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THE RANK AND THE CRANK MODULO 5

A.Biilent Ekin

Abstract

Let p(n) denote the number of partitions of n. Ramanujan’s partition congru-
ences are p(5n + 4), p(7n + 5) and p(1ln 4+ 6) = mod 5, 7, and 11, respectively.
These have been proved in number of ways. Atkin and Swinnerton-Dyer proved the
congruences and some more relations about partition in the case of mod5 and 7 in
terms of rank, Garvan proved them in three cases in terms of crank.

In this study, we give an another proof of their results in the case of modb
by using the theory of modular forms. Although our method is more tedious and
complicated, it shows us how Modular forms of integral weight on a certain subgroups
of SLz(Z) play role in partition theory. Our method could be applied to the case
mod7, but not modll since the components of []°7 (I — ¢™)~' are not known
explicitly.

1 Introduction

A partition of a positive integer n is a representation of n as the sum of any number
of positive integers. The number of partitions of n is denoted by p(n). Let p(0) = 1.
The generating function of p(n) is the power series

P=Y s =[J01-¢q) (1)

n>0

where |g| < 1, (see [9]). The well-known Ramanujan’s congruences are

p(bn+4) = 0 (mod 5) (1.2)
p(fn+5) = 0 (mod7) (1.3)
p(1ln+6) = 0 (mod 11) (1.4)

Dyson[4] conjectured and Atkin Swinnerton-Dyer proved combinatorial results which
imply the congruences (1.2) and (1.3). Let

T=mp+ 7+ 4T (1.5)
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be a partition with w9 > 7 > -+ > 7,_;. Dyson[4] defined the rank of 7 to be the
number 7y — s. He denoted by N(r,m,n) the number of partitions of n with rank
congruent to 7 modulo m and remarked that several relations appeared to hold between
the numbers N(r,m,mn + ¢} when m = 5 and m = 7. Of particular interest are the
relations

N(0,5,5n 4+ 4) = N(1,5,5n 4 4) = --- = N(4,5,5n + 4)

N(0,7,7n+5) = N(1,7,7Tn+3) = --- = N(6,7, 7n + 5)

since they provide a combinatorial interpretation to the congruences (1.2) and (1.3).
Dyson also conjectured the existence of a “crank” which would likewise imply the con-
gruence (1.4). In 1987, Andrews and Garvan|2] discovered the crank as follows

| mo, if w(m)=0
crank(r) := { u(r) —w(m), it wir) >0

where w(m) is the number of ones in 7 and p(m) is the number of parts of 7 bigger
than w(rm). Let M(r,m,n) denote the number of partitions of n with crank r modulo
m. Several relations are known to hold between the numbers M(r,m,an + ¢) when
(m,a) = (5,5), (7,7) and (11,11) [7] and when (m,a) = (8,4), (9,3) and (10, 15) [8].
Dyson[5] (following Andrews and Garvan) defined the crank of 7 in the following
way, set t = mg — My,
S

(supposing 7, = 0 when r > s). Since the Andrews-Garvan crank of a partition, =, is the
negative of the Dyson crank of the conjugate of m, both definitions give the same value for
M(r,m,n) unless n =1 Let N(m,n) and M(m,n) denote the number of partitions of
n with rank and crank respectively congruent to 7 modulo m. We change this definition
of M(m,n) just a little, setting M (0,1) = =1 and M(-1,1) = 1 = M(1,1), and modify
M(r,m,n) accordingly. We shall also suppose that the empty partition of zero has rank
Z€ero.

For convenience, we write Ny for M and N3 for N. By (12) in [11] and (1.11) in
[2] when k =1, and (2.12) in [3] when k = 3, we have

n(kn+1)/2

3 S Mmm)zmqt =P(1-2) 3 (—1)”‘1—1$ (1.6)

meZ,n20 meZ

where P = Hzozl(l - qn)_lv Iql <1 and |q| < IZ| < 'q—ll

For a power series X = X(q) = Z anq", we define
n>0

XM =g Za5n+,y" (r=0,1,..., m—-1)
n>0
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and say that X(") is rth component of X . Here, and below, y = ¢°.
We introduce some notations

J(2:q) == (21 @) H 1—2z¢" H(1 - 27¢").
Note that
~2J(2q;9) = —2J (27 Y5q) = J(z;9) = J (27 'g;9). (L.7)
We also write

(1 _ ya+5(r—1))(1 _ y5r——a)

-
=

-
<
Eécl
3

It should be noted that J(0) is not the expression that would be obtained by writing 0
instead of @ in the definition of J(a). From (1.7), we have

J(5—a)=J(), J(—a)=J(B+a)=—-y *J(a). (1.8)
we also define
Rij(k) == N(i)® = N(j)® and Cy;(k) := M) — M(j)* (1.9)
so that
Rij(k) =¢* ) (N(,5,5n+k) — N(j,5,5n + k)) y"
n>0
and

k)=q¢" > (M(i,5,5n + k) — M(j,5,5n + k)) y"
n>0

Theorem 1 (Thm.4 of [3])

Y 5
R12(0) = WT(ya 15 Yy ) (110)
Ro2(3) = —qgﬁT(yz, 1,3%) (1.11)
ng(l) == R02(2) = R02(4.) = R12(4) = 0 (112)
Rea(0) +2Ra(0) = ) (113)
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J(0)
Roa(1) 70) (1.14)
J(0)
_ 2
R12(2) = q J(2) (115)
J(1)J(0)
3 = ¢t~ 1.1
Ro1(3) + Ro2(3) TOY (1.16)
Theorem 2 (Thm.4.7 of [7])
_ J(2)J(0)
Coi{0) = (172 (1.17)
_ J(0)
J(0)
C = g——= .
12(1) 70 (1.19)
J(0)
_ .2
Ci2(2) = —¢ 72) (1.20)
J(1)J(0)
— 3
Coi(3) = ¢ 72)? (1.21)
J(1)J(0)
— 3NN
C2(3) = —q NOE (1.22)
and all other functions C;;41(d) = 0, where i=0or1l, arezero. (1.23)
2 Preparation
We define
Ni(r) := " Ni(r,5,n)q",
n>0
and (kn+1)/2+b
! (KN T
Sk(b) = (—U"%T
~ —4q
where the sum is taken over all non-zero integers n, and
°° Cn q3n(n+1)/2
T, = -y
k(z, Caq) n;w( 1) 1—zqn

which is an analytic function of z in every region 0 < r; < z < 7y, except for simple
poles at z = ¢~ ™. From (3.6) in [6], we have

N(0) = P(1-254)), M(0) = P(25(0)+1)
N(1) = P(S3(1)+55(4) M1) = P(Si(D)-5(0) (1)
N(@2) = -PSs(1), M(2) = -PS(1)
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From [10],
S A b o @
P = o {08 e 23
ST e
PO = o {7 e @
P = 5‘14(;;(2;; (26)

We have the components of S3(1) and S3(4) from (6.21) and (6.22) of [3] and the
components of S;(0) and S1(1) from (3.7) of [6].

Finally, we can state the components of N(r) and M(r) :
for k=0,1,2,3,4

Pk
NO® = 95— To(u.1.4°) + —
(0) 50]9 J(O) 3(3/7 ) )+ 5
P& 7 J(2)? J(1)? 24>
4 -2 _P(k+3)__ 2
+{ s (7 555 770
Pk
e = Y Tyy,1 636¢° ——Ty (42, 1
N(1) 50kJ(0) (v,1,9°) — b3kq 7(0) 5y L,y°) + — 5
PK) /0 J(2)? J(1)2 q 3
_ (k+3) 9 (k+2) 9 2
+{ 5 ( J(l +3y 7(2)3 +P -P J(Q)}J(O) ,
P
N(2YF)  — 3_Y 1.2 -
(2) 03k 7(0) 5y, 1,9°%) + 5
PE) /1 J(2)? J(1)? ¢
- -2 pk+2) 2 2 2.
55 (705 v3@s) + P S 170 @1
where 6;; =1 if i =j , = 0 otherwise ,
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and
o (P2 (S ) 38
MO)® = P;k> +{p:c> (_jgiz +3y§8;z> +P<’“+4>qu(12)>5
_p(k+3)% _ p(k+2>7‘% . P“*”Q“%} J(0)?
ME)® = P;k) N {P;k) (_ jg; *2ngz> +P(k+3)'j%
Pk g JJ((;))Z } J(0)? (2.8)

(we take P() = PU) when i = j(mod5) )

3 Modular Forms

By (2.7) and (2.8), (1.10)-(1.12) and (1.23) are straightforward. For the rest, let,
for i =1, 2, 3, 4, H; be the right hand-sides minus the left hand-sides of (1.13)-(1.16),
respectively and let, for j =1, 2, 3, 4, 5, 6, G; be the r.h.s minus the Lh.s of (1.17)-
(1.22) respectively. But, (2.7) and (2.8) also give that

G1 — Hl G2 - —2G3 G3 - H2
Gy=-Hs Gs=H, G¢ = —H,4

Therefore, we must only show that H; =0 for : =1, 2, 3, 4. In what follows, 7 denotes
a variable ranging over H := {z €C : imz > 0} and g := exp(2miT).

We now define, for »r = 1 and 5, the functions on H

n(r) =n(r,7) = exp(mi7/12)(q"; 0" ) o
and, for k£ an integer,
s(k) = s(k,7) = q®27R10(q7%) (g% ¢%)oe
= —exp(k’n7/5)01 1 (kT|57).

where ©1; is the Mock theta function (see §76 of [12]).
(1.8) gives that
s(—k) = —s(k) = s(k +5) (3.1)
We set, 1 =1, 2, 3, 4
H; := exp(—miT/60)H;(q*/®)
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so that
L) (s 5@ s s
M= e <s<1>7 M s<2>4> s (3.2)
Lo (@ 1 sY 1,
He = 0 <s<1>6 ey s<2>5> AR (3:3)
Lo s@f 1 s\ 1,
Ma = <s(1>5 R O) s(2>6> @™ (34)
L) (s@P o s() sP s,
Ha = g <s<1>4 1) s<2>7) S22 (3.5)
From these, we see that
s(2),,  s(2? ,  s(2)?
M=t = St = STt (3.6)
Thus, we only show that

We define the subgroups

[o(10) ;== {A € SLy(Z) : ¢=0 (mod 10)}
I'1(10) :={A€Ty(10) : a=d=7F1 .(mod 10)}

Z ) The subgroup T'o(10)

has index 18 in SLy(Z) (see (1.4.28) in [13]) and T';(10) has index 36 in SLo(Z). We
establish (3.7) by showing that H; is a modular form on I';(10) of weight 1/2 and that

> ord (H1,¢,T1(10)) > 3/2 (3.8)

CEF*

of SLy(Z). Here, and below, A denotes a matrix < Z

where F* is a fundamental region of I';(10) U {cups}. (See [13] for the definitions of
these terms.) We then appeal to the following well-known result.

Lemma 1 (Thm.4.1.4 in [13]) Suppose that I is a subgroup of SLs(Z) (containing —I )
of finite index p. If f is a modular form of weight k on I', then either f is identically
zero, or

> ord(£,(,T) = pk/12.

ceFr

The group SL2(Z) acts on H in the usual way. Suppose A € T¢(10). The
transformation rules for the n and © functions ( (74.11) and (81.2) in [12]) give

n(At) = e(A)Ver +d n(r) (3.9)
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where €(A) is a root of unity.

s(k, AT) = (—1)**e(A10)® exp(k*miab/5)Ver + d s(ak, ) (3.10)

where A = ( c/alO 12b > . Now, with the help of (3.1), (3.9) and (3.10), we see that

H.’s are modular forms of weight 1/2 on I';(10)
The set of cusps of I';(10) may be identified with the set

0201U02U05UCO

S e e (2 12

Co = {[ é ] , [ g ]} Here[ 5 ] denotes the equivalence class of ( ;j ) € Zf under

the equivalence relation

x x 2\ _ [ ax+by
<y)N<y’)®(y’>:(cw+d@/) (mod 15)
for some A € T'1(10).

For r # 0, the cusps in C, have width 10/r and those in Cy have width 1. We
now give the orders of 7(1), 7(5), s(1) and s(2) at the cusps in C,, (r # 0),

o

n() ][ 5/24 | 5/24 | 1/12 | 1/2
n(5) || 1/24 | 1/24 | 5/12 | 5/12
s() || 1/8 | 1/8 [ 9/20 | 1/20
s(2) [ 1/8 | 1/8 | 1/20 | 9/20

cusp | 0/1 | 0/3 | 1/2 | 1/4 | 1/5 | 2/5 |

ord H; Z_% 2_% Z_§ 2_§ 2—61_0 0
Therefore 61
D" ord(H;,¢,T1(10)) > =T (3.11)
¢eC\Cy

where H; = q~1/120H,(q*/®) for i = 1,2,3,4. By (3.8) and (3.11), we need to show that
‘H, has order bigger than

13,60 8, 1

2°2 127 24 120

176



EKIN

at each of 1/0 and 3/0,

J 2..5 5. .5 oo
Hi(¢*%) = Y (N(0,5,5n) +2N(1,5,50) — 3N(2,5,5n)) ¢" — (a%5q )(‘15 4 ) (3.12)
750 J(g; %)
Hy(g/®) = /" Z(2N(0,5,5n+3)—N(1,5,5n+3)—N(2,5,5n+3))q”
n>0

J(4;° )% ¢°) oo
I )2 > (3.13)

If we calculate the first four coefficients of H;(q'/%) and Hy(q'/®), we see that they
are zero.

From (3.10) we have

ord (Hl, [ : } ,r1(1o)> = ord <H4, [ ; ] ,r1(1o)).

Consequently,
1 3 1 89
>(4- — 2o y== ,
> ord(M1,¢,T1(10) > (4 - o)+ (4+ 5 — 155) = 55 (3.14)
¢eCo
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Rank ve Crank Modiilo 5

Ozet

p(n), n’nin kisitlanmamig ayrisimiar: sayisini gostersin. Ramanujan’nin ayrigim
kongriianslar1 p(5n + 4), p(7n + 5) ve p(lln + 6) = mod5, 7, ve 11, sirasiyla.
Bunlar degisik yollarla ispat edildi. Atkin ve Swinnerton-Dyer bu kongriianslarla
birlikte bazi ayrnisim iligkilerini mod 5 ve 7 durumlarinda rank ydntemiyle ispat-
ladilar, Garvan da benzeri iligkileri her ii¢ durum igin crank yontemini kullanarak
ispatladi.

Bu caligmada, modiiler formlar teorisini kullanarak, mod 5 durumda bunlarn
sonuclarina bagka bir ispat veriyoruz. Bizim y6ntemimiz her nekadar daha karmagik
olsa da, bu yéntem SLQ(Z) ’in bir kongriians altgrubu iizerinde yarim tamsay1
agirhkh Modiiler formlarin Ayrisim Teoride nasil bir rol oynadigini gosterir. Yontemimiz
mod 7 durumuna da uygulanabilir fakat H;:o:l(l —¢™)""’nin komponentleri agikca
bilinmediginden mod 11 durumuna uygulanamaz.
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