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DIFFERENTIABLE FUNCTIONS AND THE
GENERATORS ON A HILBERT-LIE GROUP

Erdal Coskun

Abstract

A convolution semigroup plays an important role in the theory of probability
measure on Lie groups. The basic problem is that one wants to express a semigroup
as a Lévy-Khinckine formula. If (u.), R’ is a continuous semigroup of probability

measures on a Hilbert-Lie group G, then we define

Ty f = / fape(da) (f € Cu(@),t > 0).

It is apparent that (T,) teR? is a continuous operator semigroup on the space
C.(G) with the infinitesimal generator N. The generating functional A of this
semigroup is defined by Af := lim¢yo 3(Ty, f(e) — f(e)). We have the problem of
construction of a subspace C(2)(G) of Cy(G) such that the generating functional A
on C(2)(G) exists. This result will be used later to show that the Lévy-Khinchine
formula holds for Hilbert-Lie groups.

Key words: Continuous convolution semigroup, operator semigroup, Hilbert-
Lie group, Lévy measure, infinitesimal generator, generating functional

Introduction

Let (u¢), R’ be a continuous convolution semigroup of probability measures on a

Hilbert-Lie group G and C,(G) the Banach space of all bounded left uniformly continuous
real-valued functions on G. Then there is associated a strongly continuous semigroup
(Ty,), R’ of contraction operators on C,(G) with the infinitesimal generator (N, D(N)).
The generating functional (A, D(A)) of the convolution semigroup () teR’, is defined
by

t

.1
Af = lim 3 (T f(e) ~ £(6)

for all f in its domain D(A). For finite dimensional Lie groups, infinite dimensional
Hilbert spaces and Banach spaces of cotype 2, we have
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C(g)(G) C D(A)

(cf. [4], [6] and (8] resp.). In this paper we shall prove that the above result is also
true for a class of infinite dimensional Hilbert-Lie groups. At several points we shall use
ideas and techniques used in [4]. We first obtain the Taylor expansion for the functions
f € C3)(G). In Lemma 2.1 we prove that, for every neighborhood of e in any Hilbert-Lie
group G, the supremum sup;.,, % ut(U€) is finite. Using this result and Banach-Steinhaus
Theorem, we prove Theorem 2.9.

1. Preliminaries

N and R denote the sets of positive integers and real numbers, respectively.
Moreover let Ry :={r:r > 0},R} = {r: 7 > 0}.

Let A be a set and B a subset of A. Then by 15 we denote the indicator function
of B. Let I be a nonvoid set. §;; is the Kronecker delta (i,j € I).

By G we denote a topological Hausdorff group with identity e.G is called Polish
group, if G is a topological group with a countable basis of its topology and with a
complete left invariant metric d which induces the topology.

For every function f : G — R and a € G the functions f* R,f = f, and
Lof =af are defined by f*(b) = f(b7'), fu(b) = f(ba) and ,f(b) = f(ab) for all b e G,
respectively. Moreover let supp(f) = {a € G : f(a) # 0} denote the support of f.
By Cu(G) we denote the Banach space of all real-valued bounded left uniformly (or
d-uniformly) continuous functions on G furnished with the supremum norm || -|. A
Hilbert-Lie group is a separable analytic manifold modeled on a separable Hilbert space,
whose group operations are analytic. It is we known that the Hilbert-Lie groups are
Polish (cf. [2]).

For the exponential mapping £zp : T. — G there exists an inverse mapping log
from a neighborhood U, of e onto a neighborhood Ny of zero in T,, where T. is the
tangential space in e € G ([5]).

By B(G) we denote the o-field of Borel subsets of G. Moreover, V(e) denotes the
system of neighborhoods of the identity e of G which are in B(G).

M(G) denotes the vector space of real-valued (signed) measures on B(G). As
it is well known, M(G) is a Banach algebra with respect to convolution * and the
norm || - || of total variation. M, (G) is the set of positive measures in M(G) and
MYG) = {p € M4(G) : u(G) = 1} is the set of probability measures on G.

Now let vx(t) := Exzp(tX) for X € H and t € R* := R\ {0}.

Definition 1.1 Let f € C,(G),X € H and a € G.
[ is called left differentiable at a € G with respect to X (“X f(a) ezists” for short),
if
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.1
Xf(a) = lim 2 [Lyx (1) f(a) = f(a)]
exists. f is called continuously left differentiable, if X f(a) exists for all a € G and
X € H, and if the mappings a — X f(a), X —> X f(a) are continuous.

Derivatives of higher orders are defined inductively. Differentiability from the right
is defined in replacing L., () by Ry

The following properties of the derivatives are well known for continuously left
differentiable functions (cf. [1]).

Remark 1.2 Let f,g € C,(G),X € H and a € G.
(i) If X f(a) exists, then the mapping X — X f(a) is linear.
(ii) If X f(a) and Xg(a) exists, then also X(f - g)(a) exists and X(f-g)(a) = X f(a)-
g9(a) + f(a) - Xg(a).

Now let f € Cy(G) be twice continuously left differentiable function. Then the
mapping

Df(a): X +— Xf(a) (D*f(a): (X,Y)— XY f(a))

is continuous and linear (resp. symmetric, continuous and bilinear) functional on H (resp.
H x H) for all a € G. There hold

< Df(a),X >= X f(a) and < D*f(a)(X),Y >= XY f(a)

forall a € G and X,Y € H.

We define by C3(G) the space of all twice continuously left differentiable functions
f € Cy(G) such that the mapping a +— D?f(a) is d-uniformly continuous and ||Df]| :=
sup,eq [[Df(a)]| < 0o, ||D?f|| := sup,cq |D?f(a)|| < 0o. It is easy to see that the space
C>(G) is a Banach space with respect to the norm

[£llz := IFIl + DS + ID*f]l, f € Ca(G)

and

RGCQ(G) C CQ(G)

is satisfied for all a € G. However C3(G) is not dense in Cy(G) (cf. [6].) By a;(a) :=<
log(a), X; > (i € N) we define maps a; from the canonical neighborhood U, in R. Now
we call the system (a;), N of maps from U, in R a system of canonical coordinates
of G with respect to the orthonormal basis (X;), |y, if for all a € U, the property
a=Exp(d 2, ai(a)X;) is satisfied.
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Lemma 1.3 Let f € C2(G). Then
(i) (X2 ai@)X:)f =32, ai(a)X;f for all a € U,.
(i) (332, ai(a)Xa) (352, ai(e)Xi)f) = i1 jo1 @i(@)a;() XX, f for all a,c € U, .

Proof. (i) For any a € U, there exists an X € H with X = log(a). Then we have
X=Y72,<X,X;>X;, =372 a;(a)X;. Thus

Xf(e) = Sohmof(rx(t) =< Df(e), X >

Z ai(a) < Df(e), Xi >= Y _ ai(a)X:f(e).

=1

Now let b € G be an arbitrary point. Then R,f € C2(G), whence the assertion. The
proof of (ii) can be carried out similarly. O

In the following we give the Taylor expansion for the functions f € C3(G).

Proposition 1.4 Let f € C3(G). Then the Taylor-exzpanison of the second order for f
at e € G is given by

£@) = () + 3 a@)Xif(e) + 5 3 Y as(o)as @) XX, @)

=1 j=1
for all a € U, , where @ is a point of U,.

Proof. Let f € C3(G) and X € H. Then the function & : t — f(yx(t)) is twice
differentiable on R and therefore admits a Taylor-expansion valid up to the second order:

f(t) = 5(0) + 6/(0) St %f”(f) 2

for some t € [—|t|, |t[]. Since £'(0) = X f(e) and £"(f) = X X f(vx (%)), it follows from
Lemma 1.3 that

Fx(®) = fle)+ Y <tX,Xi > Xif(e)

i=1
oo

o0
+o 3N <X, X ><tX, Xi > X X; f(vx (B))
i=1j

DN =

1

for some t € [—|¢|, |¢|]. This yields the assertion. O
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Remark 1.5 The Taylor-expansion of f € C3(G) can be written in a closed form, i.e.

£(a) = f(e)+ < Df(e), log(a) > +3 < D*f(a)(log(a)), log(a) >

for all a € U, and for some & in the canonical neighborhood U, .

2. Convolution Semigroups of Probability Measures and the Generators

For any probability measure y on G, we define the operator T, on C,(G) by

T.f = / fap(da)  (Bochner-Integral).

It is easy to see that T,Cy(G) C Cyu(G) and Ty =T, 0T,.

A convolution semigroup is a family ('“t)teRjr in M(G) such that uy = e, and
P * it = psye for all s, € R .

(“t)teRl is called continuous if lim, .oy = €. (weakly). It is well known that
the convolution semigroup (), eR’. is continuous iff the corresponding operator semi-
group (7},,), R} is (strongly) continuous. The Hille-Yosida theory establishes a bijection
between (strongly) continuous operator semigroups (7},,), R’ and their infinitesimal gen-

erators. N is defined on its domain D(NN) which is dense in C,(G). It is clear that N
commutes with the left translations, i.e.

LoD(N)C D(N) and Lyo N = No L, for all a € G.

A continuous convolution semigroup (ps » in MY(G) admits a Lévy measure 7, i.e
Kt)ieR?

7 is a o-finite positive measure on B(G) such that n({e}) = 0 and such that
lim © / Fduy = / fd
tlﬁ)l t Bt = 7,

for all f € C,(G) with e & supp(f) (cf. [7]).

Lemma 2.1 Let (/‘t)teﬂi be a continuous convolution semigroup in M(G). Then for
every U € V(e)

1
sup —u(U°) < oo.
telR,

Proof. Let U and V be two neighborhoods of e € G with V ¢ U. Since G is a normal
group, there exists a function f € C,(G) such that
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0<f<1, f(V)={0} and f(U°)={1}.
Then we have u,(U¢) < 1 [ fdyu, for all ¢t € R) . f € Cu(G) with e & supp(f) implies

that
1
llm—/fd,ut:/fdn<oo.

tlo t

Hence the assertion. O

Let H be a separable Hilbert space with a complete orthonormal system (X3), eN
and G a Hilbert-Lie group on H. Moreover, let

H, =< {.’L‘l,Xg,. .. ,Xn} >

be the space of all linear combinations of X1, X5,...,X, and H;- the orthogonal com-
plement of H, in H (for all n € N). Then H/H;- and H, are isomorphic. Clearly

Gy = Exp(H})

is a closed subgroup of G for all n € N. The quotient spaces G/G,, are finite-dimensional
Hilbert-Lie groups. Now let p, be the canonical projection from G onto G/G, and
{b? :i=1,2,...,n} asystem of canonical coordinates with respect to {X1,X2,..., Xn}.
We now define the functions dff := b o p, € C3(G); then X;d? exist and

Xjdi = X;(b7 opn) = X;b7 opn =0
hold forall j >n and i1 =1,2,...,n.

Definition 2.2 Let G be a Hilbert-Lie group on H, and (Xi);e g an orthonormal basis
wm H. For any n € IN we define

Ciyn(G):={f € C(G) : X;f =0 for alli >n and
: XiX;f =0 foralli >n or j >n}.

Remark 2.3 Let f € Cy(G) be a left uniformly differentiable function with respect to
X which satisfies X;f = 0 for all i > n(n € N). Let 7, be the orthogonal projection
from H onto H,. Then we have

Xf=mp(X)f forall X € H.
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Hence f is continuously left differentiable and clearly (C(2)n(G)), N is a strictly in-
creasing sequence of Banach subalgebra of Banach algebra C3(G).

Further properties of C(3),(G)(n € N)

(i) C(2),n(G) are || - ||2-closed in C2(G)

and

(ii) For any probability measure u € M!(G), we have

T,C(2)n(G) C C(2)1(G) for all n € N.

Thus C(2),(G) N D(N)”'||2 = C(2),n(G). Now consider the subspace

C2)(G) == U C(2),n(G).
nEN
C(2)(G) is obviously an linear subspace of C2(G) with T,C(3)(G) C C(3)(G) for probabil-

=2

ity measures p € M*'(G). Especially C5)(G)" " is a Banach space with TC@)—(—G_)”'”2 c
e I | P

C(2)(G)

Definition 2.4 For n € IN let {7 : i =1,2,...,n} be a system of extended cononical
coordinates with respect to {X1,Xa,...,X,}. Then we say that the Hilbert-Lie group G
has the property (K), if

b € C(3)(G) for alli=1,2,...,n, n>ng
and for any ng € IN.

Every commutative Hilbert-Lie group and every finite dimensional Lie group have
clearly the property (K). In the finite dimensional case we have ng = dim(G). Since
C2)n(G) C C(2)n41(G), a system {bP, 011 :i=1,2,...,n} C C(2),n+1(G) of canon-
ical coordinates exists with respect to {X1,Xs,...,X,+1}. We also have the following
Proposition:

Proposition 2.5 Let G be a Hilbert-Lie group with the property (K). Then a system
(dn)pcv of functions in C(5)(G) eists with

d; =b° foralli=1,2,...,n9

and
dn, = b, for all n > ng.

This system (d,),, cN 1is called a system of local canonical coordinates with respect
to (X’)ZEN .
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Now let G be a Hilbert-Lie group with the property (K). We define for any n € N
the functions

®n(a) =Y di(a)?, a€G,
=1

where (d;)i=1,2,....n is a system of local canonical coordinates with respect to {X1,X2,..., X
Then @, € C(2),(G) and ®,(a) >0 for all a € G\ {®, = 0}. Therefore

X,@n(e) = 0, XiX]@n(e) = 261']', ’i,j = 1, 2... ,
(cf. [3], Lemma 4.1.9 and 4.1.10).
Remark 2.6 (a) For f € C(3),(G),n € N and 4,5 = 1,2,...,n we denote the numbers

Xif(e) and X;X;f(e) by Aif and Ay;f, resp. Obviously f+— A;f and f > A;;f are
continuous linear functionals on C3) ,(G) for 7,5 =1,2,...,n.

(b) Let E be a locally convex vector space and E; a dense subspace of E.
Moreover, let F' be a subspace of E of finite condimension, y € £ and M := y + F.
Then M) := M N E; is dense in M ([3], Lemma 4.1.11).

Lemma 2.7 For every f € C(2),(G) and every € > 0 there erists ag := g, € Cyn(G)N
D(N) such that ||f —gll2 <€, f(e) = g(e), Xif(e) = Xig(e) and X;X;(e) = X;X;g(e)
fori,j=1,2,...,n.

Proof. Let K, be a map from C(y) ,(G) to £2(n?) with

fr— Ka(f) = (XiX;f(e))ij=1,2,..0 = (Aij f)ij=1,2,...n, 7 € N.

Then K, is linear and continuous, where ¢%(n) is a finite-dimensional subspace of the
Hilbert space 2.
Similary, let L,, be a continuous linear map from C(3) ,(G) to ¢*(n + 1) with

fr— Ln(f) = (f(e),le(e), cee aan(e)) = (f(e)vAlf, ce ,Anf)-

Moreover, let

F := Kern(L,) N Kern(K,),
then F is a closed subspace of C(, ,(G) of finite condimension. From Remark 2.6 b)

F+FNCan (G NnD] " =f+F

the assertions follow. |
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Proposition 2.8 Let G be a Hilbert-Lie group with the property (K), (“t)telR; a

convolution semigroup in M'(G) and ®,(n € IN) be as above. Then the suprema

are finite for every n € IN.

Proof. Application of Lemma 2.7 to the function ®, € C(;) ,(G) yields the existence
of a function ¥,, € C(3),(G) N D(N) with the property

|8n — Upllz <e,¥u(e) = @ple) =0, X;¥,(e) = X;P,(e) =0
and Xin\I/n(e) = XinQn(e) = 2(52'_7', ’L,] — 1,2, R O

Taylor expansion of ¥,, € C(3),,(G) N D(N) in a neighborhood W of e with W; C U,
gives

U, (a) = % 33 di@)di (@)X X; B (a),

for all a € Wy and for some a € W;. Since ||®, —¥,||2 < € and X;X;¥,(e) = 26;;,1,j =
1,2,...,n there exists a neighborhood W5 of e with the properties

—e< X;X;V,(a) <eforalli,j=1,2,...,n, i # 7,

2-e<X;X;¥,(a)<2+4cforalli=1,2,...,n,

whenever a € W,. Putting 6, := 6,(e) := %(2 —e—¢(n—1)) and W := W1 N W,, we
obtain

U,(a) > 6, - XZdi(a)2 forall a € W.
=1

Since ¥, € C(2),,(G) N D(N), we obtain SUP,cR 31 [ ¥ndus| < oo from Lemma 2.1.

Thus SUp,cR* % fW ®,dus < oo, and since @, is bounded, the assertion follows from
Lemma 2.1. O

Now let G be a Hilbert-Lie group with the property (K) and (d;), .y a system of
local canonical coordinates with respect to (X;), .y- By Lemma 2.7 there exist functions
2; € C(2),n(G) N D(N), (n € N) with the property

zz(e) = di(e) = O, iji(e) = X]dz(e) = (51‘]', i,j = 1,2. Loy

253



COSKUN

Theorem 2.9 Let G be a Hilbert-Lie group with the property (K) and (Bt)se R, ¢
convolution semigroup in MY(G). Then the generating functional A of (ut) telR, ON
C2)(G) exists, i.e.

C2)(G) C D(A).
Proof. Let f € C;)o(G) (n € N) and set

n

g9(a) = f(a) - Zzz )- Xif(e) for all a € G,

=1

where the functions z;,¢ = 1,2,...,n are as above. Then g € C2),n(G) with g(e) =
0,X;9(e) = X;f(e)— i Xjzi(e)- Xi f(e) = X;f(e)— Y1, & Xif(e) = 0. The Taylor
expansion of g in a neighborhood W C U, gives

%;; (a)X;X;9(@), a € W.

Thus there is a constant k; € RY such that
l9(a)| < k1 -|lgll2 - ®n(a) for all a € W.

It follows from Proposition 2.8 that

1
sup IE/ 9dut| < ki -|lgll2 - sup /@ndut < oo. (1)
teR7 w teR}

Clearly, |} fyye gdue| < ligllz - $1e(W<), and sup,cg: |} fy gdpse| < co. Hence, there

exists a constant k; € R} independent of ¢t such that

1 *
17 [ oduel < ko lgla forall ¢ € R, ®)

Adding the inequalities (1) and (2) we get

l%[Tmf(e) - fle)] = %ZXif(e) Ty, zi(e)] < ks | fll2, forallteRE.
=1

where k3 is a constant (independent of t). Sirce z; € D(N) and z;(e) = 0, we have
SUP,cR;, [$T,,zi(€)] < oo forall i =1,2...,n

Hence we obtain a constant k(n) € RY depending only on n such that
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1
7T f(e) = f(D < k(n) - I f]2
for all t € R} and f € C(3),(G). By the Banach-Steinhaus Theorem the limit
L1
tm 217,,5(6) - £(e)]
exists for every f € C5)(G). [

Remark 2.10 Let G be commutative Hilbert-Lie group and (14t) teR: 2 convolution

semigroup in M!(G). As in the proof of Theorem 2.9, we can find a constant k(n) € R}
(independent of a € G and t € R ) such that

L@ = S@] = [ T (Laf)(e) ~ (Laf)e]
K(n) - ILafll2 = Kn) - £l

forall f € C(2),(G) and a € G. The Banach-Steinhaus Theorem now yields the existence
of the limit

IN

1
N = lim ~ [T, -
f(a) =1lim [T, f(a) - f(a)]
uniformly in @ € G. This implies existence of the infinitesimal generator N on C2)(G).

Remark 2.11 Let G = H be a separable Hilbert space and C,(f)(H ) the space of all
twice Fréchet differentiable functions f € C,(H) such that ||f'|| := sup,c g || f'(z)]| < oo,
If"ll := sup,eqy [|f"(z)|| < co and f” is uniformly continuous in z. Then we have

C& (H) € D(N) (cf. [6]) and Cy(H) = C2(H).
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Hilbert-Lie Grubu Uzerinde Diferensiyellenebilir Fonksiyonlar ve
Generatorler

Ozet
Lie gruplarinda olasihk olgiimii teorisinde, konvoliisyon yarigruplar: énemli rol
oynamaktadir. Temel problem, yarigrubu Lévy-Khinchine formiilii olarak ifade
etmektir. Hilbert-Lie grubu G tzerinde olasihik &lgiimlerinin siirekli bir yarnigrubu

(;Lt)tER*+ ise,

Tl-ttf = /falllt(da)(f GCu(G),t >0).

ile Cyu(G) uzay: uzerinde N infinitezimal generatoriine sahip siirekli operator yari-
grubu (Tm)teRi tamimlamir. Bu yarigrup ic¢in dogurucu fonksiyonel A, Af :=

lim¢yo (T, f(e) — f(e)) bigiminde tammlanir. Buna gore problem, A dogurucu
fonksiyonelinin taniml olacag C.(G) nin bir C(2)(G) alt uzaym olusturmaktadir.
Bu sonug, daha sonra Hilbert-Lie gruplarinda Lévy-Khinchine formiiliiniin elde
edilmesinde kullamlacaktir.
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