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LOCALLY TOPOLOGICAL GROUPOIDS

Osman Mucuk

Abstract

The notion of locally topological groupoid was introduced by Aof and Brown
in [2]. On the other hand in [6] by Mackenzie a topological groupoid MG, called
monodromy groupoid, is constructed. In this paper we prove that this groupoid MG
gives a locally topological groupoid.

Introduction

A groupoid whose explicit definition is given in Definition 1.1 is a category such
that each morphism has an inverse.

For example a group is a groupoid with only one object. If X is a topological
space, the homotopy classes of the paths in X form a groupoid on X. The composition
of the paths in X gives a composition of the homotopy classes. This groupoid is called
fundamental groupoid of X and denoted by m X .

A topological groupoid defined in Definition 1.3, is a groupoid having topology
such that all maps are continuous.

A locally topological groupoid is a pair (G, W) of a groupoid G and a topological
space W such that W C G and the conditions given in Definition 2.2 are satisfied.

Let G be a topological groupoid such that each fibre G, = o~ !(z) has a universal
covering. Let (G)1, be the universal covering of G, at the base point 1,. On the other
hand it is well known that if X is a topological space which has a iniversal cavering, then

ﬂz : (WIX)z — X7

the restriction of the final point map 3, is the universal covering of X at the base point

x. Here m X is the fundamental groupoid of X . Hence we can take (G;)1, as (m1Gy)1, -

z

So the elements of (m1G;)1, are the homotopy classes of the pats a : [0,1] — G, such
tahat a(0) = 1,. Let

z€0¢g
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In [6] on MG a groupoid is defined as follows:

MG(y,z) x MG(z,y) — MG(z, z)
(8], [a]) — [b0a]

where b0a is defined to be

oo | a2, 0<t<1/2
T bt -1)g, 1/2<t<1

for ¢ = a(1). This multiplication is well defined and MG is a groupoid on O¢. This
groupoid is called monodromy groupoid. Monodromy groupoid of a topological groupoid
is also the main object of [7] (see also [3]).

The main object of this paper is to prove that this groupoid MG gives rise to a
locally topological groupoid.

1 Groupoids

Definition 1.1 A groupoid consists of two sets G and Og called respectively the set
of elements or morphisms and the set of objects of the groupoid, together with two maps
a,B: G — Og, called respectively the source and target maps, a map 1y : Og —
G ,x — 1, called the object map and a partial multiplication

defined on the fibre product set

G+xG={(h,g) €GxG:alh)=p5(g)}.

These maps are subject to the following conditions

i) a(hg) = a(g) and B(hg) = B(R) for all (h,g9) € G*G;

it) k(hg) = (kh)g for all g,h,k € G such that a(h) = B(g) and a(k) = B(h);

i) a(ly) = B(1;) =z for all x € O¢, where 1, is the identity at x;

i) glag) =g and lggg =g for all g€ G; and

v) each g € G has an inverse g—! such that a(g™!) = B(g), B(g~!) = a(g) and
9719 = la(g) 99" = la()-

If the pair (G, Og) is a groupoid we say G is a groupoid on Og. If G is a groupoid
and W is a subset of G containing all the identities we write Og C W.
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For a groupoid G we write G, for a~'(z) and G(z,y) for a~!(z) N 7 1(y)
wherez,y € Og. In a groupoid G,6 : G x G — G, (h,g) — hg! is called groupoid
a

difference map, where

G x G={(h,9) e GxG:alh)=alg)}.

Definition 1.2 Let G and H be groupoids. A local morphism of groupoids is a map
f: W — H from a subset of G containing all the identities in G such that for

u € W,an(fu) = flacgu),Ba(fu) = f(Beu) and f(vu) = f(v)f(u) whenever v,u € W
and vu is defined and belongs to W .

A morphism from G to H is a pair of maps

f:G— H and Oy : Og — Oy

such that

a0 f =050ag, BuOf=0;08g

and f(vu) = f(v)}f(u) for all (v,u) € G * G, where
GxG={(v,u) e GXG:av)=p(u)}.
For such a morphism we simply write f: G — H.

Definition 1.3 A topological groupoid is a groupoid G in which the sets G and Og are
topological spaces and the following maps are continuous.

i) partial multiplication G * G — G, (h,g) — hg, where G * G has the relative
topology;

ii) inverse map G — G, g+ g~ 1;

)
ii1) source and target maps a,3: G — Og ;
) object map 1(y: Og — G,z +— 1.
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2 Review of holonomy groupoids

We recall the following definition due to Ehresmann(5].

Definition 2.1. Let G be a groupoid and Og a topological space. An admissible lacal
section of G is a function s : U — G from an open neighbourhood in Og such that

i) as(x) =z forallz € U;

it) Bs(U) is open in Og; and

i) Bs maps U homeomophically to Bs(U).

Let W be a subset of G such that Og C W, that is W contains all the identities
and let W have the structure of a topological space. We give O¢ the subspace topology.
We say that (a,3, W) has enough continuous admissible local sections if for each w € W
there is an admissible local section s : U — G of G such that

i) sa(w) = w;

i) s(U) CW; and

ili) s is continuous from U to W.

Such an s is called a continuous admissible local section

Let G be a groupoid and W a subset of G. We say that W generates G, if each
element of G is written as a multiplication of some elements of W .

The following definition is taken from [2].

Definition 2.2. A locally topological groupoid is a pair (G,W) consisting of a groupoid
G and a topological space W such that

i) Og CW C G (thatis , W is a subset of G including all the identities)

w) W=w-1;

ii1) W generates G as a groupoid;

w) the set W = W x WNEYW) is open in W x W and the restriction to
a a

W5 of the difference map 6 : G x G — G,(g,h) — gh™?! is continuous, where
@

w x W ={(v,u) e W xW:au) =alv)}.

and

v) the restriction to W of the source and target maps o and 3 are continuous and
the triple (o, 3, W) has enough continuous admissible local sections.

In this definition, G is a groupoid but not necessarily a topological groupoid. The
locally topological groupoid (G, W) is said to be extendible if a topology can be found on

238



MUCUK

G making it a topological groupoid such taht W is an open subspace of G. See [2] for a
locally topological groupoid which is not extendible.

From a locally topological groupoid (G, W) a topological groupoid, called Holon-
omy groupoid, is obtained in the following theorem. This theorem was first stated by
Pradines in [8] and then completely proved in [1] (see also [2]).

Theorem 2.3. Let (G,W) be a locally topological groupoid. Then there is a topological
groupoid H, A morphism ¢ : H — G of groupoids and an embedding i : W — H of
W to an open neighbourhood of Oy such that the following conditions are satisfied.

i) ¢ is the identity on objects, ¢i = idw,d~ (W) is open in H, and the restriction
dw : ¢ Y (W) — W of ¢ is continuous;

i) if A is a topological groupoid and ¢ : A — G 1is a morphism of groupoids such
that

a) ¢ is the identity on objects;

b) the restriction (w : ("1 (W) — W of ( is continuous and ("1 (W) is open in
A and generates A;

c) the triple (aa,B4,A) has enough continuous admissible local sections;
then there is a unique morphism (' : A — H of topological groupoids such that ¢¢' = ¢
and {'a = iCa for a € ("H(W).

The groupoid H is called holonomy groupoid of the locally topological groupoid
(G,W) and denoted by Hol (G,W). See [7] for some applications of Theorem 2.3

3 Main Theorem

Definition 3.1. Let X be a topological space which has a simply connected covering. A
subset W of X 1is called canonical if it is open, path connocted and for each x € W, the
fundamental group m1 (W, ) is singleton, that is, has just only one element.

Let G be a topological groupoid and W a supspace of G. Then W is star connected
if each W, = WNG, is connected and W is star canonical if each W, is canonical. Thus
G is star connected if for each =z € Og, G, is connected.

It is well known that if G is a topological group and V is an open neighbourhood
of the identity e in G then there exists an open neighbourhood W of e in G such that
W =W~ and W2 C V. Because in a topological group G the group difference map

§:GxG— G,(g,h) — gh™?

is continuous, and so there is an open neighbourhood N of e in G such that N x N C
6"YV). If we take W = NN N~! then W = W~! and W2 C V. Note that if V is
canonical then W can be chosen as canonical.

In topological groupoid case in [1] Aof first proved that if G is a paracompact
topological groupoid (that is the topologies of G and Og are paracompact) and V is an
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open subset of GG, such that Og C V, then there exists an open subset W of G, with
O¢ C W, satisfying the following conditions.

) W=w-1

i) W2 CVv.

Then by Paradines it was pointed out in a letter, an appendix to [1], that for such a
neighbourhood W to exist the paracompactness of Og is sufficient. Similarly if V is star
canonical, then W can be chosen star canonical.

Theorem 3.2. Let G be a star connected topological groupoid such that each fibre G,
has a universal covering. Let V' be an open neighbourhood of Og in G such that V is star
canonical in G and (o, 3,V) has enough continuous admissible local sections. Suppose
that there exists an open neighbourhood W of Og in G such that W = W' W2 CV
and W, is star canonical. Then MG may be given a locally topological groupoid structure.
Proof. First of all we note that by the above remark by choosing Og paracompact it is
possible to have such a neighbourhood W from V. Construct the groupoid MG as above.
Define amap f: W — MG as follows: Let u € W(z,y), where W(z,y) = WNG(z,y).
Then u € W,. Since W, is path connected, there is a path a from 1, to u. Note that
1, € W,. Define f(u) to be the unique homotopy class of the path a in W, . Since W,
is canonical, f is well defined. Then we prove the following lemmas o

Lemma 3.3. The map f: W — MG is injective

Proof. Consider the composition of the maps W 4, MG -2 G, where p: MG — G
is defined by p([a]) = a(1). Then pf =4, and ¢ is injective. Hence f : W — MG is
injective. O O

Lemma 3.4. The map f: W — MG is a local morphism

Proof. Let u € W(z,y),v € W(y,2) and vu € W. Since W2 C V and V is star
canonical we have a

flvu) = f(v)f(w).

Hence the map f: W — MG is a local morphism. O

Let W denote the image of W under the map f : W — MG. Hence W has
a topology such that f : W — W is a homeomorphism. We now prove that the pair
(MG, W) satisfies the conditions of Definition 2.2.

i)jince W is isomorphic to W, Oyg = Og and Og C W C G, we have that
Omeg CW C MG
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ii) Since W = W~! and W is isomorphic to W, obviously W = (W)~1.
The main part of the proofs is to prove that W generates MG as a groupoid, that is,
each element of MG can be written as a multiplication of some elements of W .

iii) W generates G as a groupoid. To prove this we use a technical method.

Let [a] € MG(z,y), so that by the construction of MG, a is a path such that
a(0) = 1, and a(1) = g € G(z,y). Let S C [0,1] be the set of s € [0,1] such that
a® = al|[0,s] can be written a®* = a,0---0a; for some n and Ima; C W. Since
S C[0,1], S is bounded above by 1, and so u = supS exists. Then we have to prove that
A)ues,
Bju=1

Proof bf of A. Let a(u) € G(z,x,), where z, = Ba(u). Then themap f : [0,1] — G,
defined by t + a(t)a(u)~! is continuous and f(u) = 1,, € W. Hence there is an ¢ > 0
such that f([u —e,u + ¢]) C W. Hence the composition

SwO(f x fl:lu—gutelxu—cut+e]l —mW « W—G
a

(t1,t2) = (a(tr)a(u) ™, alt2)a(w) ™) = a(tr)a(tz) ™

is continuous, where éw is the restriction to W x W — G of the difference map
o

G x G,(g,h) — gh™! . Hence there is an ¢ > 0 such that ¢’ < e and
a

Sw(f x fl(lu—€,ut+e]xu—e,ut+e]) CW ()
Since u = supS, there in an element s € S such that u — ¢’ < S. Hence a° can
be written a,, ---a; for n with Ima; C W and so we have
Gy = Gn+10(a,0---0ay)

where a,41(t) = a(t)a(s)™! for t € [s,u]. By (x) we have that Ima,y; C W. Hence
u€S.

Proof of B. To prove this suppose that u < 1. Since u € S, we have that
u

a“ =ap,0---0a;

for some n such that Ima; C W. Let a;(1) = g7 € G(z;_1,z) for 1 <¢ < n with zg ==z
and z,—,. Hence we have

a(u) = gn0---0gy
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and the path a can be divided into small paths as follows:

an Gn

a(u) | a(u+e¢)

az g2

L3191 z

where I'ma; C W. Since the map

[u,1] — Gy, t — a(t)a(u)™?
is continuous, there is an ¢ > 0 such that a(t)a(u)™* € W for ¢ € [u,u + ¢]. Hence

u+

a"" = an410(an0- - 0ay),

with any1(t) = a(t)a(u)™? for t € [u,u +¢].
Hence we have that a%*¢ € S, which is a contradiction. This proves that v = 1. This
completes the proof of (B).

iv) Since G is a topological groupoid the groupoid difference map

G x G,(g,h) — gh™?
[07

is continuous, so also the restriction map éw : W x W — G is. So W5 = (W x W)n
a a

6~1(W) is open in W x W. Hence W x W) N 6 2(W) is open in W x W and
a a a

W « W — MG is continuous
@

v) Since o, 8 : W — Og are continuous, so also a,B: W — Og are. Further
since (o, 3, W) has enough continuous admissible local sections, so also (o, B, W) is.

So (MG, W) (becomes a locally topological groupoid. O

By theorem 2.3 this locally topological groupoid (MG, W) gives a holonomy
groupoid. In [4] it is also obtained a locally topological groupoid from a foliation.
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Yerel Topolojik Groupoidler
Ozet
Referanslardan [2] de Aof and Brown tarafindan yerel topolojik groupoid kavrami
tamtildl. Diger yandan [6] da Mackenzie tarafindan monodromy groupoidi olarak
adlandirilan bir MG groupoidi inga ediliyor. Bu makalede MG groupoidinden bir
yerel topolojik groupoidinin elde edildigini ispat ediyoruz.
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