 4] (LL‘)} (3.15)
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2
In view of this state of affairs, we see that the distribution T {%} has the asymptotic
expansion
e 7 sign(p)

Tx {%”2} v {Tg <p%)m v;% 5<2m>(z)} . (3.16)

Note finally that due to the vanishing of the odd moments, the expression in the curly
brackets on the right is rational in p, and that p is of course the Hessian of the function
% relative to x.

We are now ready to treat the case of a general Morse function S on R with a finite
number of critical points. It is clear from the preceding that T5{S} is determined by the
behavior of S near its critical point set Cg, and if we use a “Morse coordinate” z, near

2 2
each p € Cg, so that S is of the form S = S(p)+ %" at the local minima and S = S(p)— %"
at the local maxima, then each p contributes according to (3.10), multiplied by e**5(),

Thus the leading term of T5{S} is given by:
1 ) i s
TS} ~ 7X (Z el)‘s(p)(S(xp)eT Slgﬂ(HpS)> +..., (3.17)
P

where Hp,S denotes the Hessian of S at p and sign(H,S) denotes its signature.

This leading term therefore carries the topological information in the phase shifts that
occur at the various critical points. In terms of our earlier Morse index o(p), we can also
write (3.17) as:

~ e iAS(p) —o»
T:{S} 7 {ije 8(zp)i } +... (3.18)

The higher order terms of course depend on the total germ of S at p, because they
involve the derivatives of 6(z,) taken with respect to a “Morse coordinate” x, of S at p.

Now as it is in general quite difficult to find a Morse coordinate z, near a critical point
p, it is essential to have an algorithm for computing the asymptotics at p € Cg in terms
of a general coordinate system. In principle this can be done by using the transformation
laws of 6()(z), but in practice it is easier to proceed in the following manner.

Suppose then that the Taylor series of § at p € Cg takes the form:

2 3
_ (1% aszx
S=5(p)+ TR TR
with a, = ‘én—f‘ . We write
z™ |p
S _ S a2:E2 . h _ akzk
=8(p) + =5~ +Q),  withQ(z) =) —-,
k>3
so that )
erS = ¢MS(P) AT 1AQ(2) (3.19)
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Now in our computation of T(S) near p, notated Th{S},, we have seen that the decisive
parameter is not z, but y = e~ ¥ y/Aaz|z, and the expansion of tAQ(z) in this parameter
%.

In view of the foregoing, it is not surprising that we can compute the contribution to
T,(S) at p by simply expanding e**?(*) in the exponential series and then computing
T»(S) term by term. In short, we have:

T, {S}y(p) = €5 gn {=2}(B25,), (3.20)

and this formula furnishes us with the desired algorithm.
For example, if

starts with a term O (%) and then proceeds in higher powers of

2
x
== +4%,
g T

then the asymptotics of Th{S}¢ are obtained from those of ﬁ, by premultiplyin with
2 gy
the formal series
A2z
2!

Thus the problem is reduced to rewriting the formal expression:

e — 1 4 iag® —

+....

o'F i <T2k>ik5(2k)(x) . i (i)\l‘3)s (322)

VA 2k s

in terms of linear combinations of the §(2#)(z). This works in spite of the fact that these
series proceed in % and ) respectively, because §(2%) () vanishes on all powers of z greater
than 2k. Thus, for instance, the first term of (3.22) is

6141. 2, (rbm)i3m 5
/X Z)\m@m)! (@)

m=1

s=1

and corresponds to the case when § (zk)(a:) differentiates z3° entirely, i.e. when 2k = 3s =
6m. The coefficients of the higher §(?*)(z) are correspondingly more complicated but
clearly computable.

The 1-dimensional model we have discussed — quite possibly, in greater detail than is
welcome — generalizes to the n-dimensional case without difficulty. In the vicinity of a
critical point p of a Morse function S on M, we can always introduce Morse coordinates
2, j=1,...,n, so that near p,

S =S(p) + % S (@), (3.23)

with €; = £1, so that the index of S at p counts the number of ¢; equal to —1.
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ixe;z?

In these coordinates, e*S = *5(®) H?zl e~ so that, by Fubini’s theorem, the

integral
<1>§/ei)\5' dzt - dz"
— pdzx z
27

can be carried out one variable at a time. In short, one simply iterates the 1-dimensional
case n times. It follows that

1 ; im o 6
GOEETDY e e UL O N (3.24)

pesy /| det H,S|
and the leading term again carries the purely topological information in the phase-shift.

Remark. In the physics context, one is supplied not only with a Morse function S, but
also a specified volume form v € Q7(M), and it is the specific integral

(i) H / GiAS
271' M

whose asymptotics are of importance. One can then speak of a perfect Morse function
relative to v. For such a function S, only the leading order terms contribute, and they
actually compute the integral. That is, one has the formula:

/ sy = L ) eiAS(p)-ﬁ-"T”sign(Hp(s))_L(xl’)v—L' (3.25)
M Az 0SS, | det Hp(S5)|2

A famous instance of this “perfection” occurs in the S!-equivariant theory of symplectic
manifolds. In that framework, M is compact, with symplectic form w, and has a circle
action preserving w “in the equivariant sense.” That is, there is a function S on M such
that if the S'-action is generated by the vector field X, then

Lxw = —dS.

(Such an S is called a moment map for the action). In any case, these data guarantee that
if this S is Morse, then it is also perfect in the above sense, relative to the natural volume
element v = ‘*;L—T,L on M. This assertion is known as the Duistermaat-Heckman formula
(see [DH]), and it has many striking applications in both physics and mathematics. By
the way, the functions arising in this manner are always also perfect Morse functions in
the topological sense.

This concept can also be formulated in the Riemannian category. For this purpose,
note first that a Riemann structure ¢ on an orientable manifold M canonically defines a

distribution on the compactly supported functions f € Q% (M) by the formula:

fe /M fug.

Indeed, g determines two sections of A»T* with norm 1. We choose one of these and call
it vy, and then orient M so as to make the above integral non-negative whenever f is
non-negative.
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We may therefore speak of a Morse function S being perfect relative to a given Rie-
mann structure g, meaning thereby that the leading term of the asymptotic expansion of

G 1)% [ e*3v, computes the integral.

For example, if M is the unit sphere $2 ¢ R® and S is any linear function, then S
is perfect in this sense relative to the inherited Riemann structure on S2. In fact, this
example is the paradigm for the whole Duistermaat-Heckman theory.

4. Graphical Methods.

Computing the higher order contributions to the asymptotic expansion (3.24) is in
general a daunting task, and a global insight into their disposition would be well-nigh
impossible were it not for the basic properties of the “moments” of Gaussian integrals
and their graphical representations.

For this purpose one first needs an n-dimensional understanding of the the expectation
values (r*) we have already encountered in dimension one. More precisely, recall that if
A is a positive definite n X n matrix, then

1\ 2

ha = (—> (det A)%e*%“‘z”” dzy - -doy
2T

defines a Gaussian probability measure on R", and if f is a measurable function (relative

to p4), then its “expectation value” is defined by

(a= [ fua

In particular, the expectation values of (z®) monomials

(o4

= zhn

n

are called the “moments” of pi4.
The reconstruction of a measure from its moments is in general an interesting question,
but it is very easy in the Gaussian case. Namely, one has the following

Proposition. The moments of a Gaussian integral relative to the Gaussian measure

1\?2
pa = (2—> |detA|%e‘%<A”E"T> dzy -+ - dzy, on R”
™
are given by
(l’z,l‘J> = Bij,
where B = A~ is the inverse matriz to A. Furthermore, all the moments () of 1a are

gwen by universal polynomials in the B;; according to the following algorithm.

To compute (7' ---z%"), consider first the integer a; + az... + a, = |al. If this
number is odd then the expectation value (z*) is 0!

If || is even, construct a graph consisting of n vertices v;, and equip v; with «;

“incipient arms”. Thus, for instance, corresponding to (z3z3z3) we have Figure 2.
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At this stage, one has |a| “open vertices”, as indicated by the circles above.

Next, choose a partition of the “open vertices” into two disjoint sets A and B of equal
cardinality and also choose a one-to-one correspondence & : A — B. (We call such a
choice a pairing.) Finally connect an open vertex a to ®(a) by an edge e, and mark it
with B;; if e, “connects” v; to v;, or v; to v;. Thus, in our example, this procedure might
lead to Figure 3.

If T denotes the labeled graph determined at this stage, set B(I') = product of all the
labels in I'. With this understood one has the formula:

o e = B
CIRRERE >A_2F:|A1(1t)r|' (4.2)

Here I' ranges over the graphs arising from all possible “pairings” ® as described above,
and | Aut I'| denotes the order of the group of automorphisms of I'.

Warning. In the literature my “incipient arms” are usually dispensed with, so that the
diagram on the previous page would appear simply as in Figure 4.

The derivation of this algorithm is based on the following identity:

1 1 _ _ 1, ,_
—5{4z,2) + (z,9) = —5{Alz — A7ly), (z — A7'y)) + 5(A My y). (4.3)
If weset u=x — A~ 'y and A~! = B, then (4.3) takes the form:
1 1 1
——<A$,l‘>+<$,y> :_§<Auau>+§<By7y>, (44)

2
where y € R” is an auxiliary parameter ranging over R".
Y y ging
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Ba3

FIGURE 4

Examining the left-hand side of (4.4), we have

Tc’?'“'__a_ /6_%(Aac,w)+<$7y> dry ---dz,
62/]_ e 8ynn

On the other hand, applying the translation z + 2 — A~ly = u does not change the
measure dz; - - - dx,, so that (4.5) implies the relation

/e—§<Az,z>+<z,y> Azt - dz” — ek (By) /e—%m,w) dzl e da™

It follows that

= /e*%mz’”mo‘dxl <-dz™. (4.5)

y=0

lor]
(%) = ﬁa—nel
yst ... Oyn
In particular, (z;,z;) = B;j;, as remarked earlier, and it is now clear that all the (z%)
are universal polynomials in the B;;’s. As for the translation of the combinatorics of (4.6)
into graphical terms, we will content ourselves with checking it in the simple example of
the expectation values (z°™) in dimension 1.
2m!

o*m |, !
2my 3Y — — - v = — 1
) = y2 e Y0 = T (2m 1)(2m 3) (1) = (2m 1).. (4.7)

(4.6)

(x

Thus (z?) = 1, (z*) = 1-3, (z®) = 1-3-5, etc. To verify the graphical interpretation of
these numbers, let us compute, for example, (z*). According to the algorithm we should
count all diagrams arising from “pairings” of Figure 5, and there are clearly 3 of these:
(123c4), (13,2 4),and (1 & 4,2 < 3). Because I' has only one vertex,
| AutT| = 1. By induction, (z*™) = (2m — 1)!!, which agrees with (4.7).

In conclusion, note that the identity (4.6) enables us to rewrite (3.16) in the closed

form: ) .
T sign p NS¢
5\ (p—w > c’ 3y o5 5p(x)e( ox)? a . (4.8)

~ ¢
2/ VAVl y=0

More generally, we therefore have the

Proposition. Let S be a Morse function on M and p be a critical point of f, with Morse
coordinates x* vanishing at p, so that

1 i
S:S’(p)+§z<€i(a: )2 near p.
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FIGURE 5

Then the contribution at p of Tx(S) is given by

iAS(p)+iF sign HpS j -3
S S s shag )V | 4
A7 | det H,S|2 v=r

5. The equivariant case

Ty~

Morse functions are generic in the space of C*°-functions on M; however, they fail to
be so in the realm of functions which exhibit infinitesimal symmetries, for then the critical
set may contain nontrivial orbits. The appropriate concept in this equivariant situation
is therefore the following one.

One calls a function S nondegenerate if and only if Cs falls into a union of smooth
manifolds Cs = {N} such that the Hessian of S restricts to a quadratic form H ~N(S)
along N, whose kernel is precisely the tangent space to IV:

Ker Hy(S) =TN. (5.1)

This concept is then clearly also preserved for the pull-back of functions under fiber
projections M5 M , and Morse functions on M pull back to nondegenerate ones on M.
Note also that since S is nondegenerate, Hg(N) is also nondegenerate on any transverse
surface of T,M|N, pe€N.

The extension of our asymptotics to T»(S) when S is nondegenerate is an interesting
question, but would take us too far afield here. Rather, let me concentrate on the simplest
instance of the equivariant situation, namely when a Lie group G acts freely and locally
on a manifold P. The quotient space P/G is then a smooth manifold M and P 5 M is
a principal G-fibration.

Given a function S, invariant under the right action of G on P, it of course descends
to a function S on M, such that 7*S = S. On the other hand by Fubini’s theorem, we

have
/w——-/ Ty,
P M
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where 7, denotes integration over the fiber. Hence the formula

/e“sw:/ e w (5.2)
P M

reduces us to the previous situation.

However, the correspondence w +— m,w is in general “nonlocal”. If, though, w is itself
G-invariant — and note that this can happen only when G is compact! — then m,w can
be computed in the following local manner. Consider the Lie algebra g of G, and choose
a nonzero element e € A9g, where g = dim G. Such an element determines a volume for

G by the formula
vol.(G) = / w
G

where w is the unique invariant volume form on G whose value at e is 1. This granted,
one has the local formula

7w = vole(G) - ) - w, (5.3)

valid for any invariant volume w on P. Here ¢(e) denotes the inner product with the
“vertical” section of 29(P) determined by e. Note also that n* imbeds Q*(M) in Q*(P)
as the subcomplex of “basic forms” in P (that is, the forms annihilated by ¢, and £, for
any vertical vector field induced by an z € g), so (5.3) characterizes m.w completely.

In the physics literature, (5.3) is the point of departure for making sense of , for
noncompactly supported but invariant volumes w on P. One simply passes from w to the
basic form ¢(e)w. Thus to study the asymptotics of

Th(w) :/ e w (5.4)
P
in the equivariant contexrt means to study the asymptotics of
w / e (e) - w. (5.5)
M

In practice, the right-hand side is computed by restricting e*

$: M — P. That is,

t{e)w to any section -

/M e*ile) - w= /M s* e i(e) - w. (5.6)

These “equivariant”, or regularized, asymptotics are therefore well-defined only up to
a choice of e € A9g, and hence depend on a parameter. However, the ratio of two such
regularized series is intrinsically well-defined.

In certain situations, a “natural” choice for e presents itself. Notably, suppose V is a
finite-dimensional Hilbert space and S is a quadratic form on V. Then there is a unique
self-adjoint operator A on V, such that

1
S(z) = §<A:L‘,12> z €V,
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and V splits into an orthogonal direct sum:
V=KerAdImA

which is stable under A. In particular, A’ = A|Im A is nonsingular, and hence has a well
defined inverse A’ ' and determinant det(A’), which we will denote by det’ A.

If Ker A # 0, then S is clearly invariant under the additive group G of Ker A. Hence,
g is naturally identified with W = Ker A4, and the induced metric on W determines two
canonical elements e € A*PW of norm 1, so that with the appropriate one of these, the
integral | e*S4y) voly is “regularized” in the equivariant sense by

1 .
— / ey voly ., m = dim W+, (5.7)
(2m)= Jwe
Note finally that we can define the asymptotics of
L iAS
. t 1 5.8
onZ /wi e voly 1 (5.8)

as those of (5.7) where ¢ is locally constant and equal to 1 at 0. Thus

1 6%{ sign A

— 6i)\s VOle ~; T T T T
(2m)= /Wl A% | det(A))z

It is the infinite-dimensional analogue of this situation that will now finally, in the next
section, lead us to the “higher” linking invariants of knots. But it may be appropriate
to close this section with some remarks on the Faddeev-Popov construction which treats
the equivariant situation in a quite different manner.

In this construction, a section s : M — P is described as the zero set of an auxiliary
function F', from P to a vector space V of dimension g. Thus,

F:P->V

(5.9)

is assumed to have 0 as a regular value, so that the manifold F~1(0) defines a section sp
of m. This implies that for each p € F~1(0), dF, induces an isomorphism of the vertical
tangent space to P at p with V:
dF, g > V.
Such an F', usually called a gauge-fixing function, now determines a new function on
PxV*
S(p,s) =S(p) + (F(p),§), pEP, L€V

The first virtue of this procedureis that if S is nondegenerate, then S is also nonde-

generate, but with critical set isomorphic to that of S! More precisely, we have

Cs = sp(Cs). (5.10)

Thus in particular, if S is Morse, so is S! Note next that the Hessians of S at p and S at
sp(p) differ by a quadratic form of signature 0. Thus the phase shifts determined by S
and S are equal. And in fact, the equivariant asymptotics of T5(S) can be read directly
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from those of Th(S). Precisely, the relation between S and § is given by the Fourier
transform:

A
. 1 2 & »2
iAS N : iAS—e|e*| . L% *
/Me te)w = <27r/\> 511_r>%/P$V*e (dF, - e,d€) - o*w ® dE*, (5.11)

where o : P,V* — P is the projection, d¢ is a volume on V, and d¢* is the dual volume
on V* (so d€ ®d¢* = 1, and the norm in V* is taken relative to any positive definite inner
product on V).

The e-regularization is needed because the volume o*w ® d¢* has infinite support

in V*, and this formula comes about because the push-forward (271“\) %wf eMFET) el

approximates the d-function §(F') of F' as ¢ tends to 0. On the other hand,

/P(S(F) w= /F=O dI«“iu—-dg’ (5.12)

so that the term (dF, - e, d¢) converts this integral to the desired one:

[, ter= [ sitere. (5.13)

In the physics literature, the determinantal factor (dFy -e,d€) is usually next expressed
as a Berezin integral over some ghost variables, but I will not attempt to delve into these
secrets here.

6. Relations with C®-invariants of Manifolds.

The primary link between topology and quantum physics is the de Rham complex
2*(M), and the simplest and most intrinsic functions on Q*(M) arise from its ring struc-
ture. Thus, if M is compact and oriented, we have two natural bilinear forms on Q*(M):

(9,0 Z/M‘P/\l/} (6.1)
and
(2 )2 = /M oA di. (6.2)

The quadratic form associated with the first of these descends to cohomology, and for
4k-dimensional manifolds induces a symmetric quadratic form on H?2* (M) which plays
a fundamental role in all aspects of topology. The signature of the form is called the
signature of M and, according to a celebrated theorem of Hirzebruch, can be expressed
in terms of the characteristic classes of M.

The relations with topology of the quadratic form corresponding to (6.2) are more
subtle. Note that (p,1), becomes symmetric when restricted to 929-! on manifolds of
dimension 4q — 1, so that its manifestation occurs for the first time in three dimensions.
This form provides us with an interesting function S on the g-forms of a (4g—1)-manifold:

1

S(p) =3{p )2, e QU M) dimM =4q-1, (6.3)
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and it is this S which is the abelian antecedent of the “new” kmnot invariants in three
dimensions. Also, the relation of this S to the Ray-Singer torsion was already pointed
out by A. Schwarz some 20 years ago [S].

We restrict our remarks to the case where dim M = 3 from now on. Note then that S
clearly vanishes on the image of Q°(M) under d. Hence if H*(M) = 0, then the image of
d precisely describes the null-space of S.

This follows at once from a Riemannian reinterpretation of S. Indeed, let g be a
Riemann structure on M and * the usual Hodge duality operator induced by g, mapping
Q9 to Q™ 9, but renormalized by the the volume of M relative to g. That is, assume

/M «1=1. (6.4)

In terms of *, each Q9(M) inherits an L2-structure from g, given by

(p,¥) = /M @ A *P. (6.5)

Note that we have x> = 1 on 3-manifolds, so that our action S is given by

S(e) = %(w, * dyp), e, (6.6)

and is thus the quadratic form associated to the self-adjoint operator A = *xd. Hence the
null-space of S is the kernel of A. But *dp = 0 if and only if dp =0. Q.E.D.

At this stage, we see that this S is precisely the infinite-dimensional analogue of the
equivariant situation described in the previous section with Q°/(constant functions) play-
ing the role of the symmetry group. If sense can be made of the terms in the asymptotics
of [ €9 vol in this infinite-dimensional context, then one might hope that each term in
this asymptotic expansion might be a differentiable invariant of M.

Purely on the formal level an analogue of (5.9) yields:

) 1 Z sign(*d)
/e“svolfv L. ; (6.7)
(270)2 | det/(xd)|2

20
2

Now the (27rA)~ 2 can be discarded, renormalising T5(S) to WTA(S) on n-dimen-

sional manifolds, and then letting the dimension go to co. Similarly, one might try to
exhaust Q!(M) by finite-dimensional subspaces and make sense of the other two terms.
This does not quite work, but the “zeta-function regularizations” of these entities at least
‘produce finite answers for both terms. This follows from deep results on the spectrum of
elliptic operators, going back to Minakshi-Sundram and Pleyel [MP] and Seeley [Se], and
put to wonderful use over the years by Ray and Singer [RS], as well as by Atiyah, Singer
and Patodi [ASP].
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This “zeta regularization” proceeds as follows: if Aq,... , A, are positive real numbers,
then their (-series is given by
OED IS (6.8)
i=1
Hence ¢'(s) = 3. —InX\*- 7% and ¢’(0) = — Y_ In A%, It follows that
e O =T (6.9)
Similarly, given n real numbers A;, and setting
n(s) = _ Al " sign(Xy), (6.10)
i=1
we have
n(0) = # of positive X’s — # of negative \’s. (6.11)
Now the operator
xd: Q= O (6.12)

is both self-adjoint and elliptic and has a non-negative square *d * d = d*d. Furthermore,
xd has a discrete spectrum, and if we set

Carals) = Z A7 A; € Spectrum of d*d, (6.13)

then this zeta function converges for Re s large. In addition, this function of s extends
to a meromorphic function with poles along the real axis, but regular at 0! Thus, {4+4(0)
is well-defined and serves to define the regularized value of the determinant of d*d on
Im(d*a):

det’(d*d) = e~ %aa(0), (6.14)
Similarly,
Mea(s) = D |\~ sign(\) (6.15)
serves to define the (-regularized signature of *d:
sign(xd) = 1,4(0). (6.16)

Armed with these facts, one is led to conjecture that the asymptotic expansion of
e2ir f(+de.e)vol (where the integral is taken over Q!/dQ°) is given by the single leading
term

ei% sign(xd)
| det’(d*d)|7

Now the (-regularization has certain obvious functorial properties which enable one

to express this quantity in terms of the regularized determinants of the Laplacian O =

(6.17)
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dd* +d*d on Q° and Q. To keep track of these in greater detail, we write d; : Q¢ — Q1
so that d : @' — ', and
Q1Q° = dgdy
O|Q* = did; + dodyy
(xd)? = did,.
1
- 1 det'([]l) 2
Hence, det'(*d) = det/(d1d1)2 = {m .

On the other hand, the action of the symmetry group Q°/R occurs via the differential
do. That is, S(8) = S(0 + dof), and dp is not an isometry of Q°/R onto Ker(xd). The
correction factor for this discrepancy introduces another det’(l:lo)% into the denominator.
These heuristics therefore lead us to rewrite (6.17) in the form

e % sig (+d) et/ [0y} 3 {det'0; } 71, (6.18)

and one might hope that this expression is independent of the Riemannian metric g.
Unfortunately this is not quite the case: the invariant sign(*d) does vary with g, but the
absolute value of this number is independent of g, and its square is a torsion invariant
the Ray-Singer type. See for instance [S].

7. The introduction of links in M.
An oriented knot K in M defines a distribution v(K) on Q!(M) by integration:

’yK(G)——-/KO, (7.1)

and g is clearly invariant under the gauge group Q°/R:

/K(0+da)=/KB. (7.2)

If one thinks of a tangent vector X, at p € M as a linear coordinate on Q! its
value X,(6) at 6 being the value (X)) of § on X, then vx appears as a smeared out
“sum” of these §(X,). This train of thought leads one to inquire whether the asymptotic
expectation values of these “sums” relative to the quadratic form S associated with *d
can be defined meaningfully, and if so, what their topological significance is. In short, if

Ki,...,K; are knots in M, we seek to determine the asymptotic ratio:
e?Sy(Ky) -+ - y(K;) vol
)ty = L 75)

In view of the foregoing, it is clear that the difficult constant term of the previous
section now cancels out, and that these expectation values should then be computable in
terms of the inverse of the operator (xd)’, that is, in terms of the operator which inverts
*d on its image.
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This is the guiding analogy for all the infinite-dimensional constructions in field theory,
and, as we will see in a moment, it leads to a satisfactory geometric and topological
conclusion in this instance.

To explain these matters, we first recall some basic facts of elliptic theory, facts which
become especially geometric and topological in the context of the Hodge theory.

Given a manifold M, we write A for the diagonal in M x M, and M XM for M x M
with A “blown up”. Thus M XM maps naturally onto M x M and is one-to-one outside
A, while in M XM, A is replaced by the space of rays in the normal bundle NA of A in
M x M. We then have natural projections m; and ms of M XM onto the two factors of
M, and the fiber of ; at p consists of M, the space obtained by “blowing up” p € M.
Thus M XM is a manifold whose boundary is

E = 9(MXM), (7.4)

the normal ray-bundle over A, which is an $” !-bundle over A. Note that m; = m on
E, so 7F = 1,|E is again a spherical fibration.

In terms of these concepts, the Hodge theory on a compact n-dimensional Riemannian
manifold M with n odd provides one with a canonical Green’s form in Q"~1(MXM),
which serves to invert the operator d as far that is possible. Precisely, we have:

Proposition. The Green’s form © associated to a Riemann structure g on M is a form
© € QY (M X M) with the following three properties:

Pue =1 (7.5)
de = Z tria; ATy ko (7.6)
T*0 = (-1)"*'e, (7.7)

where the a; runs over an orthonormal basis for the harmonic forms of M relative to g
and T : MxM — MXxM acts by permuting the factors.

Remark. The Green’s form © should be thought of as implementing the parametrix as-
sociated with the Green’s operator G on Q*(M). Recall that the Laplacian of g

O=dd" +d*d (7.8)
splits 29 canonically into three orthogonal pieces:
Q! =Imd @ Imd* O HI, (7.9)

with H? = Ker [y, so that [J; is invertible on the other two pieces. The operator G is
now defined by

GlImd=0"1, GlImd* =0O!
GIH® = identity. (7.10)
It follows that the operator

Po=d' oG (7.11)
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maps (9 to 2971 and satisfies the relation:
dPy + Pyd =1 —my, (7.12)

where 7 is the orthogonal projection onto the harmonic forms H = ®HI.

The relation (7.12) follows by comparing the two sides of the equation to each other
while restricting to each summand of (7.9): first, it is clear that both sides annihilate #.
Next if w = da € Im d, the left-hand side sends w to dPyda = dd*0"'da = d(0~'d*da) =
da, which agrees with the identity map on the right. Similarly, if w = d*«, then the left
side sends w to d*07'dd*a = d*dd " 'd*a = d*a. Q.E.D.

In general, an operator P with the property that
dP+Pd=1-5, (7.13)

where S is a smoothing operator, is called a parametrix for Q*, so P, is the parametrix
on Q* which is especially attuned to the Riemann structure g.

The statement that the Green’s form © implements Py means precisely that P, can be
defined in terms of © by the formula:

Pya = 1i(n5a A ©). (7.14)

One checks that (7.14) implies (7.12) via the generalized Stokes formula for an oriented
fibering m# : E — M, whose fiber is a manifold F with boundary #F. Under these
circumstances, we have:

dr, = (-1)!md+7?  f=dimF, (7.15)

where 72 denotes integration over the boundary of E.
In the case at hand, (7.14) therefore yields:

dPya = —wln3da® + rlriad® + 7071500. (7.16)
Now by (7.5) and (7.6) and the fact that 77 = 75 on OF, this equals —Pyda + 7y + a.
QED.

Remark. The Green’s form © should be thought of as the Schwartz kernel of P,, with
the sign conventions arranged so as to fit a cohomological interpretation. The form ©
is constructed explicitly in dimension 3 by Axelrod and Singer in their ground-breaking
paper [AS].

Our next observation is that, in our situation, © also serves to invert the operator
A = xd on its image in Q!. Observe first of all that H*(M) = 0 implies

image *d = Kerd * in Q'(M). (7.17)
Hence if we set
Qa = 7l (n3((xa) A ©) a € Ker dx, (7.18)
then the Stokes formula immediately yields
*dQa = a. (7.19)
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Now the restriction :*© of © to (M x M) — A breaks into components according to
the decomposition of Tpyq(M x M) =T,M & T,M:

0 =0 ol 4 %2, (7.20)

and it is clear for dimensional reasons that only ©!:! is involved in the definition of ©.
In short, the Schwartz kernel of Q is represented by ©%!, and, so interpreted, corre-
sponds to the “propagator” in the physics literature. Essentially, it plays the role of the
(4,7)-th entry of the matrix B of Section 4. Thus in the present context, where (i, )
should be thought of as two tangent vectors X, and Y, of M, the entry B;; corresponds
to O11(X,,Y,).

At this stage, the expectation values (yk,,7Vk,) are readily identified. Namely, let K
denote the space of smooth parameterized imbeddings

K:S'< M. (7.21)
The evaluation map then gives us an arrow
Kx8'S M, (7.22)

and if K is a point of K, we also write K : S* — M for e restricted to K x S!. Now given
two disjoint knots K; and K we have the mapping

KixKy:S'"x 8" - (Mx M) -A, (7.23)
whence the integral

/S . (K; x Kp)*el! (7.24)
1>< 1

precisely corresponds to the “smeared out” sum of the propagator applied to a point on
K, and a point on Kj.
In short, the asymptotics of {vyk,,vVk,) are given by:

i
(Vry s VRS ) ~ —/ (K1 x Ka)*0h!. (7.25)
A Slx gt

Observe now that (K x K,)* preserves types of our forms, and that in dimension two,
5! x S only has type (1,1) forms. We can therefore also write

i
(VK1 VE) ~ X/ (K1 x K3)"0, (7.26)
Slx st

and we have then arrived at a formula very much in the spirit of my lectures last year.
There our starting point was the “tautological” form 012 € Q%((R® x R3) — A) which we
defined as the pull-back of the normalized spherical volume w on $? under the map

W:(Ivy)_)M7 nyeR z#y. (7.27)

Furthermore, we then determined the integral
Z(Kl,Kg) = / (Kyl X KZ)*@IQ (728)

Stx St
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to be precisely the Gauss integral for the linking number of two disjoint knots in R3.

Now it is not difficult to show that in fact ©15 on (R® x R3) — A is also precisely the
restriction of the Green’s form © of R?® in its usual metric to (R* x R*) — A. Of course,
as R? is not compact, © must now be interpreted as the “inverse” of d on the compactly
supported forms.

Thus (7.26) identifies the coefficient of 1/ in the quadratic expectation values {(vk,, Vk.)
with the linking number of K; and K; when M = R3. Actually, this interpretation of
(YK, VK, ) holds on any homology 3-sphere M, so © is indeed the proper generalization
of ©13 to all such manifolds.

Moreover, the integral

/ (K1 x K3)*© (7.29)
Six St

will always describe the linking number of K; and K3, provided © implements a parametrix
for M.

Indeed, let K; and K> be two distinct knots in the homology 3-sphere M. In homology,
the linking number [(K, K3) is given by the intersection number of K; with any chain
bounding K,. Dually, if u; and u; are the Poincaré duals of K; and K, respectively, this
same linking number is given by the integral over M of u; - @, where « is any 1-form with
do = ug. Thus,

(K, K2) = /ula, if do = us. (7.30)

Now suppose the parametrix P is implemented by © € Q2(MXM):
Pu = 1, (m3u)0. (7.31)

Then dP + Pd = 1 implies that dPus = ug, so we may choose Puy for « in (7.30).
Hence:

l(K],Kg) :/ Ul '7(,1(7[';’1112@)

M

=/ i (miuy - T3 ua®) (7.32)
M

:/ iUy - ToU2©

MxM

Z/ (K1 X Kg)*@.
Stx St

Here the second step is given by Fubini’s theorem, and the last step follows by letting u;
and us tend to the distributions vg, and v, respectively.

This argument then exemplifies the proper homological interpretation of the quadratic
form | v P dyp on any (4g — 1)-dimensional manifold. It describes the linking of two
submanifolds A, B in dimension 2¢ — 1 in the following sense. Given u; and up in Q29(M)
and «; in Q%91 such that

da1 = U, daz = Uusg,
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FIGURE 6

then by Stokes’ theorem applied to d(ajag) = ujas — usa;, we obtain the identity:

/ulaz = /Uzal, (733)

and if u; and wuy are the Poincaré duals of disjoint null-homologous submanifolds A, B of
dimension 2q — 1, then this linking number is given by

I(A,B) = /u1a2 = /uQal. (7.34)

In fact, the bilinear form [ @ dy describes the linking phenomenon in all dimensions.

Returning to our physics-inspired discussion, we have now seen how linking appears in
this context as the coefficient of 1/ in the asymptotic expansion of the quadratic moment
(VK,,YK,). In the physics literature, this term has the suggestive graphical description
indicated in Figure 6. The dotted line represents the “propagator” applied between a
point on K7 and K5, and the whole diagram stands for the sum of all these applications,
in short, for our integral

L 5 (K1 X KQ)*@. (735)
1y Sl

What about knots that do intersect, or indeed what about (vx,,vk,)? These questions
force one to deal with the behavior of the propagator near the diagonal, where it is a priori
not defined, and so forces one to consider configuration spaces and their compactifications,
etc. — precisely the topics treated in last year’s lecture. There our choice for dealing with
the diagonal in the present context was to exploit the fact that the propagator extended
to a form © on M XM. Hence, the natural integral to propose for (Vi1 YK, ) 18

/ (K1 x K1)°O, (7.36)
stxst
arising from the map
KXK :S8'%X8' - MxM.
This does work, and it produces a finite number for the “self-linking” of K, but a

price must be paid. The space S'XS' is a manifold with nontrivial boundary. As a
consequence, the integral (7.36) varies as K moves in its isotopy class. In short, this
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self-linking number of K is not a knot invariant in the usual sense since it varies under
isotopies and under changes in the underlying Riemann structure of M.

8. The Chern-Simons Action
1

In Section 6, we discussed the action S(p) = 4 [ ¢ A dy and saw how it related to the
linking of knots in homology spheres. From the point of view of physics, this is the abelian,
or U(1), theory, and goes back to the early quantum mechanics of the electromagnetic
field. The “new” knot invariants emerged in the physics context only after Witten’s
remarkable paper [W] presenting the “Chern-Simons action” as the natural nonabelian
generalization of the abelian action % o Adp.

In this last section, I will very briefly describe this extension, and indicate how it leads
to the sort of integrals we encountered in last year’s lecture [B].

In the nonabelian extension of ' (M; R), one steps up to the space Q' (M; g) of “matrix-
valued” 1-forms. More precisely, one starts with a compact Lie group G with Lie-algebra
g, and if we think of G as imbedded as a subgroup of some large orthogonal group, then
g becomes realized as a Lie subalgebra of the skew-symmetric matrices, so that Q!(M; g)
can be thought of as matrix-valued 1-forms, or equivalently as matrices of 1-forms on M.
The second and much more profound step, is to find a proper nonabelian generalization
of the symmetry group.

Here the physics literature had an answer long ago. Namely, they decreed that in
so-called “gauge theories”, the group of symmetries should be the group of smooth maps
of M to G:

G = Map(M, G) (8.1)
and that this group of “gauge transformations” should act on Q!(M;g) by the rule:
g*'w =g lwg+gtdg. (8.2)

Remark. Here I have written things in terms of matrix-valued 1-forms and functions, so
matrix multiplication is to be understood on the right-hand side of (8.2). Note that when
G = S, so that g = R, then (8.2) simplifies to

g*w=w+g tdg, (8.3)
and that if M is a homology sphere, then:
g tdg =dlogg. (8.4)

Thus, in this case, (8.2) reduces to the abelian situation with Q° acting on Q' by w —
w + df.

A natural first try for an action on Q'(M;g) invariant under G is

S(p) = trace / odo, e Q' (M;g), (8.5)
M
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but this ansatz fails the test. However, the action

1 2
S(p) = yo /M trace <<p do + gnp3> (8.6)

turns out to be invariant under the action of Gy, the identity component of G, and changes
by multiples of 27 under the group of components of G.

This is the “Chern-Simons action”, Chern and Simons having understood this behavior
of (8.6) long ago, and having put it to good use in differential geometry in a very different
context from the present one [CS]. The extrema of the Chern-Simons action are quite
easily determined and are found to be given by those ¢ for which the matrix-valued
2-form:

F=do+¢* (8.7)
vanishes.

In the mathematics literature, the transformation rule (8.2) is associated with connec-
tions on principal G-bundles over M, and the F of (8.7) then corresponds to the curvature
of that connection. From this point of view it is then clear that the G-orbits of the extrema
of the Chern-Simons action are in one-to-one correspondence with isomorphism classes of
flat bundles and hence also with isomorphism classes of representations of 71 (M) in G.

In Witten’s work, he considers the asymptotics of

T\{S} = / e* Dy (8.9)

but remarks that here A should be restricted to the integers because it is only then that
e*5 is a well-defined G-invariant function on Q'(M;g). Moreover he argues that, for
keZ,

Wi(M) = /eiks(“’)up (8.10)

should be a well-defined numerical invariant of M and prescribes its behavior under
surgery on M.

He also incorporates knots into this framework. Recall that in the abelian theory, the
function v : 0 — | x 0 was gauge-invariant, and in terms of it, e~7* gives the holonomy
of K relative to the connection defined by 6. In the nonabelian theory, the natural gauge-
invariant functions on Q'(M;g) are given by the value of a class function x for G on the
holonomy along K relative to the connection determined by 9. Thus one now deals with
the path-ordered integral of hx = e~ Jx ¢ to get at the holonomy, and one can take for ¥,
the trace xy of any representation of G in V. In [W], Witten goes on to argue that the
expectation value of v (hk) is related to the Jones polynomial of K, etc.

In our framework, it is more natural to consider the “Taylor expansion” of yv (hx),
which is provided by the path-ordered integral.

Precisely, suppose we parameterize K by the map

K :[0,1] — M. (8.11)
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Then the path-ordered integral of # along K is given by the series

x
p-o. e_fKK'gdtIZW*A"(E}HK®“-®9K, (8~12)
n=0 n
where A, is the simplex 0 < ¢p <t;...<t, <1, 72" denotes the integral over A,, and
ex(to,try .. ytn) = K(tl) x - x K(t,) e M™.

Applying the representation V' to (8.12) yields a power series in End(V) starting with
the identity and whose next term is

1
/ K*0y. (8.13)
0

After taking the trace, this integral is therefore the natural extension of the vk in the
abelian theory.
Consider now the asymptotics of

(xvhg) = / eiASXv(hK)// s, (8.14)
Q'/g /G
where S is the Chern-Simons action
1 2
S= o /M tracey <d0 AO+ §e3> (8.15)

in the vicinity of the trivial representation of m (M) in C. Once we introduce a metric
g on M and an invariant inner product on g, the quadratic term in (8.15) is given by
6 — (0,%df), with xd acting on g-valued forms componentwise. Hence its inverse on its
image is again made up of the same Green’s form © encountered in the abelian theory.
Thus in these asymptotics of (8.14) we would expect integrals of the type schematically
given in Figure 7 to arise from the expansion of hy. (In the figure, the number of dotted
lines keeps track of the power of % at which the term occurs.) On the other hand, the
cubic term in the Chern-Simons action also gets into the act, as we saw when we dealt
with the function § = § + z3 in Section 3. For instance, diagrams of the type shown in
Figure 8 will now also occur due to the interaction of the hy term with the 63 terms, and
also due to the interactions of the 83 terms with themselves.

It is in this context then that, using the procedures explained in the earlier sections,
the new self-linking invariant for knots in R® was discovered by Dror Bar-Natan [BN] and
independently by E. Guadagnini, M. Martellini, and M. Mintchev [GMM] at about the
same time.

Diagrammatically, this new invariant is given by Figure 9, and, as is explained in my
lecture last year, a precise definition of the relevant integrals involves compactification
of configuration spaces along their diagonals. The reader is therefore referred to [B] and
[BT] or to the original papers for more details.

We have now at long last reached the goal of this account. Although the “physics
route” to this invariant and its generalizations has the undisputible advantage that it
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FIGURE 7

FIGURE &

W= [
L=

FIGURE 9

got there first, the validity of the Feynman expansion in the present context remains in
doubt. One is plagued by the question of “hidden faces” which the Feynman procedures
do not “see”, and which, to my knowledge, can be dealt with in R® only for spherically
symmetric metrics.
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