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Pin-STRUCTURES ON SURFACES AND QUADRATIC
FORMS

A. Degtyarev & S. Finashin

Abstract

A correspondence between various Pin-type structures on a compact surface and
quadratic (linear) forms on its homology is constructed. Sum of structures is defined
and expressed in terms of these quadratic forms and in terms of Whitney sum of
Spin structures.

81 Introduction

In this paper we made an attempt to clarify the relation between Pin-type struc-
tures on a compact surface and quadratic forms on its homology. This relation is well-
known and useful in the case of Spin- and Pin ™ -structures ([6], [7]). It makes it much
easier to understand the nature of some fundamental low-dimensional topological objects,
such as Z/2-Seifert form on a surface in an oriented 3-manifold and Rokhlin form on a
characteristic surface in an oriented 4-manifold (see, e.g., [5], [4]).

Remark. A slightly more general approach of [4] also explains these forms in the case
of a non-oriented ambient manifold, as well as the newly found Benedetti-Marin form [2].

We show that a similar correspondence between quadratic forms and structures
can also be defined for other Pin-type structures. In this short paper we confine ourselves
to a geometrical description in the simplest case, when the structure group G is a
Z/2-extension of the orthogonal group O,. Up to isomorphism, there exist four such
extensions, classified by the four element of H?(BO,;Z/2); each element arises as the
obstruction to the reduction of an O,-bundle P — X to the corresponding group
G. More generally, central extensions of a Lie group H with a discrete kernel M are
classified up to isomorphism by the elements of H2(BH; M), which are the obstructions
for reduction of H-bundless, see, e.g., [4].
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By a G-structure on P we mean an isomorphism class of such reductions P — P
or, in other words, a fiberwise homotopy class of liftings X — BG of a classifying map
X — BO, of P. When non-empty, the set of all the G- structures forms an affine space
over H'(X;7Z/2), as is seen from the following homotopy exact sequence

Z/2 -G — O, — K(Z/2,1) - BG — BO,,.

If the obstruction is the trivial element of H2(BO,,;Z/2), then G = O, xZ/2 and a
G -structure is just a homology class from H'(X;Z/2). The obstructions w; and wq 4 w?
characterize Pin* and Pin~ structures respectively. Finally, the structures corresponding
to the remaining obstruction class w? are not (as far as we know) mentioned in literature
and do not have any special name. We will call them O,, -structures, O, standing for the
nontrivial semi-direct product Z/4 x SO, (topologically, 0, — O,, is a trivial double
covering).

Remark. Actually, O,, -structures do appear in literature implicitly, e.g., as framings in
the complexification of a vector bundle [1], or as linear forms on a real algebraic variety
[8]. Besides, they complete the descending table in [7, Corol. 2.15]: a Pin~-structure
on a manifold M descends to an 5n -structure on a codimension on submanifold whose
normal bundle is isomorphic to the determinant of the tangent budle of M.

Thus, we show that for each of these four classes there is a one-to-one correspon-
dence between the set of structures on a compact surface and the set of specific quadratic
(or, in special cases, linear) forms on the 1-homology of the surface. (This correspondence
is known in the Pin ~-case (see, e.g., [7]) and is obvious in the case of the trivial extension.
In the two other cases it is defined in §2.). Another subject of the paper, which has never
(as far as we know) been mentioned explicitly (see, though, a slightly different approach in
[3]), is the sum operation for structures. This operation, defined in §3, naturally extends
the canonical affine action of H'(X;Z/2) on the set of structures. Further, when we add
two structures the obstruction class of the result is the sum of the obstruction classes of
summands. This gives one more reason to consider O,,-structures: they arise as sums of
Pin~ and Pin™ -structures. We give a description of this operation in terms of quadratic
forms and interpret it also on the language of Spin structures.

A part of the results of this paper can be extracted from [4], where some further
generalization of the notion of Pin-structure is studied. However, we found it reasonable
to give a short account of these results for the classical case of Pin*-structures (and
related a—structures), as it is this case that is mainly used in applications.
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§2 Quadratic Forms

1. Pin~ -structures as quadratic forms H;(F;Z/2) — Z/4. To start with we recall
the standard construction of the quadratic form ¢ corresponding to a Pin ~-structure on
a compact surface F'. Pick an integral class a € H;(F;Z) and realize it by a collection
S — F of immersed oriented circle whose all self-intersection points are transversal.
. Let n(S) and i(S) be the number of components and the (geometric) number of self-
intersection points of S, respectively. A tangent vector field to S defines a Pin 1 -reduction
of the restriction to S of the given Pin; -bundle on F. Since Pin] = Z/4 is a discrete
abelian group, one can consider the total holonomy h(S) € Pin; of this bundle along
S (which, by definition, is the sum in Pin] of the holonomies along the components of
S). Define a map q : Hi(F;Z) — Z/4 by g(a) = h(S) + 2(n(S) +4(S)) (mod 4). Now
standard arguments apply to show that g(a) does not depend on S and satisfies the
identity g(a+ 8) = q(a) + ¢(8) + 2(e, B), where (-,-) is the intersection form on F and
2:Z/2 — Z/4 is the unique inclusion. (g(c) obviously does not change during a regular
homotopy of S, and elementary transformations like Reidemeister move I and smoothing
a self-intersection point can easily be controlled; see, e.g., [7].). Since the mod 2 reduction
of g coincides with w, : H1(F;7Z/2) — Z/2, the above formula implies, in particular that
g factors through the Z/2-homology of F.

2. O,-structures as linear forms H\(F;Z/4) — Z/4.* Since the corresponding 1-
dimensional group 51 is also Z/4, this case is similar to the previous one. The only
difference is that one should not adjust holonomy by the numbers of components and the
self-intersection points, i.e., just put g(a) = h(S). The result is a linear form ¢ which
factors through Z/4-homology, ¢ : Hi(F;Z/4) — Z/4, and whose restriction mod 2
coincides with wy : H1(F;Z/2) — Z/2.

3. Pin*-structures as quadratic forms H,(F;Z/4) — Z/2. The construction
goes similar to the case of Pin~-structures. Now Pin}L =~ 01 X Z/2, the projection
of h(S) to the first factor O; being just the value of w; on «. Since this latter term
is standard, we drop it and consider the projection pyh(S) to the second factor Z/2;
then we let g(a) = p2h(S) = n(S) + ¢(S) (mod 2). This form satisfies the identity
g(a + B) = q(a) + q(B) + (o, 8), which, in particular, implies that it factors through
H,\(F;Z/4).

4. Trivial structures as linear forms H,(F;Z/2) — Z/2. This case, when structures
Jjust are cohomology classes, admits a description similar to the previous three: the total
holonomy h(S) is an element of O; x Z/2, and we let g(a) = pyh(S).

We can now uniformize all the four cases and consider quadratic (linear) forms
Hy(F;Z/4) — Z/4 (In the case of Pin*-and trivial structures Z/2 is embedded in Z/4
via multiplication by 2.). This given the following result:
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Theorem A. Given a compact surface F, there is a canonical affine one-to-one corre-
spondence between structures of F with the characteristic class awy +bw? (for some fized
a,b € Z/2) and functions q: Hi(F;Z/4) — Z/4 satisfying the following conditions:

(1) g+ B) = q(a) + q(B) + 2a{a, ) (mod 2);

(2) q(a) = bur(a) (mod 2).
Proof. The only thing that needs proof is the fact that the constructed map {structures}
— {forms} is one-to-one. Since both the sets are affine over H(F;Z/2), it suffices to
show that existence of forms implies existence of structures. This is obvious for Pin~-
and trivial structures, or if the surface is not closed (since structures always exist in such
cases). For Pin*t-and O,-structures on closed surfaces one can easily see that desired
forms exist if and only if elements of order 2 in H;(F;Z/4) annihilate w; (or, equiva-
lently, have trivial self-intersection). This is the case when the surface is the connected
sum and an even number RP?’s, i.e., exactly when wy = w? = 0. m

Corollary (classification of Pin* -structures up to isomorphism). Two Pin™t -structures
of a closed surface F are isomorphic (i.e., can be transformed into each other by a diffeo-
morphism of the surface) if and only if the values of the corresponding quadratic forms
on the (unique) 2-torsion element of Hi(F;Z) coincide. In particular, two structures are
isomorphic if and only if they are cobordant.

Proof. The mentioned value is the only algebraic invariant of forms (an easy exercise),
and, as usual in 2-dimensional topology, one can find an automorphism of the lattice
H,(F;Z) which is accompanied by a diffeomorphism of F. m|

Remark Note that we have to consider integral homology here, since otherwise one
cannot distinguish between different 2-torsion elements, and the algebraic invariant dis-
appears.

§3 Sum Of Structures

Given two Z/2-extensions Gi — O,, Gy — O, define their sum Gy V G5 to be
the quotient Gy X0, G2/ Diag (Z/2), where Diag is the canonical diagonal map

Diag :Z/2 = Ker[G; — O,] — Z/2 ® Z/2 = Ker[G1 Xo,, G2 — Oy].

(In fact, this is one of the standard algebraic approaches to definition of the groups struc-
ture on the set of isomorphism classes of Z/2-extensions of O, , which is isomorphic to
H?(BOn;Z/2).). To apply this procedure to structures, one should first fix some repre-
sentatives G(w) of the isomorphism classes of extensions, one for each characteristic class
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w € H*(BO,,;Z/2), and some maps G(w;)VG(wz) — G(w;+w2). To do that uniformly in
all dimensions, it suffices to pick some isomorphisms Pin] = O, = Z/4,Pin} = 0, xZ/2,
and Z/4V Z/4 = O1 x Z/2 (see [4]). For example, let us fix the latter isomorphism via
(z,y) — (z,3(x —y)), where z,y € Z/4,% € O, = Z/2 is the mod 2 reduction of z and
1(z — y) € Z/2, because = and y should have the same parity if (z,y) € Z/4 x Z/4
represents and element of Z/4 V Z/4. Once the above isomorphisms are fixed, we can
define the sum of structures as follows.

Definition. Let P — X be an Oy -bundle. Then, given two structures ®; — P,®, — P
with the structure groups having obstruction classes wy,ws € H?(BOy;Z/2), we define
their 5" ®1 V ®; — P to be the (w1 + wy)-structure associated with the fibered product
®, xp &3 — P via the composed map

G(w1) X0, G(wz) = G(w1) V G(ws) = Glwy + ws).
The proof of the following Theorem B is contained (in a more general setting) in

[4]-

Theorem B. V is a group operation on the set of all structures on a given O, -bundle
P — X, which extends the canonical affine action of H*(X;Z/2) on this set (i.e., V-
sum with an (O x Z/2)-structure coincides with the affine shift by the corresponding
cohomology class).

In terms of quadratic forms V-sum of structures can be interpreted as follows.

Theorem C. V-sum of structures on a compact surface corresponds to the following
pointwise operation on quadratic forms: (q1,q2) — @1 + ¢2 + 2q1¢2.

Remark. Note that if ¢; or go takes values in Z/2 C Z/4 (i.e., the corresponding
structure is Pin* or the trivial one), then 2¢g;q2 = 0 mod 4, thus V-sum of structures
corresponds in this case to the usual sum of forms.

Proof of Theorem C. Since the construction of §2 is obviously natural with respect to

embeddings of surfaces it suffices to prove the formula for a tubular neighborhood of an
embedded circle. In this case the statement follows from the commutative diagram

Gi1VG, =5 Gy
l l

z/avzj2 L 7/,
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where Gj,i = 1,2,3 is one of the extensions of Oj,i.e., either Pin; = 51 = Z/4 or
Pin] = Oy x Z/2; the upper horizontal map is either the isomorphism Z/AVZ/4 =
O x Z/2 fixed above or one of the canonical isomorphisms (O; x Z/2) V Gy = Ga, G4 V
(O1 X Z/2) = G1; the rightmost map is either the identity Z/4 — Z/4 or the product of
the projection O1XZ/2 — Z/2 to the second factor and the multiplication 2 : Z/2 — Z/4;
the leftmost map is the (obviously defined) V-sum of the latter maps; and the lower map
is induced by Z/4 x Z/4 — Z/4,(z,y) — x + y + 2zy. Since the holonomy of V-sum of
structures is obviously the V-sum of holonomies of summands, this gives the addition low
for the holonomy components of qi, g2, g3; clearly the correction term 2(n(s) + i(s)) (for
Pin?® structures) does not change this addition low. )
The introduced V-sum operation admits an interpretation in terms of Spin-structures.
Given an Op-bundle £ : P — X, let us denote by Spin(g),Pini(ﬁ), etc. the set of all
the Spin-, Pin®-, etc. structures of & respectively. Then, according to [7], there are
natural isomorphisms Pin ~(§) = Spin(§ @ det £) and Pin*(£) = Spin(¢ @ 3det £). Similar
arguments show that, besides, there are isomorphisms 6n(f) = Spin(2¢) = Spin(2det &).
Consider the Whitney sum of the above three bundles:

(D deté) ® (E@3detl) @ (2€) = 4(€ @ det &).

This bundle has a canonical Spin-structure (the quaternion Spin-structure, which is
defined on 4n for any bundle 7, see [4]). Hence, Spin-structures on any two of the
three summands define a Spin-structure on the third one, and one can easily see that the
obtained maps Pin~(£) x Pin™(£) — O, (&), etc. coincide with the V-sum. This gives
an alternative description of this operation in the most interesting cases which are not
reduced to the affine action of H(X;Z/2).
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Yiizeyler Uzerinde Pin Yapilar: ve Kuadratik Formlar

Ozet

Kompakt bir yiizey iizerinde “Pin” tipi yapilarla ylizeyin homolojisi iizerindeki
kuadratik (lineer) formlar arasinda bir egleme kuruluyor. Yapilarin toplami tanimlanip
bu, kuadratik formlar cinsinden ifade ediliyor.
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