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Seiberg-Witten a la Furuta and genus bounds for
classes with divisibility
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1. Introduction

An important classical question in 4-manifold topology asks for a lower bound on
the genus of an embedded surface ¥ in terms of its homology class [¥] € H(X,Z).
For example, the classical Thom conjecture (proved by Kronheimer and Mrowka [5])
states that if X = CP? and ¥ < CP? is a smooth embedding with [£] = d[H] where
[H] € Hy(CP?) is the hyperplane class and d > 0 then
o(m) > (1 N0=2)

A generalization of this inequality exists for manifolds with non-zero Seiberg-Witten
invariants and gives bounds in terms of the self-intersection of ¥ and the pairings of &
with the Seiberg-Witten basic classes (see [7]).

These methods break down for manifolds with zero Seiberg-Witten invariants which
includes those manifolds that decompose as connected sums X = X;#X, with b, (X;) >
0. For example, an unknown question related to the 18—1-th conjecture is

Question 1. Does the connected sum of n copies of the K3 surface split off an S% x S22

If one had strong enough genus bounds one could potentially give a negative answer
to the above question by using the embedded surfaces in the S? x S? summand.

Another interesting example is CP?# - .- #CP?. Mikhalkin [6] has shown that the
genus-minimizing surfaces in CP? can have their genus reduced further after direct sum
with additional copies of CP2. With better bounds on manifolds such as CP?# ... 4#CP?
we could determine if Mikhalkin’s examples are sharp.

Before gauge theoretic methods were introduced into 4-manifold topology, genus bounds
were obtained by assuming divisibility conditions on the class of ¥ and studying the
branched cover ([9],[8]). This idea was combined with the gauge theoretical methods of
the Yang-Mills equations by Kotschick and Matic [4].

In this short note we apply Furuta’s “%th’s theorem” to the classical techniques of
branched covers to obtain genus bounds. We also outline a strategy for generalizing
Furuta’s technique in this setting to improve the genus bounds. We lay some groundwork
for implementing that strategy.

Furuta’s theorem is the following important non-existence result for spin four-manifolds:
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Theorem 1.1 (Furuta [3]). Let X be a smooth {-manifold with intersection from

0 1
= 2kE
Qx 8@771(1 0)

with k > 0. Then 2k +1 < m.

To obtain genus bounds on ¥ < X, we make homological assumptions on the class of
> so that there is a ¢-fold cover Y — X branched along ¥ and such that Y is spin. We
get a genus bound on X by applying Theorem 1.1 to Y:

Proposition 1.2. Let ¥ — X be a smooth embedding of a surface of genus g and self-
intersection [Z] - [X] = n. Let ¢ = p" be a prime power such that ¢|[X] and let Y — X
be the g-fold branched cover branched along X. Further suppose if g|[X] is even that
PD([X])/q = w2(X) mod 2 and if q is odd suppose that X is spin (these conditions
guarantee that Y is spin). Then

sn(l+q) 2 q 5
T g -1 2(q—1)(ex+4”)

g(X) >1

where ex and ox are the FEuler characteristic and signature of X respectively.

On a spin 4-manifold, the Seiberg-Witten moduli space for the trivial Spin® has an
action of Pin(2). Furuta’s technique produces Pin(2) representations V and W such
that the virtual representation [V] — [W] is equivalent to [Ker D] — [Coker D] where D is
the operator obtained by linearizing the Seiberg-Witten equations at the trivial solution.
Furthermore, his technique then produces a map

f(BV),5(V)) = (B(W),5(W))

where B(-) and S(-) denote the unit ball and sphere respectively.

By applying the equivariant K-theory functor to the above map, and employing oper-
ations in K-theory, Furuta deduces Theorem 1.1.

To improve the bound of Theorem 1.2, we outline the following strategy: Choose a Z/g-
invariant metric on Y, and try to lift the action of Z/q to the spin bundle. In this note, we
show that when ¢ is 2" the action lifts to a Z/2q action on the spin bundle. Consequently,
one obtains a Seiberg-Witten moduli space with a Z/qx Pin(2)-action where X denotes
a twisted product (see Section 3).

Furuta’s technique in this setting should give a Z/qxPin(2) equivariant map f :
(B(V),S5(V)) = (B(W), S(W)) where again [V] — [W] represents the K-theoretic index
of the linearized Seiberg-Witten equations. The characters of [V] —[W] can be determined
by the G-index theorem and computations show that the virtual representation {V]—[W]
can be completely determined and depends in on the genus of ¥ and its self-intersection
5] 3.

Equivariant K-theory methods applied to the map f should then give a refinement of
Proposition 1.2.
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2. Branched covers

Let ¥ < X be an embedding of an oriented surface of genus g = g(X) into an oriented,
simply-connected smooth four manifold X. We assume that the class [X] € Hy(X,Z) is
divisible by a prime power ¢ = p” so we can consider the ramified cover

f:Y—-X

that is generically g-to-one and branched along ¥. Y is constructed as follows:

Let v denote a tubular neighborhood of ¥ and v its boundary; let W = X\X. It is
shown in [9] and (8] that H1(W,Z) = Z/d where d = max(a € N : a|[X]) is the divisibility
of [Z]. Let W — W be the regular covering associated to the homomorphism

m(W) - Hi(W) = Z/q.

Since the normal bundle Ny, has degree [£]? = n and g|n there is a g-fold cover of Ny, by
the line bundle of degree n/q given by (v,z) — (v4,z). Using the identification of v with
Nx one thus gets a g-cover 7 — v ramified along X. Using the Mayer-Vietoris sequence it
is easy to see that over vNW the coverings W and & agree and so we can form Y = WUD.
It turns out that the assumption that ¢ is a prime power implies that H;(Y) is finite [9].

A manifold Y admits a spin structure if and only if w»(Y) = 0. Brand gives a general
formula for the characteristic numbers of a general branched cover [2]. Let

-1
o= q—PD(E) mod 2.
q
In our case Brand’s formula then becomes

w2 (Y) = f*(w2(X) + ).

Note that if g is odd then a = 0. To guarantee that Y is spin we will always make the
following assumption:

Assumption 1. If g is odd we assume that X is spin. If q is even, we assume that
PD(X)/q is characteristic.

Since H;(Y) is torsion, by = b3 = 0 and so to determine the intersection form of
Y it is sufficient to compute the signature oy and Euler charateristic ey. The Euler
characteristic can be computed by an elementary counting argument using a triangulation
of X subordinate to > — X. To compute the signature requires the G-signature theorem.
The results are

ey = gex+(g—1)(29-2),

1— 2
oy = qox+ 3qq (2-3).
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Under Assumption 1, Y is spin and the number Eg’s and hyperbolic pairs in the intersec-
tion form are determined by the above formulas and Furuta’s inequality translates into
Proposition 1.2.

3. Lifting the Z/g-action to the spin bundle

In this section we show that when ¢ = 2" the Seiberg-Witten moduli spaces have an
action of Pin(2)xZ/q.

We choose an invariant metric on Y so that the action of Z/q is an isometry. Let
9 :Y — Y generate the Z/qg-action. Then dg induces a Z/g-action on the frame bundle
P —'Y that covers the action on Y. Since Y is spin, there is a double cover P of P that
restricts to each fiber as Spin(4) — SO(4). We utilize the following lemma (c.f. [1]):

Lemma 3.1. An isometry g:Y — Y will have a lift dg of dg to P if g* :HY(Y,Z/2) —
H(Y, Z/2) 1s the identity map. There are exactly two such lzfts whzch we will denote :I:dg
and if u : P — P denotes the deck transformation then u0dg = —dg

To answer the question of whether a lift exists we solicit the help of a proposition in
Kotschick and Matic ([4] Prop. 2.1 and note the remark following the proof):

Proposition 3.2. If ¢ =p" is a power of a prime p, then H,(Y) has no p-torsion.

Thus When p = 2, dg automatically lifts; however, dg may have order 2¢ rather than ¢

since (dg)q is either u or the identity. The case of lifting involutions is considered in [1]
and they show (Proposition 8.46):

Proposition 3.3. Let Y be a spin manifold, f : Y — Y an involution preserving the
orientation and spin structure, and let o; be the connected components of the fized point
set of f. Then

codim¥; = 0 mod4 if@‘ 15 order 2
codim¥;, = 2 mod4 if&} is order 4.
Applying the proposition to f = ¢g%/2 in our case, we see that ﬂ:@ has order 2¢q and
(dg)? = u.

The Seiberg-Witten equations for the trivial Spin€ structure on Y can be written as
equations for the pair

(A,¢) € Q' (Y,R) x T'(§1).
They are (c.f. [3]):

% +ia- ¢ = 07
pid*a) = (¢ ®¢*)o = 0,
d*a = 0.
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The final equation is a gauge fixing condition. Consider Pin(2) as the subgroup of the
unit quaternions given by elements of the form €¥ or ;. Since S* is a quaternionic
bundle, Pin(2) naturally acts on I'(S™) and we define the action of Pin(2) on Q'(Y,R)
to be multiplication by 1 or —1 for € or €*’j respectively. The above action can be
seen to preserve the solution space of the Seiberg-Witten equations. The action of the ¢
subgroup is just the usua/l\ action of the constant gauge transformations.

Since g is an isometry, dg also preserves the solution space and so we get a natural action
of Pin(2) x Z/2q on the solution space. We wish to show that (—1,q) € Pin(2) x Z/2q
acts trivially so that we have an action of

(Pin(2) x Z/2q)
Z/2

From Proposition 3.3, we know that (35)4 is the deck transformation u. Fiberwise, u
acts by —1 on Spin(4) = SU(2) x SU(2) and since S* is the bundle associated to the
standard respresentation of the first SU(2) factor, u acts by —1 on sections of S*. This
is just the action of the constant gauge transformation —1 € Pin(2) thus (-1, ¢) acts as
u? = 1 on configurations.

In summary we have

= Pin(2)XZ/q.

Theorem 3.4. Let Y and q be as in Proposition 1.2 and further assume that ¢ = 27.
Then the solution space to Seiberg- Witten equations for the trivial spinc structure has an
action of Pin(2)xZ/q.
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