Tr. J. of Mathematics 21 (1997) , 93 – 98. © TÜBİTAK

A lower bound of the first eigenvalue of certain self-adjoint elliptic operators on manifolds containing long necks

Weimin Chen

Let X be an oriented Riemannian manifold with a cylindrical end modeled on Y, i.e., there exists a compact subset K such that $X \setminus K$ is isometric to $(-1, \infty) \times Y$.

FIGURE 1.

Let E be a cylindrical Riemannian vector bundle over X. This means that there is a Riemannian vector bundle E_0 over Y such that E is isometric to π^*E_0 on the cylindrical end $(-1,\infty)\times Y$, where $\pi:(-1,\infty)\times Y\to Y$ is the natural projection. Assume that $D:\Gamma(E)\to\Gamma(E)$ is a first order formally self-adjoint elliptic operator on X, which takes the following form on the cylindrical end $(-1,\infty)\times Y$:

$$D = I(\frac{\partial}{\partial t} + A),$$

where I is a bundle automorphism of E_0 which preserves the inner product, and A: $\Gamma(E_0) \to \Gamma(E_0)$ is a self-adjoint elliptic operator on Y independent of t. The self-adjointness of D implies that I and A satisfy the following conditions:

$$I^2 = -1$$
, $I^* = -I$, $A^* = A$, $IA + AI = 0$.

Note that the spectrum of A is symmetric about the origin and the automorphism I maps E_{λ} to $E_{-\lambda}$ where E_{λ} is the eigenspace correspondent to eigenvalue λ (see [M]). **Throughout this note, we assume that** Ker $A \neq 0$. Then the automorphism I defines a complex structure on Ker A which induces a symplectic structure on it. In particular, the dimension of Ker A is even. The operator D as described will be said cylindrical compatible in this note.

Definition 1. An exponentially small perturbation of a cylindrical compatible operator D is a first order formally self-adjoint elliptic operator D' satisfying the following conditions:

a) D' is a zero order perturbation of D,

b) on the cylindrical end $(-1, \infty) \times Y$, D' = D + P(t) where $P(t) : \Gamma(E_0) \to \Gamma(E_0)$ is a smooth family of zero order self-adjoint operators satisfying the following exponential decay conditions: there exist a small $\delta > 0$, some $T_0 > 0$ and a constant C such that when $t > T_0$,

$$||P(t)\psi||_{L^2(Y)} \le Ce^{-\delta(t-T_0)}||\psi||_{L^2(Y)} \text{ and } ||\frac{\partial P}{\partial t}\psi||_{L^2(Y)} \le Ce^{-\delta(t-T_0)}||\psi||_{L^2(Y)}$$
 for $\psi \in L^2(E_0)$.

Let D' be an exponentially small perturbation of a cylindrical compatible operator. The space of "bounded" harmonic sections of D' is denoted by $H_B(D')$, i.e.,

$$H_B(D') = \{ \psi \in \Gamma(E) | D'\psi = 0, \|\psi\|_{C^0(X)} < \infty \}.$$

The space of L^2 harmonic sections of D' is denoted by $H_{L^2}(D')$, i.e.,

$$H_{L^2}(D') = \{ \psi \in L^2(E) | D'\psi = 0 \}.$$

Let β be a fixed cut-off function which is equal to one at ∞ , and $\pi:(-1,\infty)\times Y\to Y$ be the natural projection.

Lemma 2. There exists a small $\delta_1 > 0$ such that for any $\psi \in H_B(D')$, there exists an unique limiting value $r(\psi) \in \text{Ker } A$ such that

$$\|\psi - \beta \pi^* r(\psi)\|_{L^2_{\delta_1}(E)} < \infty.$$

In particular, $\psi \in H_{L^2}(D')$ if and only if $r(\psi) = 0$. Moreover,

$$dim H_B(D') - dim H_{L^2}(D') = \frac{1}{2} dim \operatorname{Ker} A.$$

Now consider a pair of triples (X_i, E_i, D_i') for i = 1, 2. Suppose that there is an orientation reversing isometry $h: Y_1 \to Y_2$ which is covered by correspondent bundle maps which identify A_1 with A_2 in a suitable way so that for any L > 0, we can form a triple (X_L, E_L, D_L') where $X_L = X_1 \setminus [L+1, \infty) \times Y_1 \bigcup_h X_2 \setminus [L+1, \infty) \times Y_2$ with $h: (L, L+1) \times Y_1 \to (L+1, L) \times Y_2$ given by $h(L+t, y) = (L+1-t, h(y)), E_L = E_1 \bigcup_h E_2, D_L = D_1 \bigcup_h D_2$ and $P_L = \beta_L P_1 + (1-\beta_L)h^*P_2$ for some cut-off function β_L supported in $(L, L+1) \times Y_1$ with $|\nabla \beta_L| \leq 2$, and $D_L' = D_L + P_L$ (see Figure 2). Set

$$\lambda_L = \inf_{\psi \neq 0} \frac{\int_{X_L} |D_L'\psi|^2}{\int_{X_L} |\psi|^2}.$$

The purpose of this note is to investigate the behavior of λ_L as $L \to \infty$.

FIGURE 2.

Definition 3. Suppose D', D'_1 and D'_2 are exponentially small perturbations of cylindrical compatible operators.

- a) D' is said to be regular if $H_{L^2}(D') = 0$.
- b) (D'_1, D'_2) is said to be a transversal pair if

$$r(H_B(D_1')) \cap h^*(r(H_B(D_2'))) = \{0\}.$$

Here is the main result.

1) $\lambda_L = O(\frac{1}{L^2})$ as $L \to \infty$, Theorem 4.

2) if (D'_1, D'_2) is a regular transversal pair, then for any function $\gamma(L) = o(\frac{1}{L^2})$ as $L \to \infty$, there exists $L_0 > 0$ such that when $L > L_0$, we have

$$\lambda_L > \gamma(L)$$
.

In particular, D'_L is invertible for large L.

Remarks:

- 1. More general results are obtained in [CLM] for the unperturbed case.
- 2. Theorem 4 in this note is used in the gluing of Seiberg-Witten moduli spaces of 3-manifolds along T^2 . See [C1] and [C2].

We first introduce some notations. Let λ_i , $i \in \mathbb{Z}$ denote the eigenvalues of the operator A, and u_i denote the correspondent eigensections. Set $\mu = \inf_{\lambda_i \neq 0} |\lambda_i|$. For simplicity, we omit the subscript L if no confusion is caused.

Lemma 5. There exist $L_0 > 0$ and M > 1 with the following significance. Assume that ψ and c satisfy $D'\psi=c\psi$ with $\psi\neq 0$ and $|c|<\delta(\mu)$ for some small $\delta(\mu)$, then ψ can be rescaled so that $\|\psi\|_{C^0(X_L)} < M$ and one of the following conditions holds:

- either $\int_{X_1(L_0)} |\psi|^2$ or $\int_{X_2(L_0)} |\psi|^2$ is equal to one, either $\|\psi\|_{L^2(Y_1)}(L_0)$ or $\|\psi\|_{L^2(Y_2)}(L_0)$ is greater than or equal to one.

Here $X_i(L_0) = X_i \setminus (L_0, \infty) \times Y_i$, i = 1, 2.

Proof: Let Π_1 , Π_2 be the L^2 -orthogonal projection onto Ker A and (Ker A) $^{\perp}$. On the cylindrical neck of X_L , write $\psi = f_1 + f_2$ where $f_1 \in \operatorname{Ker} A$ and $f_2 \in (\operatorname{Ker} A)^{\perp}$. Set $\xi(t) = \int_{V} |f_2|^2$.

Direct computation shows that

$$\begin{split} \frac{\partial f_1}{\partial t} &= I\Pi_1 P \psi - cI(f_1) \\ \frac{\partial f_2}{\partial t} &= -A f_2 + I\Pi_2 P \psi - cI(f_2) \\ \frac{\partial^2 f_2}{\partial t^2} &= (A^2 - c^2) f_2 + IA\Pi_2 P \psi + I\Pi_2 \frac{\partial P}{\partial t} \psi + I\Pi_2 P \frac{\partial \psi}{\partial t} + c\Pi_2 P \psi. \end{split}$$

For any $\varepsilon > 0$, there exists $L_0 > 0$ such that on the neck $[L_0, 2L + 1 - L_0] \times Y_1$ we have

$$\begin{array}{lcl} \frac{\partial^2 \xi}{\partial t^2} & \geq & 2 \int_Y (\frac{\partial^2 f_2}{\partial t^2}, f_2) \\ & \geq & K(\mu^2 \|f_2\|_{L^2_1(Y)}^2 - \varepsilon \|f_2\|_{L^2_1(Y)} (\|f_1\|_{L^2(Y)} + \|f_2\|_{L^2(Y)})) \end{array}$$

for some constant K. Here $|c| < \delta(\mu)$ for some small $\delta(\mu)$. If $\xi(t)$ reaches its maximum in an interior point $t_0 \in (L_0, 2L + 1 - L_0)$, then on the neck, we have

$$\max \|f_1\|_{L^2(Y)} \ge \|f_1\|_{L^2(Y)}(t_0) \ge \frac{\mu^2 - \varepsilon}{\varepsilon} \max \|f_2\|_{L^2(Y)}.$$

Otherwise, $\xi(t) = ||f_2||_{L^2(Y)}^2$ reaches its maximum at the end points.

On the other hand, we have on the neck that

$$\frac{\partial f_1}{\partial t} + cI(f_1) = I\Pi_1 P \psi$$
$$\frac{\partial (If_1)}{\partial t} - c(f_1) = -\Pi_1 P \psi.$$

Set
$$C = \begin{pmatrix} 0 & c \\ -c & 0 \end{pmatrix}$$
, then
$$\begin{pmatrix} f_1 \\ If_1 \end{pmatrix}(t) = e^{-Ct} \int_{L_0}^t e^{Cs} \begin{pmatrix} I\Pi_1 P\psi \\ -\Pi_1 P\psi \end{pmatrix} ds + e^{-C(t-L_0)} \begin{pmatrix} f_1(L_0) \\ If_1(L_0) \end{pmatrix}.$$

This implies that on the interval $[L_0, 2L + 1 - L_0]$

$$||f_1||_{L^2(Y)}(t) \le c_1 e^{-\delta(L_0 - T_0)} (\max ||f_1||_{L^2(Y)} + \max ||f_2||_{L^2(Y)}) + ||f_1(L_0)||_{L^2(Y)}.$$

If $||f_2||_{L^2(Y)}$ reaches its maximum in the interior, then

$$\max \|f_1\|_{L^2(Y)} \le 2\|f_1(L_0)\|_{L^2(Y)}$$

for large enough L_0 . If $||f_2||_{L^2(Y)}$ reaches its maximum at the end points, assuming that it is the left end point without loss of generality, we have

$$\max(\|f_1\|_{L^2(Y)} + \|f_2\|_{L^2(Y)}) \le 2(\|f_1(L_0)\|_{L^2(Y)} + \|f_2(L_0)\|_{L^2(Y)})$$

for large enough L_0 . Lemma 5 follows easily from these estimates.

QED

The Proof of Theorem 4: 1). Pick $\varphi \in \text{Ker } A \text{ with } \|\varphi\|_{L^2(Y)} = 1$. Let ρ_L be a cut-off function which equals to one on $\left[\frac{3L}{4}, \frac{3L}{4} + \frac{L}{2} + 1\right] \times Y_1$ and equals to zero outside $\left[\frac{L}{2}, \frac{L}{2} + L + 1\right] \times Y_1$ with $|\nabla \rho_L| = O(\frac{1}{L})$. Then

$$\int_{X_L} |D'_L(\rho_L \varphi)|^2 \le \int_{X_L} |\nabla \rho_L|^2 |\varphi|^2 + \int_{X_L} |P_L(\rho_L \varphi)|^2 = O(\frac{1}{L}), \text{ and } \int_{X_L} |\rho_L \varphi|^2 \ge \frac{L}{10}.$$

So $\lambda_L = O(\frac{1}{L^2})$ as $L \to \infty$.

2). Suppose that there exists a sequence of $L_n \to \infty$ such that $\lambda_{L_n} \leq \gamma(L_n)$. Then there exist ψ_n , c_n such that $D'_{L_n}\psi_n = c_n\psi_n$ with $c_n^2 = \lambda_{L_n}$. By lemma 5, there exist $\psi_1 \in H_B(D'_1)$, $\psi_2 \in H_B(D'_2)$ such that a subsequence of ψ_n converges to ψ_1 over X_1 and ψ_2 over X_2 in C^k norm on any compact subset. Note that one of ψ_1 and ψ_2 is nonzero.

The second assertion of Theorem 4 follows if we show that $r(\psi_1) = h^*r(\psi_2)$. But this follows from the fact that if we write $\psi = f_1 + f_2$ as in lemma 5,

$$||f_1(t) - f_1(2L + 1 - t)||_{L^2(Y)} \le C(e^{-\delta t} + |\cos(c(2L + 1 - 2t)) - 1| + |\sin(c(2L + 1 - 2t))|),$$
 for large enough t and L . C is some constant independent of t and L .

The Proof of Lemma 2:

Suppose $\psi \in \Gamma(E)$ and $D'\psi = 0$. On the cylindrical end $(T_0, \infty) \times Y$, write $\psi = \sum_i f_i u_i$ where u_i are the eigensections of the operator A correspondent to eigenvalues λ_i , and f_i are smooth functions in t. Then we have

$$\frac{\partial f_i}{\partial t} + \lambda_i f_i = (IP(t)\psi, u_i).$$

Set $g_i = (IP(t)\psi, u_i)$, then $\sum_i g_i^2 = ||P\psi||_{L^2(Y)}^2$ and

$$f_i(t) = \int_{T_0}^t e^{-\lambda_i (t-s)} g_i(s) ds + f_i(T_0) e^{-\lambda_i (t-T_0)}.$$

Now assume that $\psi \in L^2_{-\gamma}$ for any small enough $\gamma > 0$. Assume that $\delta_1 < \min(\frac{\delta}{2}, \frac{\mu}{4})$ where $\mu = \inf_{\lambda_i \neq 0} |\lambda_i|$.

• For $\lambda_i = 0$, we have for any t' > t,

$$e^{\delta_1 t} |f_i(t') - f_i(t)| \le C (\int_t^{t'} \int_Y e^{-\frac{\delta}{10} s} |\psi|^2 Vol_Y ds)^{\frac{1}{2}},$$

so $f_i(\infty) = \lim_{t \to \infty} f_i(t)$ exists and $f_i - f_i(\infty) \in L^2_{\delta_1}$.

• For $\lambda_i > 0$, we have for some constant $C(\mu)$ that

$$e^{2\delta_1 t}(\sum_i f_i^2(t)) \leq C(\mu) \int_{T_0}^{\infty} e^{2\delta_1 s}(\sum_i g_i^2(s)) ds + (\sum_i f_i^2(T_0)) e^{2\delta_1 T_0}.$$

• For $\lambda_i < 0$. First of all, we have

$$f_i(t) = -e^{-\lambda_i t} \int_t^{\infty} e^{\lambda_i s} g_i(s) ds$$

since $\psi \in L^2_{-\gamma}$ for any small enough $\gamma > 0$. On the other hand, for some constant $C(\mu)$, we have

$$e^{2\delta_1 t}(\sum_i f_i^2(t)) \le C(\mu) \int_t^\infty e^{2\delta_1 s}(\sum_i g_i^2(s)) ds.$$

Take $r(\psi) = \sum_{i} f_i(\infty) u_i$ where $u_i \in \text{Ker } A$, then

$$\|\psi - \beta \pi^* r(\psi)\|_{L^2_{\delta_1}(E)} < \infty$$

where β is a fixed cut-off function which is equal to one at ∞ , and $\pi:(-1,\infty)\times Y\to Y$ is the natural projection. As for $dim H_B(D') - dim H_{L^2}(D') = \frac{1}{2} dim \text{Ker } A$, it follows from Theorem 7.4 in [LM].

CHEN

Acknowledgments: I would like to thank Selman Akbulut for his continuing support and encouragement. I am also grateful to Richard Schoen for his valuable advice, to Slava Matveyev for helping me inserting the figures, to Liviu Nicolaescu for bringing [CLM] to my attention, and to Ronnie Lee for his appreciation of this result.

References

- [APS] Atiyah, M.F. Patodi, V.K. and Singer, I.M. Spectral asymmetry in Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975a) 43-69.
- [CLM] Cappell,S., Lee,R. and Miller,E. Self-adjoint elliptic operators and manifold decompositions Part I: Low eigenmodes and stretching, Comm. Pure and Appl. Math., Vol. XLIX, 825-866 (1996).
- [C1] Chen, W. Casson's invariant and Seiberg-Witten gauge theory, preprint, 1996.
- [C2] Chen, W. Dehn surgery formula for Seiberg-Witten invariants of homology 3-spheres, preprint, 1997.
- [LM] Lockhart, R and McOwen, R. *Elliptic operators on non- compact manifolds*, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4) **12** (1985) 409-446.
- [M] Müller, W. Eta invariants and manifolds with boundary, J. Differential Geometry 40 (1994) 311-377.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, E.LANSING, MI. 48824 USA, E-mail address: wechen@math.msu.edu