Tr. J. of Mathematics 21 (1997), 381 - 386. © TÜBİTAK

INTEGRAL CLOSURE OF AN IDEAL RELATIVE TO A MODULE AND $\Delta\text{-CLOSURE}$

Yücel Tıraş

Abstract

The aim in this paper is to give the relation between the Δ -closure of an ideal I in a commutative Noetherian ring R, (see [3]), and the integral closure of the ideal I relative to a Noetherian R-module (see (1.1). Definition) and to give the closure cancellation law.

1. Introduction

The important ideas of reduction and integral closure of an ideal in a commutative Noetherian ring R (with identity) were introduced by Northcott and Rees [2]; a brief and direct approach to their theory is given in [4, (1.1)] and it is appropriate for me to begin by briefly summarizing some of the main aspects.

Let a be an ideal of R. We say that a is a reduction of the ideal b of R if $a \subseteq b$ and there exists $s \in N$ such that $ab^s = b^{s+1}$ (We use N to denote the set of positive integers.). An element x of R is said to be integrally dependent on a if there exists $n \in N$ and elements $c_1, ..., c_n \in R$ with $c_i \in a^i$ for i = 1, ..., n such that

$$x^{n} + c_{1}x^{n-1} + \dots + c_{n-1}x + c_{n} = 0.$$

In fact, this is the case if and only if a is a reduction of a + Rx; moreover,

$$\overline{a} = \{ y \in R : y \text{ is integrally dependent on } a \}$$

is an ideal of R, called the integral closure of a, and is the largest ideal of R which has a as a reduction in the sense that a is a reduction of \overline{a} and any ideal of R which has a as a reduction must be contained in \overline{a} .

In [6], Sharp, Tıraş and Yassi introduced concepts of reduction and integral closure of an ideal I of a commutative ring R (with identity) relative to a Noetherian R-module

¹⁹⁹¹ Mathematics Subject Classification: 13A99-13B22 13B21-13E05

M, and they showed that these concepts have properties which reflect those of the classical concepts outlined in the last paragraph. Again, it is appropriate for me to provide a brief review.

Definition 1.1. We say that I is a reduction of the ideal J of R relative to M if $I \subseteq J$ and there exists $s \in N$ such that $I \cdot J^S \cdot M = J^{S+1}M$. An element x of R is said to be integrally dependent on I relative to M if there exists $n \in N$ such that

$$x^n \cdot M \subseteq \left(\sum_{i=1}^n x^{n-i} I^i\right) \cdot M.$$

In fact, this is the case if and only if I is a reduction of I + Rx relative to M [6, (1.5) (iv)]; moreover, $I^- = \{y \in R : y \text{ is integrally dependent on } I \text{ relative to } M\}$ is an ideal of R, called the integral closure of I relative to M, and is the largest ideal of R which has I as a reduction relative to M. In this paper, I shall indicate the dependence of I^- on the Noetherian R-module M by means of the extended notation $I^{-(M)}$.

The current paper is concerned with the integral closure of an ideal I of a commutative Noetherian ring R relative to M and the Δ -closure of the ideal I. Specifially, for a multiplicatively closed set Δ of non-zero ideals of a commutative Noetherian ring R, I define the Δ -closure I_{Δ} of an ideal I of R and prove that, if Δ is the multiplicatively closed set defined in theorem (2.4) below, then show $I_{\Delta} = I^{-(M)}$ and also the closure cancellation law:

If
$$(IK)^{-(M)} = (JK)^{-(M)}$$
 and $K \in \Delta$ then $I^{-(M)} = J^{-(M)}$

2. The Closure-Cancellation Law

Throughout R will be a Noetherian ring and M will be an non-zero finitely generated R-module. I begin with a definition which will be very useful for my aims.

Definition 2.1. Let I be an ideal in R and Δ a multiplicatively closed set of non-zero ideals of R. The ascending chain condition guarantees that the set $\{(IKM:KM): K \in \Delta\}$ has maximal elements, and since for K and J in Δ (IJKM:JKM) contains both (IJM:JM) and (IKM:KM), we see that the set under consideration in fact contains a unique maximal element. Let I_{Δ}, Δ -closure of I, denote that unique maximal element.

The following theorem gives some useful properties of the Δ -closure of any ideal of R.

Theorem 2.2. Let I and J be ideals of R. Then

- a) $I \subseteq I_{\Delta}$
- **b)** If $I \subseteq J$ then $I_{\Delta} \subseteq J_{\Delta}$

c) $I_{\Delta}J_{\Delta}\subseteq (IJ)_{\Delta}$

Proof. (a) and (b) are very clear so I omit their proof. For (c), let $x \cdot y \in I_{\Delta}I_{\Delta}$ with $x \in I_{\Delta}$ and $y \in I_{\Delta}$. Then there exist ideals K_1 and K_2 in Δ such that $x \in IK_1M : K_1M$ and $y \in JK_2M : K_2M$. Therefore $xyK_1K_2M \subseteq IJK_1K_2M$, so $xy \in (IJK_1K_2M : K_1K_2M) \subseteq (IJ)_{\Delta}$, so it follows that (c) holds.

Netx I give the first result, which I promised in the introductory section, in two steps.

Theorem 2.3. Let Δ be a multiplicatively closed set of ideals of R such that each ideal in Δ contains an element of R which is a non-zerodivisor on M. Let I_{Δ} be as in (2.1). Then $I_{\Delta} \subseteq I^{-(M)}$.

Proof. Let $I_{\Delta} = (IKM : KM)$ for a suitable $K \in \Delta$ and let $x \in I_{\Delta}$. Suppose that KM is generated by $a_1, ..., a_n$. Then for $x \in I_{\Delta}$ and $1 \le i \le n$, we have

$$x \cdot a_i = \sum_{j=i}^n b_{ij} a_j$$
 with $b_{ij} \in I$.

Now by [5, (13.15)] and since $K \in \Delta$, a standard determinant argument shows that

$$x^{n} + c_{1}x^{n-1} + \dots + c_{n-1}x + c_{n} \in (O:_{R}M),$$

where $c_i \in I^i$. This means \overline{x} is integrally dependent on \overline{I} where "-" refers to the natural ring homomorphism $R \longmapsto R/O :_M$. Thus $\overline{x} \in (\overline{I})^-$, the classical integral closure of $\overline{I}\left(=\frac{I+O:_RM}{O:_RM}\right)$ in \overline{R} . Now the result follows from [6, (1.6)].

Theorem 2.4. Let $\Delta = \{J : J \text{ is an ideal of } R \text{ which contains a non-zerodivisor on } M\}$. Assume that $I \in \Delta$. Let I_{Δ} be as in (2.3). Then

$$I_{\Delta} = I^{-(M)}$$
.

Proof. Let $x \in I^{-(M)}$. Then by [6, (1.5) (iv)], I is a reduction of I + Rx relative to M. Then there exists $n \in N$ such that $I(I + Rx)^n = (I + Rx)^{n+1}M$. Suppose $I_{\Delta} = (IKM : KM)$ for a suitable $K \in \Delta$. Then

$$x \cdot (I + Rx)^n \cdot M \subseteq I \cdot (I + Rx)^n \cdot M$$

Since $(I+Rx)^n \in \Delta$ and by the maximality of I_{Δ} , we get $x \in I_{\Delta}$. Now the result follows from (2.3).

Theorem 2.5. Let Δ and I be as in (2.4). Then

$$I_{\Delta} = I_{\Delta}KM : KM \text{ for all } K \in \Delta.$$

Proof. By the definition of I_{Δ} and (2.4), it is readily seen that $I_{\Delta}KM : KM \subseteq (I_{\Delta})_{\Delta} = (I^{-(M)})^{-(M)}$. Thus $I_{\Delta}KM : KM \subseteq I_{\Delta}$ by [6, (1.5) (ix)]. This completes the proof since the reverse is always true.

The following proposition gives another description of I_{Δ} and it will be used in the proof of the closure cancellation law (2.8).

Proposition 2.6. Let Δ and I be as in (2.4). Then

$$I_{\Delta} = I_{\Delta}KM : KM = (IK)_{\Delta}M : KM \text{ for all } K \in \Delta.$$

Proof. $I_{\Delta} = I_{\Delta}KM : KM \subseteq (IK)_{\Delta}M : KM$ by (2.5) and (2.2) (c). Let $x \in (IK)_{\Delta}M : KM$. Then $xKM \subseteq (IK)_{\Delta}M$. By the definition $(IK)_{\Delta} = IKJM : JM$ for a suitable $J \in \Delta$. Thus we get $x \in I_{\Delta}$. This completes the proof.

Remark 2.7. Let Δ and I be as in (2.4). Also let "-" refer to the natural ring homomorphism $R \to R/O :_R M$.

$$Let\Delta' = \left\{ \overline{J} = \frac{J + O :_R M}{O :_R M} : J \in \Delta \right\}.$$

Then it is easy to see that $\overline{I}_{\Delta} = (\overline{I})_{\Delta'}$ From (2.6) we can easily get that

$$(\overline{I})_{\Delta'} = (\overline{I})_{\Delta'} \overline{K} M : (\overline{IK})_{\Delta'} M : \overline{K} M \text{ for all } \overline{K} \in \Delta'.$$

Now I am in the position to give the main theorem which I promised earlier:

Theorem 2.8. (Closure-cancellation law). Let Δ and I be as in (2.4). Also let $J \in \Delta$. If $(IK)^{-(M)} = (JK)^{-(M)}, K \in \Delta$, then $I^{-(M)} = J^{-(M)}$.

Proof. Let "-" and Δ' be as in (2.7)

Suppose that $(IK)^{-(M)} = (JK)^{-(M)}$.

Let $x\in I^{-(M)}$. Then by $[6,\,(1.6)],\ \overline{x}\in \overline{I}^{-(M)}=\left(\frac{I+O:_RM}{O:_RM}\right)^-$, the integral closure of the ideal \overline{I} ind \overline{R} . Then, as is mentioned in the introductory section, \overline{I} is a reduction of $(\overline{I}+\overline{R}\overline{x})$. Thus there exists $s\in N$ such that $\overline{I}\cdot(\overline{I}+\overline{R}\overline{x})^s=(\overline{I}+\overline{R}\overline{x})^{s+1}$.

Therefore we get

$$\overline{x}(\overline{I} + \overline{R}\overline{x})^s \subseteq \overline{I}(\overline{I} + \overline{R}\overline{x})^s.$$

Hence

$$\overline{x}\overline{K}(\overline{I}+\overline{R}\overline{x})^sM\subseteq \overline{IK}(\overline{I}+\overline{R}\overline{x})^sM$$
 for all $\overline{K}\in\Delta'$.

Thus

$$\overline{x} \in (\overline{IK}(\overline{I} + \overline{R}\overline{x})^s M : \overline{K}(\overline{I} + \overline{R}\overline{x})^s M).$$

Since
$$(IK)^{-(M)} = (JK)^{-(M)}, (\overline{IK})_{\Delta'} = (\overline{JK})_{\Delta'}$$
 by (2.4) and (2.7). Then $\overline{x} \in ((\overline{IK})_{\Delta'}(\overline{I} + \overline{R}\overline{x})^sM : \overline{K}(\overline{I} + \overline{R}\overline{x})^sM)$ by (2.2) (a). Thus $\overline{x} \in ((\overline{JK})_{\Delta'}(\overline{I} + \overline{R}\overline{x})^sM : \overline{K}(\overline{I} + \overline{R}\overline{x})^sM)$. Now by (2.7) we get $x \in J_{\Delta} = J^{-(M)}$. Therefore it follows by symmetry that $I^{-(M)} = J^{-(M)}$ as desired.

As stronger converse is true as will be shown in the following theorem. \Box

Theorem 2.9. Let Δ , I and J be as in (2.8). Then the following are equivalent:

- a) ILM = JLM for some $L \in \Delta$
- **b)** $(IK)^{-(M)} = (JK)^{(-(M)} \text{ for all } K \in \Delta$
- c) $I^{-(M)} = J^{-(M)}$

Proof. a) \to b) This is easy by (2.2) (b), (2.4) and [6, (1.5) (ix)].

- b) \rightarrow c) This is clear by (2.8).
- c) \rightarrow a) $I^{-(M)} = I_{\Delta} = IF_1M : F_1M = J_{\Delta} = J^{-(M)} = JF_2M : F_2M$ for suitable $F_1, F_2 \in \Delta$. Let $L = F_1F_2$. Then $F_1F_2 \in \Delta$ and ILM = (ILM : LM)LM = (JLM : LM)LM = JLM. This completes the proof.

Acknowledgements

In am exteremely grateful to Prof. R. Y. Sharp, The University of Sheffield-England, for his valuable advice and suggestions on this work.

TIRAŞ

References

- [1] D. Katz., S. McAdam and L.J. Ratliff Jr. 'Prime divisor and divisorial ideals', J. Pure and Applied Algebra 59 (1989) 179-186.
- [2] D.G. Northcott and D. Rees, 'Reduction of ideals in local rings', Proc. Cambridge Philos. Soc. 50 (1954) 145-158.
- [3] L.J. Ratliff, Jr., ' Δ -closures of ideals and rings' Transactions of the American Mathematical Society, Volume 313, (1989) 221-247.
- [4] D. Rees and R.Y. Sharp, 'On a theorem of B. Teissier on multiplicities of ideals in local rings', J. London Maths. Soc. (2) 18 (1978) 449-463.
- [5] R.Y. Sharp, 'Steps in Commutative Algebra' Cambridge University press 1990.
- [6] R.Y. Sharp, Y. Tıraş and M. Yassi, 'Integral closure of ideals relative to local cohomology modules over Quasi-Unmixed local rings', J. London Maths. Soc. (2) 42 (1990) 383-392.

Bir İdealin Bir Modüle Göre İntegral Kapanışı ve Δ -Kapanış

Özet

Bu makalede temel amaç Noetherian bir halka üzerindeki bir I idealinin [3]'de tanımlanan Δ -kapanışı ile I idealinin bir Noetherian M modülüne göre (1.1) Tanımda verilen integral kapanışı arasındaki ilişki ve ayrıca kapanış sadeleştirme kuralını vermektir.

Yücel TIRAŞ Hacettepe University Department of Mathematics Beytepe Campus 06532 Beytepe, Ankara-TURKEY Received 14.10.1996