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AN APPLICATION OF MONODROMY GROUPOID

Osman Mucuk

Abstract

The monodromy groupoid was first introduced by Pradines in [7] and developed
by Mucuk in [6]. In this paper we give an application of the monodromy groupoid.

Introduction

A groupoid (Definition 1.1) is a category in which every morphism (arrow) has an
inverse.

A topological groupoid (Definition 1.4) is a groupoid in which all maps are contin-
uous.

For the concepts of free groupoid, normal subgroupoid and quotient groupoid we
refer to Section 1.

Let G be a topological groupoid and W an open neighbourhood of the identities
in G. So W has a directed graph structure inherited from the groupoid multiplication
of G. Hence we have a free groupoid F(W) on W. Let N the normal subgroupoid of
F(W) generated by the elements in the from [v][u][vu]™! for u,v € W such that vu is
defined in G and belongs to W. Let M(G,W) be the quotient groupoid of F(W) by
N. So we have an inclusion i : W — M(G, W) and by the freness of F(W) we have a
projection map p: M(G,W) — G induced by the inclusion map 7 : W — G. Further
if f: W — H is a local morphism of groupoids as defined in Definition 1.2 then we
have a morphism of groupoids (Definition 1.2) ¢ : M(G,W) — H such that ¢i = f.
This groupoid M(G, W) is called monodromy groupoid of G.

In [6] the monodromy groupoid M (G, W) was given a topological structure making
it a topological groupoid such that the projection morphism p : M(G,W) — G is a
universal covering on each fibre M(G, W), . This study was written in Lie groupoid case
in [2].

As an example to monodromy groupoid if X is a topological space admitting
a universal covering then we can choose a neighbourhood W of the identities in the
topological groupoid G = X x X such that the monodromy groupoid M(G,W) is the
fundamental groupoid 7 X described in below. Further if G is a topological group which
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has a universal covering then the monodromy groupoid of G is the universal covering of
G. Hence the notion of the monodromy groupoid generalizes the ideas of fundamental
groupoid and universal covering. In this paper we consider the monodromy groupoid
M(G,W) just as a groupoid.

In this paper we prove that if p : E — X is a principal bundle in the sense of
Definition 2.1, then the nonodromy groupoid M(G,W), with G = X x X, acts on E.
(See Definition 2.3 for the action of a groupoid on a set).

1 Groupoids

Definition 1.1. (/5/) A groupoid consists of two sets G and Og called respectively
the set of elements or morphisms and the set of objects of the groupoid, together with
two maps o, : G — Og, called respectively the source and target maps, a map
1(): Og — G,z — 1; called the object map and a partial multiplication

G*xG — G,(h,g)— hg
defined on the fibre product set

G*G={(h,g9) € GxG:alh)=p3(g)}

These maps are subject to the following conditions
i) a(hg) = alg) and B(hg) = B(h) for all (h,g) € G xG;
ii) k(hg) = (kh)g for all g,h,k € G such that a(h) = 8(g) and a(k) = B(h);
iii) a(l;) = B(1;) =z for all x € Og, where 1, is the identity at x;
) glag) =g and lggyg =g for all g € G; and
v) each g € G has an inverse g=' such that a(g™') = B(g), Blg™') = alg) and
9719 =1lag): 997" = lp()-
If (G,0¢) is a groupoid we say G is a groupoid on Og. For a groupoid G we write G,
for a!(z) and G(z,y) for a™!(z) N B~1(y) where z,y € Og.

For example a group can be considered as a groupoid with only one object. Let X
be a topological sapce. Then G = X x X becomes a groupoid on X, whose morphisms
are the pairs (z,y) for z,y € X. In G, a and 3 are defined by

a(r,y) ==z, Blz,y)=y
and the multiplication is defined by

(y’ z)(x’ y) = (.Z‘, z)
Let X be a topological space. The homotopy classes of the paths in X form
a groupoid on X. The composition of the paths in X induces a composition of the
homotopy classes. This groupoid is called fundamental groupoid of X and denoted by
m X (see [1] for more details)
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Definition 1.2. Let G and H be groupoids. A local morphism of groupoids is a
map f: W — H from a subset of G containing all the identities in G such that
for v € W,ag(fu) = flagu),Bu(fu) = f(Beu) and f(vu) = f(v)f(u) whenever
v,u € W,vu is defined and belongs to W .

A morphism from G to H is a pair of maps

f:G— H and Of : O¢ — Oy
such that

agof =0j0ag,Buof =O0r0fB¢ and f(vu) = f(v)f(u) for all (v,u) € G * G, where

G*G={(v,u) € GxG:al)=75u)}.

For such a morphism we simply write f: G — H.

The following notions of subgroupoid, normal subgroupoid and quotient groupoid
are from [1] and [5].

Definition 1.3 Let G be a groupoid. A subgroupoid of G is a pair of subsets H C G
and Og C Og such that a(H) C Oy, PB(H) COg, 1, € H for z € Oy and H is
closed under the partial multiplication and inversion in G.

A normal subgroupoid of G is subgroupoid N of G such that Oy = Og and for
each z,y € Og,a € G(z,y) we have aN{(z) = N(y)a.
Let G be a groupoid and N be a normal subgroupoid of G such that N(z,y) = @ if
x # y. Define a groupoid G/N on O¢ by

G/N(z,y) = {aN(z) : a € G(z,y)}

for any z,y € Og with the multiplication that if a € G(z,y) and b € G(y,z) then
bN(y)aN(z) = baN(z)H(z) = baN(z). This groupoid is called quotient groupoid of G
by N.

Let W be a directed graph. Let p = (an,---,a;) be sequence of the edges such
that the target of a; is equal to the source of a;y;. Such a p is called directed path.
Write (), for the empty path associated to . The composition of two directed paths
P = (an, --,a1) and ¢ = (by,---,b1) is defined by gp = (b, -, b1,an, -, a1) if the
target of a, is the source of b;. Then we have a category P(W). Let @ denote the
converse path of @ in W. Define an equivalence relation on P(W) as follows: Two
ridected paths p,q are equivalent if we can obtain one from the another by adding or
deleting a number of a;a; or d;ai. This is an equivalence relation. The set of equivalence
classes [p] is denoted by F(W). A groupoid multiplication on F(W) is defined by
lq][p] = [gp]. So F(W) becomes a groupoid which is called free groupoid on the graph
wi3].
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Let G be a groupoid and R a subset of G. By the normal subgroupoid N(R)
generated by R we mean the smallest normal subgroupoid including R. A direct con-
struction of N(R) is given in [1] as follows: Let G be a groupoid and R a subset of G
such that Ogr = Og and R(z,y) = @ if z #y. Let N(z) be the set of all elements

-1 -1
P =0, Pnran---a; p101

for a; € G(z,z;) and p; or p; ' an element of R(z;). Let N(R) be the family of N(z)
for all z € Og. Then N(R) is a normal subgroupoid of G such that Oy(g) = Og and
NR(z,y) = @ if x #y. N(R) is called the normal subgroupoid generated by R.

Definition 1.4 A topological groupoid is a groupoid G in which the sets G and Og are
topological spaces and the following maps are continuous.

i) partial multiplication G x G — G, (h,g) + hg, where G x G has the relative
topology;

i) tnverse map G — G,g+— g7 1;

)
i11) source and target maps «,3: G — Og;
i) object map 1) : Og — G,z +— 1,.

A topological group is a topological groupoid with only one object. If X is a
topological space then the groupoid G = X x X described above is a topological groupoid.

2 Action and principal bundles

The following definition is from [5].

Definition 2.1 Let p: E — X be a continuous surjective map and let G be a topological
group acting effectively on E by G x E — E,(g,€) — ge. By effectively we mean that
if ge = he then g = h. Then the triple (E,X,p) is called a principal G -bundle if the
following conditions are satisfied.

i) The fibres of p are equal to the orbits of G, that is, for e,é € E the statement
p(e) = p(é) is equivalent to that there is an element g € G such that é = eg.

it) The map 6 : E x E — G, (e,eg) — g is continuous. Here
p

E x E={(e,é) € Ex E:p(e) =p(é)}.
p
iit) There is an open cover {U; :i € I} of X and there are continuous maps

s; 1 U; — E such that ps; is identity at U;. Such maps are called local sections
We call the set of these local sections {s; : U; — E,i € I}
atlas of sections and the maps s;; : U; NU; — G defined by

230



MUCUK

sij(x)si(x) = s;(x)

are called transition functions.

Example 2.2. Let G be a topological group and p : E — X a principal G -bundle,
and for x € X let E, = p~(z). Let S, denote the set of all bijections g : E, — E,
for x,y € X. Then S, becomes a groupoid on X with respect to the following structure:
For g : E, — E, the source and target maps are defined by a(g) =z, 3(g) =y, and the
groupoid multiplication is the composition of the maps.

Definition 2.3. ([1]p.347) Let G be a groupoid with Og = X,E asetandp: E — X
a function. Let G x E denote the subset

{(g,€) € G x E: a(g) = ple)}
of G X E. An action of G on E via p is a function

G+xE — E, (g,€) — ge

such that

i) p(ge) = B(g) for (g.€) € G+ E;
ii) h(ge) = (hg)e for (h,g) € G * G, where

GxG={(v,u) € GxG:alv)=pu)};
iit) (lpe)e =€ for e € E.

From this action in [1] a groupoid called action groupoid is obtained and in [6]
some useful applications of action groupoid on coverings are given.

In the following theorem, which is the main theorem of this paper, we need a
condition that in a principal G-bundle p : E — X the transition functions s;; :
U;NU; — G are constant. But for example in [4] by assuming that G is discrete
this condition is guarantied. So we do not loose much by assuming that these transition
functions are constant.

We now give the main theorem of this paper.

Let G be a topological group

Theorem 2.4. Let p: E — X be a principal G-bundle such that the transition
functions s;; : U;NU; — G defined by s;j(x)s;(xz) = s;j(x) are constant. Then for an
appropriate subset W of G = X x X the monodromy groupoid M(G,W) acts on E via
p.

Proof. Let {s;:U; — E, where i € I} be an atlas of sections of p: E — X . Define
¥; : p~ Y (U;) — G by 9;(e)si(pe) = e. Note that since ps;(pe) = p(e), such 9;(e) € G
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exists and so ¥; is defined. By assumption the transition maps s;; : U; N Uj — G
defined by ]

sij(z) = 9;(e) " i(e)

are constant, where e € p~1(U; N U;) such that pe = z.
On the other hand by the definition of the maps

9; :p~}(U;) — G and 9 :p~(U;) — G

for each z € (U; NU;) we have

Vi(e)si(pe) = V;(e)s;(pe) for pe = z
di(e)si(x) = J;(e)s;(x)

9;(e) " 9i(e)si(z) = s;(x).

So we have

sij(x)si(z) = s;(z), z € (U NU;). (%)

Now define a map g; : U; x U; — Sp, as follows: If (z,y) € U; x U;, then let g;(z,y) be
defined by

gt('rvy) : Gsi(x) - Gsl(y)7gsl(x) = gsi(y),
where Gs;(z) is the orbit of s;(z). Note that in a principal G-bundle p: E — X fibres
of p ere equal to the orbits we have
Gsi(z) =p~!(z) = E,.
Then by gluing these maps g;(¢ € I) wehaveamap g: W — S, where W = U(Uiin)

i€l
and for (z,y) € W we have

| gi(z,y); if z,y € U;

This map g : W — S, is well defined. For this we have to prove that if z,y € (U;NU;),
then g;(z,y) = g;(z,y). Since s,;; : U; NU; — G is constant we have
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Gsi(z) = Gsj(zx)
and by (*) we have

gi(z,y)lgsi ()] = gsi(y) = g54;(y) " 5;(v) (1)
95(2,9)lgsi(2)] = gi(z,y)lgsi;(2) 7 55(2)] = gsij(x) 55 (y). (2)

Since s;5(x) = s;5(y), the right sides of (1) and (2) are equal and so g;(z,y) = g;(z,y)
for z,y € (U; N U;). Morover it can be easily seen that g : W — S, is a local
morphism. By the property of monodromy groupoid M(G,W), with G = X x X, this
local morphism extends to a morphism of gropoids ¢ : M(G, W) — S, such that ¢; = g,
where 7 is the inclusion W — M(G,W). Hence each morphism a € M(G,W) with
a(a) = z,8(a) = y defines a bijection ¢(a) : E; — E,. That means we have an action
M(G,W)x E — E. This completes the proof that the monodromy groupoid M(G, W)
actson Eviap: FE— X.
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Monodromy Groupoidinin Bir Uygulamasi

6zet

Monodromy groupoidi ilk olarak referanslardan [7] de Pradines tarafindan tanitildi
ve daha sonra [6] da Mucuk tarafindan geligtirildi. Bu matalede monodromy
groupoidinin bir uygulamasim veriyoruz.
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