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A lower bound of the first eigenvalue of certain
self-adjoint elliptic operators on manifolds containing
long necks

Weimin Chen

Let X be an oriented Riemannian manifold with a cylindrical end modeled on Y, ie,
there exists a compact subset K such that X \ K is isometric to (—1,00) x Y.

FIGURE 1.

Let E be a cylindrical Riemannian vector bundle over X. This means that there is a
Riemannian vector bundle Ey over Y such that E is isometric to m* Ey on the cylindrical
end (—1,00) X Y, where 7 : (=1,00) x Y — Y is the natural projection. Assume that
D :T'(E) - T(E) is a first order formally self-adjoint elliptic operator on X, which takes
the following form on the cylindrical end (-1, o)XY :

0
D=I(—+4
(5 +4)
where I is a bundle automorphism of Ey which preserves the inner product, and A :
I'(Eo) — T(Ep) is a self-adjoint elliptic operator on Y independent of t. The self-

adjointness of D implies that I and A satisfy the following conditions:

IP=-1, I*=—-1, A*=A, TA+ Al =0.
Note that the spectrum of A is symmetric about the origin and the automorphism I
maps E) to E_, where E) is the eigenspace correspondent to eigenvalue A (see [M]).
Throughout this note, we assume that Ker A # 0. Then the automorphism 7
defines a complex structure on Ker A which induces a symplectic structure on it. In

particular, the dimension of Ker A is even. The operator D as described will be said
cylindrical compatible in this note.

Definition 1. An exponentially small perturbation of a cylindrical compatible operator D
is a first order formally self-adjoint elliptic operator D' satisfying the following conditions:

a) D' is a zero order perturbation of D,
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b) on the cylindrical end (—1,00) xY, D' = D+ P(t) where P(t) : I'(Ey) — ['(Ep) is a
smooth family of zero order self-adjoint operators satisfying the following exponential
decay conditions: there exist a small § > 0, some Ty > 0 and a constant C such
that when t > Ty,

IP)¢ll2(vy < Ce T4 L2y and ||?£¢||L2(Y) < Ce T |l 1oy
for ¢ € L*(Ey).
Let D’ be an exponentially small perturbation of a cylindrical compatible operator.
The space of “bounded” harmonic sections of D’ is denoted by Hg(D'), i.e.,
Hp(D') = {¢ e T(E)|D"¢ =0, [¢llcocx) < oo}
The space of L? harmonic sections of D’ is denoted by H2(D’), i.e.,
Hp:(D') = {¢ € L*(E)| D'y = 0}.

Let 3 be a fixed cut-off function which is equal to one at oo, and 7 : (—1,00) x Y = Y
be the natural projection.

Lemma 2. There exists a small 61 > 0 such that for any ¢ € Hg(D'), there erists an
unique limiting value r(¢) € Ker A such that

llv — ﬁW*T(’J))HLgl(E) < 0.
In particular, ¢y € Hyp2(D') if and only if r(¢) = 0. Moreover,

1
dimHg(D') — dimHp2(D') = EdimKer A.

Now consider a pair of triples (X;, E;,D}) for i+ = 1,2. Suppose that there is an
orientation reversing isometry h : Y7 — Y3 which is covered by correspondent bundle
maps which identify 4; with A, in a suitable way so that for any L > 0, we can form
a triple (X, Er,D}) where X;, = X3 \ [L + 1,00) x Y1, X2 \ [L + 1,00) x Y5 with
h:(L,L+1)xY; = (L+1,L)xY> given by h(L+t,y) = (L+1—t,h(y)), EL = E1 U, E»,
Dy = D1, Dz and Py = B P1 + (1 — BL)h* P, for some cut-off function Sy, supported
in (L, L+ 1) xY; with |[V3.| <2, and D} = D + P, (see Figure 2). Set

L DL

w0 [y, [P

The purpose of this note is to investigate the behavior of A\, as L — oo.

AL

FIGURE 2.
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Definition 3. Suppose D', D| and D}, are exponentially small perturbations of cylindrical
compatible operators.

a) D’ is said to be regular if Hr2(D') = 0.
b) (D1, D3) is said to be a transversal pair if

r(Hp(D4)) () h* (r(Hp(D}))) = {0}.

Here is the main result.

Theorem 4. 1) A\ =O(F) as L — oo,
2) if (D1, D3) is a regular transversal pair, then for any function ¥(L) = o(£;) as
L — oo, there exists Ly > 0 such that when L > Ly, we have
Ar > ~(L).

In particular, D' is invertible for large L.

Remarks:

1. More general results are obtained in [CLM] for the unperturbed case.
2. Theorem 4 in this note is used in the gluing of Seiberg-Witten moduli spaces of
3-manifolds along 7. See [C1] and [C2].

We first introduce some notations. Let \;, ¢ € Z denote the eigenvalues of the operator
A, and u; denote the correspondent eigensections. Set y = infy, 0 |\;|. For simplicity, we
omit the subscript L if no confusion is caused.

Lemma 5. There exist Lo > 0 and M > 1 with the following significance. Assume that
Y and c satisfy D'ty = cp with ¢ # 0 and |¢| < §(u) for some small §(u), then ¢ can be
rescaled so that ||| co(x,) < M and one of the following conditions holds:

o cither [y .\ [¥]? or Jxa(Lo) [¢|? is equal to one,
o either ||V]|L2(v,)(Lo) or [¥ll22¢v,)(Lo) is greater than or equal to ome.
Here X;(Lo) = X; \ (Lo, 00) x Y;, i = 1,2.

Proof: Let IT;, II; be the L%-orthogonal projection onto Ker A and (Ker A)+. On the
cylindrical neck of X, write ¢ = f; + f, where f; € Ker 4 and f, € (Ker A)*. Set

f(t) = fy |f2|2'
Direct computation shows that

7]
% = IH1P¢—CI(f1)
0
% = —Afg-{-IHgP’(p—CI(fg)

0% f, oP oy

W_ = (A2—C2)f2+IAH2P¢+IHQE¢+IH2P§ +CH2P1/)
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For any € > 0, there exists Ly > 0 such that on the neck [Lo, 2L + 1 — Lo} x Y we have

8%¢ 0% fy
2 2 2/#@’ )
> K| fllay) —ellfellzor (il + I falle )

for some constant K. Here |c| < 6(u) for some small §(p). If £(t) reaches its maximum
in an interior point t¢ € (Lo, 2L + 1 — Lg), then on the neck, we have

\%

e —e
max || fillz2(vy > I1f1llz2(v)(to) > max || 2|l L2(v)-
Otherwise, £(t) = ||f2||i2(y) reaches its maximum at the end points.
On the other hand, we have on the neck that

3% +ecl(f1) =1L Py
AR — o(f1) = —II Py.

0

f —ct /t cs [ IILPY —C(t-L )( f1(Lo)

t) = d ° .
( IhH () =c Loe —mpy ) TC If1(Lo)
This implies that on the interval [Lo, 2L + 1 — L]

1f1ll vy (t) < exeEo=T0) (max || f1 || L2y + max || fall 2 v)) + 1 f1(Lo)ll 2 v)-

If || f2ll L2 (v reaches its maximum in the interior, then

max || f1lz2(vy < 2[[f1(Lo)llL2(v)

for large enough Lo. If || f2||L2(yv) reaches its maximum at the end points, assuming that
it is the left end point without loss of generality, we have

max(|| fill 2 vy + 1 fellz2ev)) < 200 f1(Lo)llzevy + [1f2(Lo)llL2(v))
for large enough Ly. Lemma 5 follows easily from these estimates. QED

SetC’:( _OC c ),then

The Proof of Theorem 4: 1). Pick ¢ € Ker A with |¢||z2(yy = 1. Let pr be a
cut-off function which equals to one on [%, % + % + 1] x Y7 and equals to zero outside

(L, L+ L +1] x Y; with |Vpz| = O(2). Then

1 L
/ DY (o)l < / VoLl + / PL(pre)? = O(+),and / ool > 2.
X; XL XL L X 10

So A =O(Fz) as L — oo,

2). Suppose that there exists a sequence of L, — oo such that Ap, < ~v(L,). Then
there exist ¥, ¢, such that D’ann = cp¥, with ci = Ar,. By lemma 5, there exist
¥ € Hp(D}), o € Hp(D}) such that a subsequence of v, converges to ¢ over X; and
¥y over X5 in C* norm on any compact subset. Note that one of ¥; and 1, is nonzero.
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The second assertion of Theorem 4 follows if we show that 7(v1) = h*r(¢7). But this
follows from the fact that if we write ¥» = f; + f> as in lemma 5,
”fl(t) - f1(2L +1-— t)”L2(y) < C(e_ét + I COS(C(QL +1-— 2t)) - 1| + l Sin(C(?L +1-— 2t))|),
for large enough ¢ and L. C is some constant independent of ¢ and L.
The Proof of Lemma 2:

Suppose ¢ € I'(E) and D'ty = 0. On the cylindrical end (Tp, 00) x Y, write ¢ = Y, fiu;

where u; are the eigensections of the operator A correspondent to eigenvalues A;, and f;
are smooth functions in . Then we have

af; B '
S = (IP(E), ).

Set gi = (IP(t),u;), then 3=, g7 = [|[P¥||Z.(y and

1
fi(t) = / e_)\i(t_s)gi(&‘)ds + fi(TO)e_/\i(t—To).
To

Now assume that ¢ € L2_7 for any small enough v > 0. Assume that §; < min(g, )
where p = infy, 20 | Al
e For A\, =0, we have for any t' > ¢,

U fult) — fit)] < C(/tt /Ye_%slwleolde)%,
50 fi(00) = lim; oo fi(t) exists and f; — fi(co) € L.
e For A\; > 0, we have for some constant C(u) that
S ) < Ol [ (3 gEe))ds + (3 ST
e For \; < 0. First of all, we have
70 == [ asyas
t

since ¢ € L2_7 for any small enough v > 0. On the other hand, for some constant
C(u), we have

(O O [ e (D s)ds.
Take r(¢) = 3, fi(co)u; where u; € Ker A, then
Il — 57r*r(w)|ngl (E) <00

where § is a fixed cut-off function which is equal to one at co, and 7 : (—1,00) xY - Y is
the natural projection. As for dimHp(D') — dimH2(D’) = 3dimKer 4, it follows from
Theorem 7.4 in [LM].
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