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ARITHMETIC OF A SEMIGROUP OF SERIES IN
LEGENDRE FUNCTIONS OF THE SECOND KIND

1. P. Il’inskaja

Abstract

In the framework of D. Kendall’s theory of Delphic semigroups, a semigroup of
series in Legendre functions of the second kind is studied. The basic factorization
theorems are prowed, the classes of infinitely divisible elements and of elements
without indecomposable factors are completely described, the density of the class of
indecomposable elements is established.

Key words: D. Kendall’s Delphic semigroup, infinitely divisible, indecompos-
able, Legendre functions.

1. Introduction and Statement of Results

The arithmetic of the convolution semigroup P of all probability distributions on
the real line has been deeply investigated by several authors. The detailed information
related to this field can be found in the book [4] and in the expository paper [6]. In the
papers by D. Kendall and R. Davidson collected in the book [3], and the paper by K.
Urbanik [9], it was shown that there are many semigroups essentially different from P
whose arithmetical nature is similar to that of P. Since then, the study of such semigroups
was continued; the paper [6] contains a survey of results and references. In particular, the
arithmetic of multiplicative semigroups of functions representable by series in Legendre,
Gegenbauer, Jacobi polynomials was studied in [7], [8]. The aim of this paper is to study
the arithmetic of a multiplicative semigroup essentially different from studied before. This
semigroup consists of functions representable by series in Legendre functions of the second
kind. We obtain solutions of main problems of the arithmetic of this semigroup.

The Legendre functions of the second kind are defined ({10, §15.3]) by the formula

1

Qx(z) = 2*’6‘1/ (1= 2)(z — t)FLdt, (1.1)

-1
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where z € (—o0,—1) U (1,00),k = 0,1,2,... Note that Qx(z) >0 for « > 1. Fix r > 1
and define the functions gx(z) for |z| > r by the equality

Qi(z)
qe(z) = , lzl>r, k=0,1,2,... 1.2
@ =g I (12)
The fixed parameter r will not be explicitly shown in the notation of gi(z). Obviously,
the function Qy is a decreasing function of z € (1,00),k = 0,1,2,.... This and equalities

(1.1), (1.2) yield that the function ¢,k = 0,1,2,..., possesses the field
(i) gk is decreasing for = > r;
(ii) gk is positive for = > r;
(iii) gr(o0) = 0;
(iv) gr(—2) = (=1)" 'qx(2) for |z[ > r;
(V) gk(r) = L, qe(—1) = (- 1)’““'
(vi) for |z} > r and k=0,1,2,.

lgr(z)| < 1. (1.3)

F. Neuman ([5, p. 90]) and W.N. Bailey ([1, formula (5.3) for m = 0]) obtained the
linearization formula for the product of two Legendre functions. Using definition (1.2),
we can write the formula in the following form:

Qp+s+2m+1(7“)
1" S Am p7 q S m x7p7s:071727"'7 14
ap(2)gs Z am1(py8) G S S asam 1 (a) (1.4)
where
F(m ) F(m +p+ 1)
Agm1(p, 2
2m+1(pys) = T(m+1) T(m+p+2)

I(m+s+1) N(m+p+s+3) (4m +2p+2s+3) (15)

T(m+s+3) T(m+p+s+2) (2m+2p+2s+3) '
It is clear, that

Ym,p,s >0:  Aymii(p,s) > 0. (1.6)

Define ¢_;(r) = 1 and denote by L, the set of all functions f representable for
|z| > r in the form

= Z arqr(z), ar >0, Z ap = 1. (1.7)

k=-1 k=-1
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From the properties (v), (vi) of the functions g it follows that, for any f € L,,

f(r)=1, and |f(z)] <1, |z|>r whenever f # 1. (1.8)

If follows directly from (1.4), (1.6), (1.7) that £, is a semigroup under multiplica-
tion. It is a (Hausdorff) topological semigroup under the topology of uniform convergence
on |z| > r. The function ¢_1(z) =1 € £, is the neutral element of the semigroup.

The aim of this paper is to study the arithmetic of the semigroup £,. We shall
use the following definitons similar to those generally accepted [4] in the arithmetic of
the semigroup P. A function f; € £, is called a factor of the function f € £, if the
exists a function f, € £, such that f = fifo,|z| > r. A function f € £, f # 1, is called
indecomposable if it has only two factors: f and g_; = 1. A function f € £, is called
infinitely divisible if for each n = 2,3... there is a function f, € £, such that f = (f,)".
Denote by I(L,),Io(Lr), N(L,) the class of infinitely divisible elements of £,, the class
of elements without indecomposable factors and the class of indecomposable elements,
respectively.

Let us state the main results of the paper.

First we give the description of the class I(L,).

Theorem 1. The class I(L,) consists of all functions f representable in the form

f(x) =exp (Z br(gr(z) — 1)) LBk >0, by < oo (1.9)
k=0

k=0

The constants by are uniquely determined by the function f.

The general formula (1.9) f € I(L,) can be considered as an analogue of the well-
known Levy-Khinchin formula ({4, p.9]) of characteristic function of an infinitely divisible
probability distribution on the real line.

The following theorem can be considered as an analogue of the Khinchin factoriza-
tion theorem ([4, p. 79]) related to the arithmetic of the semigroup P.

Theorem 2. Any function f € L, has at least one factorization of the form

k
f=f]]fi, 0<k<oo, (1.10)

i=1
where fo € Io(L,), fi € N(Ly),i > 1. For k = oo, the product in (1.10) is convergent in
the topology of L,; for k =0, the product is equal to 1.

The following theorem is an analogue of Khinchin’s one ([4, p.88]) related to the
semigroup P which claims the inclusion of the class I3(P) of all distributions without
indecomposable components into the class I(P) of all infinitely divisible distributions.
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Theorem 3. The following incluston is valid

Iy(L,) CI(L,).

Recall that the problem of the description of the class Io(P) has not been solved
until now in spite of the fact that deep investigations of several mathematicians were
devoted to the problem (the corresponding results are reflected in [4, Ch. IV, V, VI]
and [6]). It seems to be interesting that the analogous problem for Io(£,) can be solved
completely by the following theorem.

Theorem 4. The class Io(L,) consists of a single element q_, = 1.

To be sure, Theorem 3 is contained in Theorem 4, but the first is a base of the
proof of the latter.

The following theorem is an analogue of the theorem of Parthasarathy, Rao and
Varadhan ([4, p. 71]) related to the set N(P) of all indecomposable elements of the
semigroup P.

Theorem 5. The class N(L,) is dense in L, in the topology of L. .

2. The Description of the Class I(L,). Proof of Theorem 1.

To prove Theorem 1 we need several lemmas. The first of them is an analogue of
the well-known compactness test for families of probability distributions (see, e.g. [4, p.
88]). Further, the symbol = will denote the convergence in the topology of L,, i.e. the
uniform convergence on the set {|z| > r}.

Lemma 1. If a sequence of functions

fnlz) = Z aMar(z) € L, n=1,2,..., (2.1)
k=—1
satisfies the condition
Ve >0, 3k, =ko(e), Vn: Z ai") <k, (2.2)
k>ko

then there exists a subsequence {fn (z)} such that f,, = f € L,.

Proof. Since 0 < agc") < 1, there exists a subsequence {n;} such that

3 lim ol =: b, k=-1,0,1,... (2.3)

J—00
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Evidently, for any m = 1,2,..., we have

— (ns)
> b= Jim > of

k=-1 k=—1

Therefore the series ) ;- , by converges. Using (1.3), we conclude that the function
f:=3 702 | brqy is well-defined and

k1
oy @) = f@ < D Jal™ =)+ Y ol + Y b<etete=3c  (24)

k=—-1 k>ky k>kq

for k; and n; being sufficiently large. Therefore f,,(x) = f(z). Substituting = r into
(2.4) and using the equality gx(r) = 1 we conclude that f(r) = >.22_, by = 1. Hence
fecL,. O

Lemma 2. Assume that the sequence of functions

)= S 0 Sl
satisfies the condition (2.2) and, for all k =0,1,2,..., there exists lim agc ", by. Then

n—oo
o
Zbk < oo and
k=0

The proof of Lemma 2 is quite similar to that of Lemma 1 and therefore can be
omitted.

Lemma 3. If the sequence of functions (2.1) satisfies the condition

Ve >0,IA=Ae)>r,Vn: 1—f,(A) <e,

then the condition (2.2) is fulfilled.
Proof. We need the following property of functions gx(z) :

Va,|z| >7: lim ge(z) =0. (2.5)
k— o0
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This is a simple corallary of (1.1). Indeed, (1.1) yields that, for |z| > r, we have

r—t

|Qr(z)| < d*F1Qx(r), where d := max

—1<t<1|x — ¢

<1

Choose A from the condition of the lemma. It follows from (2.5) that Jk, =
ko(e),Vk > ko : qx(X) < 1/2. Hence

> 1-fu) =Y a1 - a0 25 Y .
k=0

k>ko

Lemma 4. If the sequence of functions (2.1) converges pointwise on {|z| > r} to a
function f right-continuous at * =r, then f € L.

Proof. Since f,(r) =1, we have f(r) = 1. The conditions of the lemma yield

Ve > 0,IA = Ae) > r,3ng = np(e),Vn >ng: fu(X) > f(A) —e>1-—2e.

Decrease A > r in such a way that the inequality f,(X) > 1 — 2e will be valid for any n.
Using Lemma 3, we obtain (2.2). Then, f € £, by Lemma 1. a

Lemma 5. If the sequence (2.1) satisfies the condition

IA>r: fu(A) = 1,n — oo,

then fn(z) = 1.

Proof. By the condition of the lemma, we have Ve > 0,3no,Vn > ng : 1 — fo(A) < ¢.
Decrease X > r in such a way that the last inequality will be valid for any n. By Lemma
3 the condition (2.2) holds for the sequence {f,}. Choose ko according to (2.2). Then
we have

’Co kO
e>1—fuN) > a1 - (V) 2o, (2.6)
k=0 k=0

where ¢ = O<rr’ii<n]c [1 — gx(\)]. From (1.3) it follows that ¢ > 0. Using (2.2) and (2.6), we
SR R0

get Za;") — 0, n — oo. Therefore
k=0
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1= fulx Z 1= (@) <2d " af” — 0.
k=0 k=0
O
Proof of Theorem 1. Sufficiency. Obviously, the function
) = exp (Zbk (g (z ) by, > 0, Zb’“<oo can be written in the form f(z) =
k=0

exp(c(g(z)—1)), where ¢ > 0,g € L,. Note that a convex linear combination of functions
of L, belongs to £,. Therefore, using lemma 4, we conclude that the function

f(@) = exp(clg(z) ~ 1)) = lim (Z k,) (Z%w»k)

k=0
belongs to £, for any ¢ > 0 and any g(z) € L£,. For this reason (f(z))'/" =
exp((¢/n)(g(x) — 1)) € L,,n=1,2,... Thus, f € I(L,).

Necessity. Let f € I(L,). Then, for any n = 1,2,..., we have f = (f,)", where f,
has the form (2.1). Since gx(z) > 0 for > r, we have f(x) > 0 for > r. Let us show
that f(z) > 0 for z < —r. Take any A > r. Then f,(A) = (F(O\)Y/™ = 1, as n —
and, by Lemma 5, f, = 1. Therefore f,(z) > 0 for all sufficiently large n and f(z) > 0.

Further, we have

log f(z) = lim n((f(2))"/" = 1) = lim n(fn(z) - 1)

n—oo n—o

= nan;oZna —1). (2.7)

Since the series in (2.7) converges and all its members are stricktly negative, the sequence
{na,c )}n 1 is bounded for each k£ > 0. Therefore, there exists a subsequence {n;} such

that nja Ec 2N by >0, as j — 00,k =0,1,2,.... Using (2.7) and the equality f(r) =
we see that

Ve > 0,3\ > r,3ng,Vn > ng :
3 nal (1 () < log f(N) + & < 2¢. (2.8)
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Using (2.5), we choose ko so that gp(A) < 1/2 for k > ko. Then, from (2.8), we obtain

n 1 n
2e > Z nagc (1 gu(N) > 3 Z nal™.

k>ko k>ko

Hence, (2.2) is satisfied for nagen) instead of afcm. Thus, the conditions of Lemma 2 are

oo
satisfied for nja;nj) instead of aén). Applying Lemma 2, we conclude, that Z b < o0
k=0
and

(oo}

log f(z) =Y _ bi(ar(z) — 1).

k=0

It remains to verify the uniqueness of the representation. Assume,

exp (Z e (qu(z) — 1)) = exp <Z be(qr(z) — 1)) , (2.9)
k=0

k=0

oo oC
where ¢, by, > 0, Z e < 00, Z by, < co. Letting z — oo and using the equality gx{oc0) =

k=0 k=0
0,k=0,1,2,..., we get Z cp = Z bi, . Therefore (2.9) yields
k=0 k=0
Z crqr(@) =) brgr(z). (2.10)
k=0 k=0

From (1.1) and (1.2) follows that qx(z) ~ dgz~*~1, as z — oo, where di,k =0,1,2,...
are positive constants. Multiplying (2.10) successively by z™,m = 0,1,2,..., and letting
T — 00, we obtain ¢ = by, k =0,1,2,...

O
Note that we did not use non-negativity of the constants ci,by in (2.9) for the
proof of ¢ = b,k =0,1,2,.... Therefore the following remark which we shall use in the

proof of Theorem 4 is valid.

oC

Remark. Let ¢, bx(k = 0,1,2,...) be real constants such that Z(|ck| + b)) < .

k=0
Assume, the equality (2.9) holds for || > r. Then ¢; = b for k=0,1,2,....
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3. Semigroup L, is Delphic. Proof of Theorems 2 and 3.

We shall use D. Kendall’s theory of Delphic semigroups ([2], [3]) to prove analogues
for the semigroup £, of the Khintchin factorization theorems. Recall that a (Hausdorff)
topological semigroup Dwith the neutral element e is called Delphic if there exists a
continuous homomorphism A of D into the additive semigroup of non-negative numbers
and the following conditions are satisfied:

(i) The implication holds : A(f) =0<= f =e.
(ii) For any f € D, the set of all factors of f is compact.

i) Let {f;; : 7 =1,2,...4;4 = 1,2...} be a triangular array of elements of D such
N J
that

fg?%‘iA(fij — 0, as i — 00, (3.1)
ailg.lojli[l fiy = feD, (3.2)

then f € I(D).

The definitions of the classes (D), Io(D) and N(D) are quite similar to those of
I(L,), Io(L,), N(L,) given in the Introduction.

D. Kendall ([2], [3]) proved that, for any Delphic semigroup D, the analogues of
both of the Khinchin theorems mentioned in the Introduction are valid in the following
form.

Theorem A. Any element f € D has at least one representation of the form

k
f=f]]fi 0<k<o,

=1

where fo € Io(D), f; € N(D). For k = oo, the product is convergent in the topology of
D; for k =0, the product is equal to e.

Theorem B. The following inclusion is valid

1o(D) C I(D).

In order to prove Theorems 2 and 3, it suffices to prove the following theorem which
is of an interest by itself.
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Theorem 6. The semigroup L, is Delphic.

Proof. . Fix ap > r and consider the following functional

A(f) = ~log f(u), [ € Lo

It is clear that A is a continuous homomorphism of £, into the additive semigroup of
non-negative numbers. Let us verify that the abovementioned conditions (i)-(iii) from the
definition of a Delphic semigroup are satisfied.

Evidently, (i) is satisfied in virtue of (1.8). In order to verify (ii), we show that
for any sequence of factors of a function f € L, there exists a subsequence uniformly
convergent to a factor of f. Assume, f = g,h, where g,,h, € £,, n=1,2,,,. For any
e > 0 there exists A = A(e) > r such that f(A) > 1—¢ and, hence, g,(A) > gn(A)h,(A) =

o
J(A) > 1 —¢e. The condition of Lemma 3 is satisfied for the function g, = Z agcn)qk.
k=—1

Therefore (2.2) is valid and, using Lemma 1, we see that there exists a subsequence {n;}
such that g, (x) = g(z) € £,.. Similarly, there exists a subsequence {n’} of the sequence
{n;} such that lzn;(;r) = h(z) € L,. Evidently, f = gh i.e. g is a factor of f. Thus, (ii)
is satisfied for L, .

In order to verify (iii), consider a triangular array {f;; : j =1,2,...,4,i =1,2,...}
of elements of L, satisfying the conditions (3.1), (3.2). From (3.1) and Lemma 5, it
follows that

max, |fi; =1 = 0as i — . (3.3)

Hence f;;(z) > 0 for |z| > r and large 4. In the case of £,, (3.2) means that

H fij(x) = f(z), as i — oo, (3.4)

therefore f in (3.4) is non-negative. The relation (3.4) can be rewritten in the form

exp [ Y log fij(z) | = f(x). (3.5)
j=1
Using (3.3), we have for large i

[log fij — (fij = DI < | fiy — 117
whence, using (3.3) once more, we have

1> og fiy = > (fiy — 1| <
j=1

j=1
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1 7 7
Z;'fij -1 < 1rr§1§z<i|f¢j -1]- z:l |fi; — 1] =o X;Ifij —11], as i — oo,
J= J= J=

and

Zlogfm =(1+0(1))Y (fis— 1),

J=1
as i — oo uniformly with respect to = € {|z| > r}. If follows that
i

H exp(fi; — 1) = f. (3.6)

i=1

By Theorem 1, exp(f;; —1) € I(L,), therefore, exp (%(fu - 1)) € L,, forany n=1,2,....
From (3.6) it follows

;exp( (s =1) = ("

J
But (f)}/™ is right-continuous at = = r since f is. Using Lemma 4, we conclude
that ()" € L,,n=1,2,... . Thus, f € I(L,). o

4. The description of I;(£,). Proof of Theorem 4.

We need some lemmas.

Lemma 6. For any k =0,1,2,..., there exists €9 = €o(k) > 0 such that the following
representations are valid for 0 < e < gg:

G — eqesei2 = Y 6545, (4.1)
— EQ5j4r = ZVJQp (4.2)

— Eq3k+2 = ZOJQJ> (4.3)

where 6;,v;,08; are non-negative constants.
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Lemma 7. For any b >0 and k =0,1,2,..., there exists £o = eo(k,b) > 0 such that
the following representations are valid for 0 < e < g¢ :
(ar — easrs2)® =Y augy, (4.4)
(qr — 5(]3k+2)3 = Z/qujy (4.5)
J
L3 3
— ebgsk2 + gb (qk — €qart2)” = Z’quj, (4.6)

where «, 3;,7; are non-negative constants.
Lemma 8. Forany b>0 and k=0,1,2,..., we have

wi(z) := exp(b(gr(z) — 1)) & Lo(L).

Theorem 4 is an immediate corollary of Lemma 8 and Theorems 1 and 3. Therefore,
it suffices to prove the lemmas.

Proof of Lemma 6. Using (1.4), we have

§ 2m+1 k k Qikz;;z;)l()%kwmﬂ, (47)
- Q4k+2j+3(7”)
iy = Ag k,3k +2)———27" 7 13 =
qkd3k+2 ]E:o 2j41( )Qk(r)Q3k+2(7’) Q4k+2j+3
G Q2k-+2m+1(7)
E Aoim_ ke k,3k 4+ 2) = goktamat - 4.8
2(m—k 1)+1( )Qk(T)Q3k+2(T)QQk+2 +1 ( )

m=k-+1

From (4.7), (4.8) we find

k
sz 2 1\7r
Q/z — E4kq3k+2 = Z A2m+l(ka k)_+'m+—()q2k+2m+1

m=0 Qi(T)
Z Agmii(k, k) Q%Z;;EH)I( )[1 —eB(m, k)lgakrom+1, (4.9)
m=k+1
Blm. k) — As(m—r-1)+1(k, 3k +2)  Qi(r)

Azmi1(k, k) Q3k+2(7“).
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By the Stirling formula I'(n + 1/2)/T(n + 1) ~ n~ /2 as n — oo. Hence, from (1.5) we
find

Vp,s>0: Aspai(p,s) ~2m™1, asm — oo (4.10)

This implies that B(m, k) is bounded with respect to m. Therefore, there exists ¢, =
€o(k) > 0 such that the expression in the brackets in (4.9) is non-negative for all m and
0 < e < gg. This yields (4.1).

To obtain (4.2), we use the equality

Q k+2m
otz = Z Az(m—2k—2)+1(3k + 2,3k + Z)M‘Dk%ﬂqu (4.11)
m=2k+2 Q3k+2(7")

It follows from (4.7) by replacing k by 3k +2 and m by m — 2k — 2. From (4.7), (4.11)
we obtain

2k+1

Q2k 2m—+1(r
G — €G340 = Z Aot (k, k) 5 2(r) I ey o1
k

Z Azm+1(k k)Qzé;zm)H[l —eC(m, k)lgz2k+2m+1,
m=2k+2

C(m, k) :=

Ag(m—2k-2)+1(3k + 2,3k + 2) ( Qx(r) )2
Agm1(k, k) Q3k+2(r)
Using (4.10), we see that C(m, k) is bounded with respect to m. This yields (4.2).
To obtain (4.3), we multiply (4.7) by qr. We get

S Quiszmrlr)

2k 42
Z am+1(k, k —jgﬂl—q%ﬁmﬂ%-
oo Qi(r)

Using, for the product ga2x+2m+14s, the representation (1.4) with p = 2k+2m+1,s = k,
we get a representation of g; by a series in g; with non-negative coefficients where the
coefficient of gsx4o is stricktly positive. This yields (4.3).

Proof of Lemma 7. The representation (4.4) follows immediately from (4.1) since
(qr — €q:3k+2)2 = (qlf — 2eqrq3k12) + €2q§k+2-
To prove (4.6) we represent its left side as

1 1 1 1
—ebqzpy2 + 653%3 - EEbSQ;%q;zkw + 562173qu§1€+2 - 653qgk+2 =
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3| 3 18 1
= b’ {Qf - b—g%wz} + igbngk[qi% — 9eqrqsr+2]+

1. 1
+1gt'lak — 357 ] + 5V o

By (4.3), for sufficiently small €, the expression in the first brackets can be written as a
linear combination of functions ¢; with non-negative coefficients. By (4.1) the analogous
statement holds for the expression in the second brackets. Let us write the expression in
the “hird brackets in the form

. . 3e3 .
‘11‘3 - 35'5@;“2 = Qk:(ql% - 51%(13k+2) + €193k+2 (qﬁ - Tq§k+g> :
€1

Using (4.1), we choose €, = €1(k) > 0 such that the expression in the first parentheses can
be written as a linear combination of ¢; with non-negative coefficients. Then, using (4.2),
we find g9 = go(k) such that the expression in the second parentheses can be written in
the same way for 0 < & < 9. Thus, (4.6) is proved.

Evidently, we get the left hand side of (4.5) from that of (4.6) by adding to the
latter the term ebgsy 2. Therefore, (4.5) is an immediate corollary of (4.6).

Proof of Lemma 8. We write wy in the form

wy, = PR,

where

¢ = exp(—b + ¢&b), pp := exp(b(qr — eqsr+2)), Yr = exp(eb(gsk+2 — 1)), > 0.

By Theorem 1, we have v € L,.. Show that cp; € L, for some ¢ > 0. For this we
rewrite ;. in the form

> pm bZZ]% b‘} 5 & pm
L = — =1+ bg + —% + | —ebgapqa + —2i | + —z,
£k :L;O ok qk 5 q3k+2 6k ,;4 ml ko

where z; 1= g — g3k 2. By (4.4) and (4.6) of Lemma 7, the term z7 and the expression
in the brackets are linear combinations of ¢;’s with non-negative coefficients for ¢ > 0
being small enough. Since any integer m > 3 can be represented in the form m = 2p+ 3¢,
we have z" = (2})P(z})¢ for m > 3. Using (4.4), (4.5) of Lemma 7, we conclude
that z;*,m > 3, are linear combinations of g;’s with non-negative coeflicients. Hence,
cop € L.
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Assume, Lemma 8 is not valid, i.e. wg € Io(L,). Then, evidently, each factor
of wy belongs to Io(L,) as well. Since cpy € I(L,). Then, by Theorem 1, cpr can
be represented in the form (1.9). But, on the other hand, we have the representation
cpy = exp(b(gr — 1) — be(gsp+2 —1)). Using the Remark at the end of no. 2, we obtain a
contradiction.

O

5. Indecomposable elements of L,. Proof of Theorem 5.

We need the following sufficient conditions of indecomposability of an element of
L.

Theorem 7. Assume, f =5 ;- arqe € L., f(z) Z 1. If either

(i) Im > 0,Vk >m: a; =0,

or

(i) Ve >0, A >t: a=a41 =0,

then f(x) € N(L,).

Proof. Asssume, f is not indecomposable. Then we have a factorization f = fifs
where f; € L.,

fi=Y alq#1, j=12

k=-1

Hence

F=Y alalPlap,

p,s=—1

where al(,l)ag) > 0 at least for one pair (p, s) such that p > 0,s > 0. Using (1.4)

and (1.6), we see that neither (i) nor (ii) can be satisfied for f. m

Proof of Theorem 5. Let f = Z arqx € L. In the case f # 1 we set A, :=
k=—1

n

n
Z ak, fn = A;l Z arqr where n is so large that A, is stricktly positive. In the
k=—1 k=—1
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cases f(z) =1 weset f, = (1 — %) q-1+ %qg. In both cases f, € N(L,) by Theorem 7.
It is obvious that f, = f.

]
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ILINSHALA

[kinecl Tip Legendre Fonksiyonlar Serilerinin Yar-Grubunun Aritmetigi

Ozet

Dlphic van-groplanmin 1. Kendall teorisi dizerine dazenlenmiy bo cabsmadda,
ikinei tip Legendre fonksiyonlan serilerinin yan-groplan irdelendi. Temel Eaktorizs-
syon teoremleri ispatlandi, sonsuz biliinebilic elemanlann v ayostinliayan garpanlan
olmayan elemanlann simflan tamamen belirlendi, aynigtinlamayan «lemunlarn sinafina

viogunluin saptand.
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