DIFFERENTIABLE FUNCTIONS AND THE GENERATORS ON A HILBERT-LIE GROUP

Erdal Coşkun

Abstract

A convolution semigroup plays an important role in the theory of probability measure on Lie groups. The basic problem is that one wants to express a semigroup as a Lévy-Khinckine formula. If $(\mu_t)_{t\in\mathbb{R}^*_+}$ is a continuous semigroup of probability measures on a Hilbert-Lie group G, then we define

$$T_{\mu_t}f:=\int f_a\mu_t(da)\;(f\in C_u(G),t>0).$$

It is apparent that $(T_{\mu_t})_{t\in \mathbf{R}_+^*}$ is a continuous operator semigroup on the space $C_u(G)$ with the infinitesimal generator N. The generating functional A of this semigroup is defined by $Af:=\lim_{t\downarrow 0}\frac{1}{t}(T_{\mu_t}f(e)-f(e))$. We have the problem of construction of a subspace $C_{(2)}(G)$ of $C_u(G)$ such that the generating functional A on $C_{(2)}(G)$ exists. This result will be used later to show that the Lévy-Khinchine formula holds for Hilbert-Lie groups.

Key words: Continuous convolution semigroup, operator semigroup, Hilbert-Lie group, Lévy measure, infinitesimal generator, generating functional

Introduction

Let $(\mu_t)_{t\in\mathbf{R}_+^*}$ be a continuous convolution semigroup of probability measures on a Hilbert-Lie group G and $C_u(G)$ the Banach space of all bounded left uniformly continuous real-valued functions on G. Then there is associated a strongly continuous semigroup $(T_{\mu_t})_{t\in\mathbf{R}_+^*}$ of contraction operators on $C_u(G)$ with the infinitesimal generator (N, D(N)). The generating functional (A, D(A)) of the convolution semigroup $(\mu_t)_{t\in\mathbf{R}_+^*}$ is defined by

$$Af:=\lim_{t\downarrow 0}\frac{1}{t}(T_{\mu_t}f(e)-f(e))$$

for all f in its domain D(A). For finite dimensional Lie groups, infinite dimensional Hilbert spaces and Banach spaces of cotype 2, we have

$$C_{(2)}(G) \subset D(A)$$

(cf. [4], [6] and [8] resp.). In this paper we shall prove that the above result is also true for a class of infinite dimensional Hilbert-Lie groups. At several points we shall use ideas and techniques used in [4]. We first obtain the Taylor expansion for the functions $f \in C_{(2)}(G)$. In Lemma 2.1 we prove that, for every neighborhood of e in any Hilbert-Lie group G, the supremum $\sup_{t>0} \frac{1}{t}\mu_t(U^c)$ is finite. Using this result and Banach-Steinhaus Theorem, we prove Theorem 2.9.

1. Preliminaries

N and **R** denote the sets of positive integers and real numbers, respectively. Moreover let $\mathbb{R}_+ := \{r : r \geq 0\}, \mathbb{R}_+^* := \{r : r > 0\}.$

Let A be a set and B a subset of A. Then by 1_B we denote the indicator function of B. Let I be a nonvoid set. δ_{ij} is the Kronecker delta $(i, j \in I)$.

By G we denote a topological Hausdorff group with identity e. G is called Polish group, if G is a topological group with a countable basis of its topology and with a complete left invariant metric d which induces the topology.

For every function $f: G \to \mathbb{R}$ and $a \in G$ the functions $f^*, R_a f = f_a$ and $L_a f =_a f$ are defined by $f^*(b) = f(b^{-1})$, $f_a(b) = f(ba)$ and af(b) = f(ab) for all $b \in G$, respectively. Moreover let $supp(f) = \{a \in G: f(a) \neq 0\}$ denote the support of f. By $C_u(G)$ we denote the Banach space of all real-valued bounded left uniformly (or d-uniformly) continuous functions on G furnished with the supremum norm $\|\cdot\|$. A Hilbert-Lie group is a separable analytic manifold modeled on a separable Hilbert space, whose group operations are analytic. It is we known that the Hilbert-Lie groups are Polish (cf. [2]).

For the exponential mapping $\mathcal{E}xp: T_c \to G$ there exists an inverse mapping log from a neighborhood U_e of e onto a neighborhood N_0 of zero in T_e , where T_e is the tangential space in $e \in G$ ([5]).

By $\mathcal{B}(G)$ we denote the σ -field of Borel subsets of G. Moreover, $\mathcal{V}(e)$ denotes the system of neighborhoods of the identity e of G which are in $\mathcal{B}(G)$.

 $\mathcal{M}(G)$ denotes the vector space of real-valued (signed) measures on $\mathcal{B}(G)$. As it is well known, $\mathcal{M}(G)$ is a Banach algebra with respect to convolution * and the norm $\|\cdot\|$ of total variation. $M_+(G)$ is the set of positive measures in $\mathcal{M}(G)$ and $\mathcal{M}^1(G) = \{\mu \in \mathcal{M}_+(G) : \mu(G) = 1\}$ is the set of probability measures on G.

Now let $\gamma_X(t) := \mathcal{E}xp(tX)$ for $X \in H$ and $t \in \mathbb{R}^* := \mathbb{R} \setminus \{0\}$.

Definition 1.1 Let $f \in C_u(G), X \in H$ and $a \in G$.

f is called left differentiable at $a \in G$ with respect to X ("Xf(a) exists" for short), if

$$Xf(a) := \lim_{t \to 0} \frac{1}{t} [L_{\gamma_X(t)} f(a) - f(a)]$$

exists. f is called continuously left differentiable, if Xf(a) exists for all $a \in G$ and $X \in H$, and if the mappings $a \longmapsto Xf(a), X \longmapsto Xf(a)$ are continuous.

Derivatives of higher orders are defined inductively. Differentiability from the right is defined in replacing $L_{\gamma_X(t)}$ by $R_{\gamma_X(t)}$.

The following properties of the derivatives are well known for continuously left differentiable functions (cf. [1]).

Remark 1.2 Let $f, g \in C_u(G), X \in H$ and $a \in G$.

- (i) If Xf(a) exists, then the mapping $X \longmapsto Xf(a)$ is linear.
- (ii) If Xf(a) and Xg(a) exists, then also $X(f \cdot g)(a)$ exists and $X(f \cdot g)(a) = Xf(a) \cdot g(a) + f(a) \cdot Xg(a)$.

Now let $f \in C_u(G)$ be twice continuously left differentiable function. Then the mapping

$$Df(a): X \longmapsto Xf(a) \ (D^2f(a): (X,Y) \longmapsto XYf(a))$$

is continuous and linear (resp. symmetric, continuous and bilinear) functional on H (resp. $H \times H$) for all $a \in G$. There hold

$$< Df(a), X >= Xf(a) \text{ and } < D^2f(a)(X), Y >= XYf(a)$$

for all $a \in G$ and $X, Y \in H$.

We define by $C_2(G)$ the space of all twice continuously left differentiable functions $f \in C_u(G)$ such that the mapping $a \longmapsto D^2 f(a)$ is d-uniformly continuous and $\|Df\| := \sup_{a \in G} \|Df(a)\| < \infty$, $\|D^2 f\| := \sup_{a \in G} \|D^2 f(a)\| < \infty$. It is easy to see that the space $C_2(G)$ is a Banach space with respect to the norm

$$||f||_2 := ||f|| + ||Df|| + ||D^2f||, f \in C_2(G)$$

and

$$R_aC_2(G)\subset C_2(G)$$

is satisfied for all $a \in G$. However $C_2(G)$ is not dense in $C_u(G)$ (cf. [6].) By $a_i(a) := < \log(a), X_i > (i \in \mathbb{N})$ we define maps a_i from the canonical neighborhood U_e in \mathbb{R} . Now we call the system $(a_i)_{i \in \mathbb{N}}$ of maps from U_e in \mathbb{R} a system of canonical coordinates of G with respect to the orthonormal basis $(X_i)_{i \in \mathbb{N}}$, if for all $a \in U_e$ the property $a = \mathcal{E}xp(\sum_{i=1}^{\infty} a_i(a)X_i)$ is satisfied.

Lemma 1.3 Let $f \in C_2(G)$. Then

- (i) $(\sum_{i=1}^{\infty} a_i(a)X_i)f = \sum_{i=1}^{\infty} a_i(a)X_if$ for all $a \in U_e$.
- (ii) $(\sum_{i=1}^{\infty} a_i(a)X_i)((\sum_{j=1}^{\infty} a_j(c)X_i)f) = \sum_{i=1,j=1}^{\infty} a_i(a)a_j(c)X_iX_jf$ for all $a, c \in U_e$.

Proof. (i) For any $a \in U_e$ there exists an $X \in H$ with $X = \log(a)$. Then we have $X = \sum_{i=1}^{\infty} \langle X, X_i \rangle X_i = \sum_{i=1}^{\infty} a_i(a) X_i$. Thus

$$Xf(e) = \frac{d}{dt}|_{t=0}f(\gamma_X(t)) = \langle Df(e), X \rangle$$

= $\sum_{i=1}^{\infty} a_i(a) \langle Df(e), X_i \rangle = \sum_{i=1}^{\infty} a_i(a)X_if(e).$

Now let $b \in G$ be an arbitrary point. Then $R_b f \in C_2(G)$, whence the assertion. The proof of (ii) can be carried out similarly.

In the following we give the Taylor expansion for the functions $f \in C_2(G)$.

Proposition 1.4 Let $f \in C_2(G)$. Then the Taylor-expansion of the second order for f at $e \in G$ is given by

$$f(a) = f(e) + \sum_{i=1}^{\infty} a_i(a) X_i f(e) + \frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_i(a) a_j(a) X_i X_j f(\bar{a})$$

for all $a \in U_e$, where \bar{a} is a point of U_e .

Proof. Let $f \in C_2(G)$ and $X \in H$. Then the function $\xi : t \longmapsto f(\gamma_X(t))$ is twice differentiable on \mathbb{R} and therefore admits a Taylor-expansion valid up to the second order:

$$\xi(t) = \xi(0) + \xi'(0) \cdot t + \frac{1}{2}\xi''(\bar{t}) \cdot t^2$$

for some $\bar{t} \in [-|t|, |t|]$. Since $\xi'(0) = Xf(e)$ and $\xi''(\bar{t}) = XXf(\gamma_X(\bar{t}))$, it follows from Lemma 1.3 that

$$f(\gamma_X(t)) = f(e) + \sum_{i=1}^{\infty} \langle tX, X_i \rangle X_i f(e)$$

$$+ \frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \langle tX, X_i \rangle \langle tX, X_i \rangle X_i X_j f(\gamma_X(\bar{t}))$$

for some $\bar{t} \in [-|t|, |t|]$. This yields the assertion.

Remark 1.5 The Taylor-expansion of $f \in C_2(G)$ can be written in a closed form, i.e.

$$f(a) = f(e) + \langle Df(e), \log(a) \rangle + \frac{1}{2} \langle D^2f(\bar{a})(\log(a)), \log(a) \rangle$$

for all $\,a \in U_e\,$ and for some $\,\bar{a}\,$ in the canonical neighborhood $\,U_e\,.$

2. Convolution Semigroups of Probability Measures and the Generators

For any probability measure μ on G, we define the operator T_{μ} on $C_u(G)$ by

$$T_{\mu}f:=\int f_{a}\mu(da)$$
 (Bochner-Integral).

It is easy to see that $T_{\mu}C_u(G) \subset C_u(G)$ and $T_{\mu*\nu} = T_{\mu} \circ T_{\nu}$.

A convolution semigroup is a family $(\mu_t)_{t \in \mathbb{R}_+^*}$ in $\mathcal{M}^1(G)$ such that $\mu_0 = \varepsilon_e$ and $\mu_s * \mu_t = \mu_{s+t}$ for all $s, t \in \mathbb{R}_+^*$.

 $(\mu_t)_{t\in\mathbf{R}_+^*}$ is called *continuous* if $\lim_{t\longmapsto 0}\mu_t=\varepsilon_e$ (weakly). It is well known that the convolution semigroup $(\mu_t)_{t\in\mathbf{R}_+^*}$ is continuous iff the corresponding operator semigroup $(T_{\mu_t})_{t\in\mathbf{R}_+^*}$ is (strongly) continuous. The Hille-Yosida theory establishes a bijection between (strongly) continuous operator semigroups $(T_{\mu_t})_{t\in\mathbf{R}_+^*}$ and their infinitesimal generators. N is defined on its domain D(N) which is dense in $C_u(G)$. It is clear that N commutes with the left translations, i.e.

$$L_aD(N) \subset D(N)$$
 and $L_a \circ N = N \circ L_a$ for all $a \in G$.

A continuous convolution semigroup $(\mu_t)_{t \in \mathbb{R}_+^*}$ in $\mathcal{M}^1(G)$ admits a Lévy measure η , i.e η is a σ -finite positive measure on $\mathcal{B}(G)$ such that $\eta(\{e\}) = 0$ and such that

$$\lim_{t\downarrow 0}rac{1}{t}\int fd\mu_t=\int fd\eta,$$

for all $f \in C_u(G)$ with $e \not\in supp(f)$ (cf. [7]).

Lemma 2.1 Let $(\mu_t)_{t \in \mathbb{R}_+^*}$ be a continuous convolution semigroup in $\mathcal{M}^1(G)$. Then for every $U \in \mathcal{V}(e)$

$$\sup_{t\in\mathbb{R}_+^*}\frac{1}{t}\mu_t(U^c)<\infty.$$

Proof. Let U and V be two neighborhoods of $e \in G$ with $\overline{V} \subset U$. Since G is a normal group, there exists a function $f \in C_u(G)$ such that

$$0 \le f \le 1, \ f(V) = \{0\} \ \text{and} \ f(U^c) = \{1\}.$$

Then we have $\frac{1}{t}\mu_t(U^c) \leq \frac{1}{t}\int f d\mu_t$ for all $t\in \mathbb{R}_+^*$. $f\in C_u(G)$ with $e\not\in supp(f)$ implies that

$$\lim_{t\downarrow 0}\frac{1}{t}\int fd\mu_t=\int fd\eta<\infty.$$

Hence the assertion.

Let H be a separable Hilbert space with a complete orthonormal system $(X_i)_{i \in \mathbb{N}}$ and G a Hilbert-Lie group on H. Moreover, let

$$H_n := <\{x_1, X_2, \dots, X_n\}>$$

be the space of all linear combinations of X_1, X_2, \ldots, X_n and H_n^{\perp} the orthogonal complement of H_n in H (for all $n \in \mathbb{N}$). Then H/H_n^{\perp} and H_n are isomorphic. Clearly

$$G_n := \mathcal{E}xp(H_n^{\perp})$$

is a closed subgroup of G for all $n \in \mathbb{N}$. The quotient spaces G/G_n are finite-dimensional Hilbert-Lie groups. Now let p_n be the canonical projection from G onto G/G_n and $\{b_i^n: i=1,2,\ldots,n\}$ a system of canonical coordinates with respect to $\{X_1,X_2,\ldots,X_n\}$. We now define the functions $d_i^n:=b_i^n\circ p_n\in C_2(G)$; then $X_jd_i^n$ exist and

$$X_j d_i^n = X_j (b_i^n \circ p_n) = X_j b_i^n \circ p_n = 0$$

hold for all j > n and i = 1, 2, ..., n.

Definition 2.2 Let G be a Hilbert-Lie group on H, and $(X_i)_{i \in \mathbb{R}}$ an orthonormal basis in H. For any $n \in \mathbb{N}$ we define

$$C_{(2),n}(G) := \{ f \in C_2(G) : X_i f = 0 \text{ for all } i > n \text{ and}$$

: $X_i X_j f = 0 \text{ for all } i > n \text{ or } j > n \}.$

Remark 2.3 Let $f \in C_u(G)$ be a left uniformly differentiable function with respect to X which satisfies $X_i f = 0$ for all $i > n (n \in \mathbb{N})$. Let π_n be the orthogonal projection from H onto H_n . Then we have

$$Xf = \pi_n(X)f$$
 for all $X \in H$.

Hence f is continuously left differentiable and clearly $(C_{(2),n}(G))_{n\in\mathbb{N}}$ is a strictly increasing sequence of Banach subalgebra of Banach algebra $C_2(G)$.

Further properties of $C_{(2),n}(G)(n \in \mathbb{N})$

- (i) $C_{(2),n}(G)$ are $\|\cdot\|_2$ -closed in $C_2(G)$
- (ii) For any probability measure $\mu \in \mathcal{M}^1(G)$, we have

$$T_{\mu}C_{(2),n}(G) \subset C_{(2),n}(G)$$
 for all $n \in \mathbb{N}$.

Thus $\overline{C_{(2),n}(G)\cap D(N)}^{\|\cdot\|_2}=C_{(2),n}(G)$. Now consider the subspace

$$C_{(2)}(G) := \bigcup_{n \in \mathbb{N}} C_{(2),n}(G).$$

 $C_{(2)}(G)$ is obviously an linear subspace of $C_2(G)$ with $T_{\mu}C_{(2)}(G) \subset C_{(2)}(G)$ for probability measures $\mu \in \mathcal{M}^1(G)$. Especially $\overline{C_{(2)}(G)}^{\|\cdot\|_2}$ is a Banach space with $\overline{T_{\mu}C_{(2)}(G)}^{\|\cdot\|_2} \subset \overline{C_{(2)}(G)}^{\|\cdot\|_2}$.

Definition 2.4 For $n \in \mathbb{N}$ let $\{b_i^n : i = 1, 2, ..., n\}$ be a system of extended cononical coordinates with respect to $\{X_1, X_2, ..., X_n\}$. Then we say that the Hilbert-Lie group G has the property (K), if

$$b_i^n \in C_{(2)}(G) \text{ for all } i = 1, 2, \dots, n, \ n \geq n_0$$

and for any $n_0 \in \mathbb{N}$.

Every commutative Hilbert-Lie group and every finite dimensional Lie group have clearly the property (K). In the finite dimensional case we have $n_0 = dim(G)$. Since $C_{(2),n}(G) \subset C_{(2),n+1}(G)$, a system $\{b_i^n,b_{n+1}^{n+1}: i=1,2,\ldots,n\} \subset C_{(2),n+1}(G)$ of canonical coordinates exists with respect to $\{X_1,X_2,\ldots,X_{n+1}\}$. We also have the following Proposition:

Proposition 2.5 Let G be a Hilbert-Lie group with the property (K). Then a system $(d_n)_{n\in\mathbb{N}}$ of functions in $C_{(2)}(G)$ exists with

$$d_i = b_i^{n_0}$$
 for all $i = 1, 2, \dots, n_0$

and

$$d_n = b_n^n$$
 for all $n > n_0$.

This system $(d_n)_{n\in\mathbb{N}}$ is called a system of local canonical coordinates with respect to $(X_i)_{i\in\mathbb{N}}$.

Now let G be a Hilbert-Lie group with the property (K). We define for any $n \in \mathbb{N}$ the functions

$$\Phi_n(a) := \sum_{i=1}^n d_i(a)^2, \quad a \in G,$$

where $(d_i)_{i=1,2,...,n}$ is a system of local canonical coordinates with respect to $\{X_1, X_2, ..., X_n\}$. Then $\Phi_n \in C_{(2),n}(G)$ and $\Phi_n(a) > 0$ for all $a \in G \setminus \{\Phi_n = 0\}$. Therefore

$$X_i \Phi_n(e) = 0, \ X_i X_j \Phi_n(e) = 2\delta_{ij}, \ i, j = 1, 2 \dots, n$$

(cf. [3], Lemma 4.1.9 and 4.1.10).

Remark 2.6 (a) For $f \in C_{(2),n}(G)$, $n \in \mathbb{N}$ and i, j = 1, 2, ..., n we denote the numbers $X_i f(e)$ and $X_i X_j f(e)$ by $A_i f$ and $A_{ij} f$, resp. Obviously $f \mapsto A_i f$ and $f \mapsto A_{ij} f$ are continuous linear functionals on $C_{(2),n}(G)$ for i, j = 1, 2, ..., n.

(b) Let E be a locally convex vector space and E_1 a dense subspace of E. Moreover, let F be a subspace of E of finite condimension, $y \in E$ and M := y + F. Then $M_1 := M \cap E_1$ is dense in M ([3], Lemma 4.1.11).

Lemma 2.7 For every $f \in C_{(2),n}(G)$ and every $\varepsilon > 0$ there exists a $g := g_e \in C_{(2),n}(G) \cap D(N)$ such that $||f - g||_2 < \varepsilon$, $f(e) = g(e), X_i f(e) = X_i g(e)$ and $X_i X_j(e) = X_i X_j g(e)$ for i, j = 1, 2, ..., n.

Proof. Let K_n be a map from $C_{(2),n}(G)$ to $\ell^2(n^2)$ with

$$f \longmapsto K_{\mathbf{n}}(f) := (X_i X_j f(e))_{i,j=1,2,...,\mathbf{n}} = (A_{ij} f)_{i,j,=1,2,...,n}, \ n \in \mathbb{N}.$$

Then K_n is linear and continuous, where $\ell^2(n)$ is a finite-dimensional subspace of the Hilbert space ℓ^2 .

Similarly, let L_n be a continuous linear map from $C_{(2),n}(G)$ to $\ell^2(n+1)$ with

$$f \longmapsto L_n(f) := (f(e), X_1 f(e), \dots, X_n f(e)) = (f(e), A_1 f, \dots, A_n f).$$

Moreover, let

$$F := Kern(L_n) \cap Kern(K_n)$$

then F is a closed subspace of $C_{(2),n}(G)$ of finite condimension. From Remark 2.6 b)

$$\overline{[f+F] \cap [C_{(2),n}(G) \cap D(N)]}^{\|\cdot\|_2} = f + F$$

the assertions follow.

Proposition 2.8 Let G be a Hilbert-Lie group with the property (K), $(\mu_t)_{t \in \mathbb{R}_+^*}$ a convolution semigroup in $\mathcal{M}^1(G)$ and $\Phi_n(n \in \mathbb{N})$ be as above. Then the suprema

$$\sup_{t\in I\!\!R_+^*}\frac{1}{t}\int \Phi_n d\mu_t$$

are finite for every $n \in \mathbb{N}$.

Proof. Application of Lemma 2.7 to the function $\Phi_n \in C_{(2),n}(G)$ yields the existence of a function $\Psi_n \in C_{(2),n}(G) \cap D(N)$ with the property

$$\begin{split} \|\Phi_n - \Psi_n\|_2 &< \varepsilon, \Psi_n(e) \ = \ \Phi_n(e) = 0, \ X_i \Psi_n(e) = X_i \Phi_n(e) = 0 \\ \text{and} \ X_i X_j \Psi_n(e) \ = \ X_i X_j \Phi_n(e) = 2 \delta_{ij}, \ i, j = 1, 2, \dots, n. \end{split}$$

Taylor expansion of $\Psi_n \in C_{(2),n}(G) \cap D(N)$ in a neighborhood W_1 of e with $W_1 \subset U_e$ gives

$$\Psi_n(a) = rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n d_i(a) d_j(a) X_i X_j \Psi_n(ar{a}),$$

for all $a \in W_1$ and for some $\bar{a} \in W_1$. Since $\|\Phi_n - \Psi_n\|_2 < \varepsilon$ and $X_i X_j \Psi_n(e) = 2\delta_{ij}, i, j = 1, 2, ..., n$ there exists a neighborhood W_2 of e with the properties

$$-\varepsilon \leq X_i X_j \Psi_n(a) \leq \varepsilon$$
 for all $i, j = 1, 2, \dots, n, i \neq j$,

$$2 - \varepsilon < X_i X_i \Psi_n(a) < 2 + \varepsilon$$
 for all $i = 1, 2, \dots, n$,

whenever $a \in W_2$. Putting $\delta_n := \delta_n(e) := \frac{1}{2}(2 - \varepsilon - \varepsilon(n-1))$ and $W := W_1 \cap W_2$, we obtain

$$\Psi_n(a) \ge \delta_n \cdot \sum_{i=1}^n d_i(a)^2 \text{ for all } a \in W.$$

Since $\Psi_n \in C_{(2),n}(G) \cap D(N)$, we obtain $\sup_{t \in \mathbb{R}_+^*} \frac{1}{t} |\int_W \Psi_n d\mu_t| < \infty$ from Lemma 2.1. Thus $\sup_{t \in \mathbb{R}_+^*} \frac{1}{t} \int_W \Phi_n d\mu_t < \infty$, and since Φ_n is bounded, the assertion follows from Lemma 2.1.

Now let G be a Hilbert-Lie group with the property (K) and $(d_i)_{i\in\mathbb{N}}$ a system of local canonical coordinates with respect to $(X_i)_{i\in\mathbb{N}}$. By Lemma 2.7 there exist functions $z_i \in C_{(2),n}(G) \cap D(N), (n \in \mathbb{N})$ with the property

$$z_i(e) = d_i(e) = 0, \ X_i z_i(e) = X_i d_i(e) = \delta_{ij}, \ i, j = 1, 2 \dots, n.$$

Theorem 2.9 Let G be a Hilbert-Lie group with the property (K) and $(\mu_t)_{t \in \mathbb{R}_+^*}$ a convolution semigroup in $\mathcal{M}^1(G)$. Then the generating functional A of $(\mu_t)_{t \in \mathbb{R}_+^*}$ on $C_{(2)}(G)$ exists, i.e.

$$C_{(2)}(G) \subset D(A)$$
.

Proof. Let $f \in C_{(2),n}(G)$ $(n \in \mathbb{N})$ and set

$$g(a) := f(a) - f(e) - \sum_{i=1}^{n} z_i(a) \cdot X_i f(e) \text{ for all } a \in G,$$

where the functions $z_i, i=1,2,\ldots,n$ are as above. Then $g\in C_{(2),n}(G)$ with $g(e)=0, X_jg(e)=X_jf(e)-\sum_{i=1}^n X_jz_i(e)\cdot X_if(e)=X_jf(e)-\sum_{i=1}^n \delta_{ij}\cdot X_if(e)=0$. The Taylor expansion of g in a neighborhood $W\subset U_e$ gives

$$g(a) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} d_i(a) d_j(a) X_i X_j g(\bar{a}), \ \ a \in W.$$

Thus there is a constant $k_1 \in \mathbb{R}_+^*$ such that

$$|g(a)| \le k_1 \cdot ||g||_2 \cdot \Phi_n(a)$$
 for all $a \in W$.

It follows from Proposition 2.8 that

$$\sup_{t \in \mathbf{R}_+^*} \left| \frac{1}{t} \int_W g d\mu_t \right| \le k_1 \cdot \|g\|_2 \cdot \sup_{t \in \mathbf{R}_+^*} \int \Phi_n d\mu_t < \infty. \tag{1}$$

Clearly, $|\frac{1}{t}\int_{W^c} g d\mu_t| \leq \|g\|_2 \cdot \frac{1}{t}\mu_t(W^c)$, and $\sup_{t \in \mathbb{R}_+^*} |\frac{1}{t}\int_{W^c} g d\mu_t| < \infty$. Hence, there exists a constant $k_2 \in \mathbb{R}_+^*$ independent of t such that

$$\left|\frac{1}{t} \int_{W^c} g d\mu_t \right| \le k_2 \cdot \|g\|_2 \text{ for all } t \in \mathbb{R}_+^*.$$
 (2)

Adding the inequalities (1) and (2) we get

$$|rac{1}{t}[T_{\mu_t}f(e)-f(e)]-rac{1}{t}\sum_{i=1}^n X_if(e)\cdot T_{\mu_t}z_i(e)| \leq k_3\cdot \|f\|_2, \ \ ext{for all} \ t\in {
m I\!R}_+^*.$$

where k_3 is a constant (independent of t). Since $z_i \in D(N)$ and $z_i(e) = 0$, we have $\sup_{t \in \mathbb{R}_+^*} |\frac{1}{t} T_{\mu_t} z_i(e)| < \infty$ for all i = 1, 2, ..., n.

Hence we obtain a constant $k(n) \in \mathbb{R}_+^*$ depending only on n such that

$$\left|\frac{1}{t}(T_{\mu_t}f(e) - f(e))\right| \le k(n) \cdot ||f||_2$$

for all $t \in \mathbb{R}_+^*$ and $f \in C_{(2),n}(G)$. By the Banach-Steinhaus Theorem the limit

$$\lim_{t \downarrow 0} \frac{1}{t} [T_{\mu_t} f(e) - f(e)]$$

exists for every $f \in C_{(2)}(G)$.

Remark 2.10 Let G be *commutative* Hilbert-Lie group and $(\mu_t)_{t \in \mathbb{R}_+^*}$ a convolution semigroup in $\mathcal{M}^1(G)$. As in the proof of Theorem 2.9, we can find a constant $k(n) \in \mathbb{R}_+^*$ (independent of $a \in G$ and $t \in \mathbb{R}_+^*$) such that

$$|\frac{1}{t}[T_{\mu_t}f(a) - f(a)]| = |\frac{1}{t}[T_{\mu_t}(L_a f)(e) - (L_a f)(e)]|$$

$$\leq k(n) \cdot ||L_a f||_2 = k(n) \cdot ||f||_2$$

for all $f \in C_{(2),n}(G)$ and $a \in G$. The Banach-Steinhaus Theorem now yields the existence of the limit

$$Nf(a) = \lim_{t \downarrow 0} \frac{1}{t} [T_{\mu_t} f(a) - f(a)]$$

uniformly in $a \in G$. This implies existence of the infinitesimal generator N on $C_{(2)}(G)$.

Remark 2.11 Let G=H be a separable Hilbert space and $C_u^{(2)}(H)$ the space of all twice Fréchet differentiable functions $f\in C_u(H)$ such that $\|f'\|:=\sup_{x\in H}\|f'(x)\|<\infty$, $\|f''\|:=\sup_{x\in H}\|f''(x)\|<\infty$ and f'' is uniformly continuous in x. Then we have $C_u^{(2)}(H)\subset D(N)$ (cf. [6]) and $C_2(H)=C_u^{(2)}(H)$.

Acknowledgement

The author would like to thank Prof. E. Siebert for several helpful discussions and comments.

References

[1] H. Boseck and G. Czichowski. Grundfunktionen and verallgemeinerte Funktionen auf topologischen Gruppen I. *Math. Nachrichten*, 58, 215-240, 1973.

- [2] E. Coşkun Faltungshalbgruppen von Wahrscheinlichkeitsmaßen auf einer Hilbert-Lie-Gruppe. Dissertation der Mathematischen Fakultät der Universität Tübingen, 86 Seiten, 1991.
- [3] H. Heyer. Probability Measures on Locally Compact Groups. Springer, Berlin-Heidelberg-New York, 1977.
- [4] G.A. Hunt. Semigroups of measures on Lie groups. Trans. Amer. Math. Soc., 81, 264-293, 1956.
- [5] B. Maissen. Lie-Gruppen mit Banachräumen als Parameterräume. Acta Math., 108, 229-270, 1962.
- [6] J.D. Samur. On semigroups of convolution operators in Hilbert space. Pac. J. Math., 115-463-479, 1984.
- [7] E. Siebert. Jumps of stochastic processes with values in a topological group. *Prob. Math. Statist.*, 5, Fasc. 2, 197-209, 1985.
- [8] T. Żak. A representation of infinitesimal operators of semigroups of measures on Banach space of cotype 2. Bull. Pol. Acad. Scien., 31, 71-74, 1983.

Hilbert-Lie Grubu Üzerinde Diferensiyellenebilir Fonksiyonlar ve Generatörler

Özet

Lie gruplarında olasılık ölçümü teorisinde, konvolüsyon yarıgrupları önemli rol oynamaktadır. Temel problem, yarıgrubu Lévy-Khinchine formülü olarak ifade etmektir. Hilbert-Lie grubu G üzerinde olasılık ölçümlerinin sürekli bir yarıgrubu $(\mu_t)_{t\in\mathbf{R}_+^*}$ ise,

$$T_{\mu_t}f:=\int f_a\mu_t(da)(f\in C_u(G),t>0).$$

ile $C_u(G)$ uzayı üzerinde N infinitezimal generatörüne sahip sürekli operatör yarıgrubu $(T_{\mu_t})_{t\in \mathbf{R}_+^*}$ tanımlanır. Bu yarıgrup için doğurucu fonksiyonel $A, Af := \lim_{t\downarrow 0} \frac{1}{t}(T_{\mu_t}f(e)-f(e))$ biçiminde tanımlanır. Buna göre problem, A doğurucu fonksiyonelinin tanımlı olacağı $C_u(G)$ nin bir $C_{(2)}(G)$ alt uzayını oluşturmaktadır. Bu sonuç, daha sonra Hilbert-Lie gruplarında Lévy-Khinchine formülünün elde edilmesinde kullanılacaktır.

Erdal COŞKUN Hacettepe Üniversitesi, Eğitim Fakültesi, Fen Bilimleri Bölümü, 06532 Beytepe, Ankara-TURKEY E-mail: coskun@eti.cc.hun.edu.tr Received 26.2.1995