ON A GENERALISATION OF LIE IDEALS IN PRIME RINGS*

Arif Kaya

Abstract

Let R be a prime ring of characteristic 3, σ and τ automorphisms of R, U a nonzero (σ,τ) -Lie ideal of R, d a nonzero derivation of R such that $\sigma d=d\sigma, \tau d=d\tau, d(U)\subseteq U$, and $d^2(U)\subseteq Z$, the center of R. Then we prove that $U\subseteq Z$. This provides a proof of the Theorem in [4], when char R=3.

1. Introduction

Let R be a ring, U an additive subgroup of R, and σ and τ two automorphisms of R. For each pair x,y in R, we set $[x,y]_{\sigma,\tau}=x\sigma(y)-\tau(y)x$ and $Z_{\sigma,\tau}=\{r\in R|r\sigma(x)=\tau(x)r, \text{ for all }x\in R\}$. U is called a (σ,τ) -Lie ideal of R if both $[U,R]_{\sigma,\tau}$ and $[R,U]_{\sigma,\tau}$ are in U.

In this paper, we will prove the following theorem, which will provide a proof of [4, Theorem] when char R = 3.

Theorem. Let R be a prime ring of characteristic 3, σ and τ two automorphisms of R, U a nonzero (σ, τ) -Lie ideal of R. If Z is the center of R and d is a nonzero derivation of R such that $\sigma d = d\sigma, \tau d = d\tau, d(U) \subseteq U$, and $d^2(U) \subseteq Z$, then $U \subseteq Z$.

In what follows, R,Z,U,σ,τ and $d:x\longmapsto x'$ have the same meaning as in the above theorem.

We need the following lemmas.

Lemma 1. Let S be a prime ring of characteristic not 2, $D: x \mapsto x'$ a nonzero derivation of S with $D^3 = 0$, C the center of S, and A a nonzero subset of S such that $A'' \subseteq C$.

(a) If A is a right ideal of S, then $S'' \subseteq C$ or A'A = 0.

^{*}AMS subject classification (1991 revision): Primary: 16 W 25, Secondary: 16 U 80. This work has been supported by $T\ddot{U}B\dot{I}TAK$, Ankara (TBAG- \dot{Q} 2).

(b) If A is an ideal of S, then $S'' \subseteq C$.

Proof. (a) Assume that $S'' \not\subseteq C$. For any $a \in A$ and $s \in S, a''$ and a''s'' = (as'')'' are central, so A'' = 0 and hence

$$0 = (as')'' = a's''. (1)$$

Replacing s by s'r in (1) we get a's'r''=0 and substituting ar' for a in (1) and using the last equation we obtain ar''s''=0 for all $a\in A$, $r, s\in S$. Since A is a right ideal, follows that r''s''=0. Taking ra in place of r here and noting that a's''=0, one has r''As''=0 for all $r,s\in S$. Thus, r''A=0, so 0=(ra)''b=r'a'b and hence

$$0 = (rs)'a'b = r'sa'b$$
 for all $r, s, \in S, a, b, \in A$.

Therefore A'A = 0.

(b) Suppose that $S'' \not\subseteq C$. We have seen in part (a) that r''A = 0 for all $r \in S$, which implies that S'' = 0, a contradiction.

Lemma 2. Let S be a prime ring with center C and $D: x \longmapsto x'$ a nonzero derivation of S.

- (a) If r''S's'' = 0 for all $r, s \in S$, then there is no $u \in S$ such that $0 \neq u'' \in C$.
- (b) Let A be a nonzero ideal of S, char $S \neq 2$, and $D^3 = 0$. If A''b = 0 for some $b \in S$, then either there is no $u \in S$ such that $0 \neq u'' \in C$ or b = 0.

Proof. (a) If there were $u \in S$ such that $0 \neq u'' \in C$, then by hypothesis we would get

$$0 = u''S'u'' = u''S'Su'' = u''S' = u''SS' = S',$$

contradicting $D \neq 0$.

(b) For any $r, s, t \in S, a \in A, 0 = (r'a)''b = r''a'b$ and hence 0 = r''(ts''a)'b = r''t's''ab. Thus, either r''S's'' = 0 for all $r, s \in S$ or Ab = 0. The former case implies, by part (a), that there is no $u \in S$ such that $0 \neq u'' \in C$. The latter case forces b to be zero.

Lemma 3. Let S be a ring with center C and D: $x \mapsto x'$ a nonzero derivation of S with $D^3 = 0$. Let $b \in S$ and $c \in C$. Suppose that

$$[[s', b'], b'] + c[s', b'] = 0 \text{ for all } s \in S,$$
(2)

then

- (a) $2[s'', b']^2 = 0$ for all $s \in S$.
- (b) If S" is commutative and

$$[r'', [s'', t']] = 0 \text{ for all } r, s, t \in S,$$
 (3)

then

$$[r'', [r'', b]]b'' = 0$$
 for all $r \in S$.

If b'' is not a zero-divisor and S is semiprime, then $2S'' \subseteq C$.

Proof. (a) By (2), we write

$$[[s'', b], b'] + c[s'', b'] = 0 \text{ for all } s \in S.$$
(4)

For this and (2) we get

$$\begin{split} 0 &= [[(r's'')',b'],b'] + c[(r's'')',b'] \\ \\ &= r''([[s'',b'],b'] + c[s'',b']) + ([[r'',b'],b'] + c[r'',b'])s'' \\ \\ &+ 2[r'',b'][s'',b'], \end{split}$$

so

$$2[r'', b'][s'', b'] = 0$$
 for all $r, s \in S$.

In particular, $2[s'', b']^2 = 0$ for all $s \in S$.

(b) Now by (3) and by the commutativity of S'' we have

$$0 = [r'', [r'', (st')']] = 2[r'', s'][r'', t'] + [r'', [r'', s]]t''$$
(5)

for all $r, s, t \in S$. We substitute b for s and t in the last equation and employ part (a) to obtain

$$[r'', [r'', b]]b'' = 0$$
 for all $r \in S$.

If b'' is not a zero-divisor, then [r'', [r'', b]] = 0 for all $r \in S$. Next, by (3) and by the commutativity of S'' we can write

$$0 = [r'', [r'', (s'b)']] = 2[r'', s'][r'', b']$$
 for all $r, s \in S$.

Hence (5) implies that [r'', [r'', s]] = 0. Thus

$$0 = [r'', [r'', st]] = 2[r'', s]][r'', t],$$

so,

$$0 = 2[r'', st][r'', s] = 2[r'', s]t[r'', s]$$
 for all $r, s, t \in S$.

Since S is semiprime we obtain 2[r'', s] = 0 for all $r, s \in S$, that is, $2S'' \subseteq C$.

After these general lemmas, we consider our ring R, and collect some facts in a lemma for convenience.

Lemma 4. If char $R \neq 2$ and $U \not\subseteq Z$, then

- (a) U'' and Z are not zero.
- (b) $[R, U]_{\sigma, \tau}, U'$, and R'' are not contained in Z.
- (c) There exists a nonzero ideal M of R such that

$$[R, M]_{\sigma, \tau} \subseteq U$$
 but $[R, M]_{\sigma, \tau} \not\subseteq Z_{\sigma, \tau}$.

(d) [U,a] = 0 implies that $a \in Z$ for each $a \in R$.

Proof. (a) follows from [3, Theorem 3.5.7] and the fact that $U'' \subseteq Z$, (b) follows from Lemmas 1 and 2 in [4] and from Theorem 3 in [2], and (c) and (d) follow from Lemma 3.5.2, Theorems 2.6.7 and 2.6.8 in [3].

In the sequel, M will stand for the ideal guaranteed by Lemma 4(c). We note the important identities in R.

$$[x, yz]_{\sigma,\tau} = \tau(y)[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z),$$

$$[xy,z]_{\sigma,\tau} = x[y,\sigma(z)] + [x,z]_{\sigma,\tau}y.$$

Lemma 5. Let char R = 3 and $U \nsubseteq Z$.

- (a) If U'' = 0, then $d^3 = 0$.
- (b) If $d^3 = 0$, then Z' = 0.

Proof. (a) It is well-known ([1]) that d^3 is also a derivation of R, so $[r,u]_{\sigma,\tau} \in U$ implies that $[r''',u)_{\sigma,\tau} = [r,u]_{\sigma,\tau}''' = 0$, that is $[r''',u]_{\sigma,\tau} = 0$ for all $r \in R, u \in U$. Replacing r by $rv,v \in U$, here we obtain $r'''[v,\sigma(u)] = 0$ and replacing r by $rs,s \in R$, we get

$$r'''s[v,\sigma(u)] = 0$$
 for all $r, s \in R, u, v \in U$.

Since R is prime, either $d^3 = 0$ or $[U, \sigma(U)] = 0$. The latter implies, by Lemma 4(d), that $U \subseteq Z$, a contradiction.

(b) We first show that Z'' = 0. Suppose not. For any $r \in R, m \in M$, we have

$$Z \ni [r, m]_{\sigma, \tau}^{"} = [r'', m]_{\sigma, \tau} + 2[r', m']_{\sigma, \tau} + [r, m'']_{\sigma, \tau}. \tag{6}$$

Replacing r by $rc', c \in Z$, and noting that $d^3 = 0$ we obtain $[r, m]'_{\sigma,\tau}c'' \in Z$ and since $Z'' \neq 0$, it follows that $[r, m]'_{\sigma,\tau} \in Z$. Again by replacing r by $rc', c \in Z$, here we have $[r, m]_{\sigma,\tau} \in Z$ for all $r \in R, m \in M$. We now substitute $r\sigma(m)$ for r in the last relation and obtain $[r, m]_{\sigma,\tau}\sigma(m) \in Z$ which implies that either $[r, m]_{\sigma,\tau} = 0$ for all $r \in R$ or $\sigma(m) \in Z$. We set

 $K=\{m\in M|[r,m]_{\sigma,\tau}=0 \text{ for all } r\in R\}$ and $L=\{m\in M|\sigma(m)\in Z\}$. Then $M=K\cup L$, so by Brauer's Trick, either M=K or M=L. In the letter case, $M\subseteq Z$ which forces R to be commutative, since a prime ring having a commutative one-sided ideal must be commutative. This is impossible because $U\not\subseteq Z$. In the former case, $[R,M]_{\sigma,\tau}=0\subseteq Z_{\sigma,\tau}$, a contradiction to the choice of M. Thus Z''=0.

Next, we show that Z'=0. Suppose not. For all $r \in R, u \in U$,

$$Z \ni [r, u]_{\sigma, \tau}^{"} = [r'', u]_{\sigma, \tau} + 2[r', u']_{\sigma, \tau} + [r, u'']_{\sigma, \tau}$$
(7)

and for any $c \in Z$,

$$Z \ni [rc, u]_{\sigma, \tau}'' = ([r'', u]_{\sigma, \tau} + 2[r', u']_{\sigma, \tau} + [r, u'']_{\sigma, \tau})c + 2[r, u]_{\sigma, \tau}'c'$$

imply that

$$[r,u]'_{\sigma,\tau} \in Z$$
, and so $Z \ni [rc,u]'_{\sigma,\tau} = [r,u]'_{\sigma,\tau}c + [r,u]_{\sigma,\tau}c'$

gives us that $[R, U]_{\sigma, \tau} \subseteq Z$, which contradicts Lemma 4(b). Therefore Z' = 0.

Lemma 6. Let char $R = 3, d^3 = 0$, and $U \not\subseteq Z$. Then

- (a) $\sigma(c) = \tau(c)$ for all $c \in Z$, hence $[R, Z]_{\sigma, \tau} = 0$.
- (b) $[Z, M'']_{\sigma, \tau} = 0.$

Proof. By Lemma 5(b), Z' = 0.

(a) Replacing r by $c \in Z$ in (6) we get

$$[c, m'']_{\sigma, \tau} \in Z \text{ for all } c \in Z, m \in M.$$
 (8)

Since $Z \neq 0$ by Lemma 4(a), it follows that $\sigma(m'') - \tau(m'') \in Z$ for all $m \in M$. Hence

$$\sigma(m''c) - \tau(m''c) = \sigma((mc)'') - \tau((mc)'') \in Z$$

implies that $\sigma(m'')(\sigma(c) - \tau(c)) \in Z$. Thus either $M'' \subseteq Z$ or $\sigma(c) - \tau(c) = 0$ for all $c \in Z$. The former case, together with Lemma 1(b), yields a contradiction to $R'' \not\subseteq Z$ (see Lemma 4(b)). Thus $\sigma(c) = \tau(c)$ for all $c \in Z$, from which we deduce immediately that $[R, Z]_{\sigma,\tau} = 0$.

(b) By (8)

$$[c, m'']_{\sigma, \tau}(\tau(m'') + \sigma(m'')) = [c, (mm'')'']_{\sigma, \tau} \in Z,$$

so either $[c,m'']_{\sigma,\tau}=0$ for all $c\in Z$ or $\sigma(m'')+\tau(m'')+\tau(m'')\in Z$. Suppose that $[c_0,m_0'']_{\sigma,\tau}\neq 0$ for some $c_0\in Z$ and $m_0\in M$. Then

$$\sigma(m_0'') + \tau(m_0'') \in Z. \tag{9}$$

Also by (8), $[c_0, m_0'']_{\sigma,\tau} \in Z$, which implies that $c_0(\sigma(m_0'') - \tau(m_0'')) \in Z$. Since $c_0 \neq 0$, it follows that $\sigma(m_0'') - \tau(m_0'') \in Z$. This, together with (9), gives us that $m_0'' \in Z$ and hence by part (a), $[c_0, m_0'']_{\sigma,\tau} = 0$, a contradiction. Therefore, $[Z, M'']_{\sigma,\tau} = 0$.

Lemma 7. If char R = 3, $d^3 = 0$, and $U \nsubseteq Z$, then

(a)
$$[r, s'']_{\sigma, \tau} = [r, \sigma(s'')]$$
 for all $r, s \in R$.

(b)
$$\sigma(r'') = \tau(r'')$$
 for all $r \in R$.

Proof. (a) By Lemma 6(b),

$$0 = [c, m'']_{\sigma, \tau} = c(\sigma(m'') - \tau(m'')) = \sigma(m'') - \tau(m'')$$

for all $c \in \mathbb{Z}$ and $m \in M$. Hence $[r, m'']_{\sigma, \tau} = [r, \sigma(m'')]$. Thus,

$$[r, (ms'')'']_{\sigma,\tau} = [r, \sigma((ms'')'')]$$

which implies that

$$\sigma(m'')([r, s'']_{\sigma, \tau} - [r, \sigma('')]) = 0 \text{ for all } r, s \in R, \ m \in M.$$

We fix r and s and set $b = \sigma^{-1}([r, s'']_{\sigma, \tau} - [r, \sigma(s'')])$. Then M''b = 0. Since $0 \neq U'' \subseteq Z$, it follows from Lemma 2(b) that b = 0.

(b) Substitution $0 \neq c \in Z$ for r in part (a) yields immediately the required result.

Lemma 8. Let char $R = 3, d^3 = 0$, and $U \nsubseteq Z$. Then

- (a) R'' is commutative.
- (b) $[r_0'', u_0']_{\sigma, \tau} \neq 0$ for some $r_0 \in R, u_0 \in U$.

Proof. (a) By (6) and by Lemma 7(a), $[r'', \sigma(m'')] = [r'', m'']_{\sigma,\tau} \in \mathbb{Z}$, so $[r'', m''] \in \mathbb{Z}$ for all $r \in \mathbb{R}$, $m \in M$. Hence,

$$[r', (mr'')''] = [r'', m'']r'' \in Z,$$

which implies that either [r'', m''] = 0 for all $m \in M$ or $r'' \in Z$. In either case, [r'', m''] = 0 for all $r \in R$ and $m \in M$. Thus,

$$0 = [r'', (ms'')''] = [r'', m''s''] = m''[r'', s''], r, s \in R, m \in M.$$

Since $0 \neq U'' \subseteq Z$, it follows from Lemma 2 (b) that [r'', s''] = 0.

(b) Suppose, to the contrary, that $[r'', u']_{\sigma,\tau} = 0$ for all $r \in R$, $u \in U$. Since $U'' \subseteq Z$, $[R, U'']_{\sigma,\tau} = 0$ by Lemma 6(a). So,

$$Z\ni [r''\sigma(u),u]_{\sigma,\tau}''=[r'',u]_{\sigma,\tau}\sigma(u'')$$
 for all $r\in R,\ u\in U$.

Hence either u''=0 or $[r'',u]_{\sigma,\tau}\in Z$ for all $r\in R$. Let $K=\{u\in U|u''=0\}$ and $L=\{u\in U|[r'',u]_{\sigma,\tau}\in Z$ for all $r\in R\}$ then $U=K\cup L$ and Brauer's Trick shows that either U=K or U=L. The former case is impossible since $U''\neq 0$ by Lemma 4(a). Thus, U=L and hence $[r'',u]_{\sigma,\tau}\in Z$ for all $r\in R, u\in U$. Now we deduce from (7) and $[R,U'']_{\sigma,\tau}=0$ that $[r',u]_{\sigma,\tau}\in Z$. Hence,

$$Z \ni [(r''s)', u']_{\sigma, \tau} = r''[s', \sigma(u')], \text{ that is, } r''[s', u'] \in Z$$
 (10)

for all $r, s \in R, u \in U$. Since $U'' \neq 0$, letting r be in U we get $[s', u'] \in Z$, so that (10) implies that either $R'' \subseteq Z$, which contradics Lemma 4(b), or [s', u'] = 0 for all $s \in R$ and $u \in U$, which yields that $U' \subseteq Z$, contradicting Lemma 4(b) again. Therefore, $[r''_0, u'_0]_{\sigma,\tau} \neq 0$ for some $r_0 \in R$ and $u_0 \in U$.

Lemma 9. Let char R=3 and $d^3=0$. Then $U \subseteq Z$.

Proof. Suppose, to the contrary, that $U \not\subseteq Z$. We first show that $\sigma(u') = \tau(u')$ for all $u \in U$. Recalling here the fact that $[R, Z]_{\sigma,\tau} = 0$ and that $\sigma(r'') = \tau(r'')$ for all $r \in R$ (see Lemmas 6 and 7) we get

$$Z \ni [u, v']_{\sigma, \tau}^{"} = u''(\sigma(v') - \tau(v'))$$
 for all $u, v \in U$.

Hence

$$\sigma(v') - \tau(v') \in Z$$
 for all $v \in Z$.

On the other hand, since $U' \subseteq U$ we can write

$$Z \ni [r, u']_{\sigma, \tau}^{"} = [r'', u']_{\sigma, \tau}.$$
 (11)

We fix u and set $c = \sigma(u') - \tau(u')$. Then

$$Z \ni [(vs'')'', u']_{\sigma, \tau} = v''[s'', \sigma(u')] + cv''s''$$
 for all $s \in R, v \in U$.

Since R'' is commutative by Lemma 8, it follows that

$$0 = [r'', v''[s'', \sigma(u')] + cv''s''] = v''[r'', [s'', \sigma(u')]],$$

that is,

$$[r'', [s'', \sigma(u'')]] = 0 \text{ for all } r, s \in R, \ u \in U.$$
 (12)

We fix s and u and set $a = [s'', \sigma(u')]$ in (12), then [r'', a] = 0 for all $r \in R$ and

$$0 = [(y\sigma(u')'', a] = y''[\sigma(u'), a] + 2[y', a]\sigma(u''),$$

that is, $y''[\sigma(u'), a] = [y', a]\sigma(u'')$. Substituting $\sigma(u')y$ for y here we obtain

$$\sigma(u'')([y,a]\sigma(u'')+[\sigma(u'),a]y'+y'[\sigma(u'),a])=0 \text{ for all } y\in R.$$

Let $\sigma(u'') \neq 0$. Then

$$[y, a]\sigma(u'') + [\sigma(u'), a]y' + y'[\sigma(u'), a] = 0 \text{ for all } y \in R.$$
 (13)

Since, for any $r \in R$,

$$[r, u']_{\sigma, \tau} = [r, \sigma(u')] + cr, \tag{14}$$

it is easy to see, by (11), that $[\sigma(u'), a] = ca$. Hence, by (13)

$$\sigma(u'')[y, a] + cay' + cy'a = 0.$$

Taking y' in place of y and recalling that ay'' = y''a, we have

$$2cay'' + \sigma(u'')[y', a] = 0$$
 or $cay'' = \sigma(u'')[y', a]$.

Now, substituting $[s'', \sigma(u')]$ for a and employing (14) and (11) one obtains

$$cy''[s'', \sigma(u')] = \sigma(u'')[s'', \sigma(u')]] = \sigma(u'')[y', (s'', u']_{\sigma, \tau} - cs'']$$

= $-c\sigma(u'')[y', s''],$

hence

$$c(y''[s'', \sigma(u')] + \sigma(u'')[y', s'']) = 0.$$
(15)

Let $c \neq 0$, then

$$y''[s'', \sigma(u')] + \sigma(u'')[y', s''] = 0$$
 for all $y, s \in R$.

Commuting this with r'' and using the fact that R'' is commutative we obtain, by (12), that $\sigma(u'')[r'', [s'', y']] = 0$, and since $\sigma(u'') \neq 0$, it follows that

$$[r'', [s'', y']] = 0 \text{ for all } r, s, y \in R.$$
 (16)

Furthermore, $[R, Z]_{\sigma,\tau} = 0$ by Lemma 6(a), so

$$Z\ni [r''\sigma(u),u]_{\sigma,\tau}''=[r'',u]_{\sigma,\tau}\sigma(u'')-[r'',u']_{\sigma,\tau}\sigma(u').$$

We commute this element with $\sigma(u')$ and use (11) to obtain $[[r'',u]_{\sigma,\tau},\sigma(u')]\sigma(u'')=0$ for all $r\in R$, and since $u''\neq 0$ we get $[[r'',u]_{\sigma,\tau},\sigma(u')]=0$. Set $b=\sigma(u)$. Since $[R,U'']_{\sigma,\tau}=0$, it follows from $[r,u]''_{\sigma,\tau}\in Z$ that $[r'',u]_{\sigma,\tau}-[r',u']_{\sigma,\tau}\in Z$. Hence, by (14),

$$0 = [[r'', u]_{\sigma, \tau} - [r', u']_{\sigma, \tau}, b'][[r', u']_{\sigma, \tau}, b'] = [[r', b'] + cr', b'],$$

which implies that [[r',b'],b']+c[r',b']=0 for all $r\in R$. This, together with (16), and Lemma 3(b) give us that $R''\subseteq Z$, which contradicts Lemma 4(b). Consequently, when $\sigma(u'')\neq 0$ in (13), then c in (15) must be zero, that is, for each $u\in U$, either u''=0 or $\sigma(u')=\tau(u')$. Let $K=\{u\in U|u''=0\}$ and $L=\{u\in U|\sigma(u')=\tau(u')\}$. Then $U=K\cup L$ and by Brauer's Trick, either U=K, which gives us a contradiction: U''=0, or U=L, which means that $\sigma(u')=\tau(u')$ for all $u\in U$, as claimed.

We can now complete the proof of this lemma. By (11),

$$Z\ni [r'',u']_{\sigma,\tau}=[r'',\sigma(u')], \text{ that is, } [r'',u']\in Z$$

for all $r \in R, u \in U$, so

$$Z \ni [(rr'')'', u'] = 2r''[r'', u'], \text{ hence } r''[r'', u'] \in Z.$$

This means that either $r'' \in Z$ or [r'', u'] = 0. In either case, [r'', u'] = 0 for all $r \in R, u \in U$. Hence $[r'', u']_{\sigma, \tau} = [r'', \sigma(u')] = 0$ for all $r \in R, u \in U$. This contradicts Lemma 8(b). Therefore $U \subseteq Z$.

We are now ready to prove our theorem.

Proof of the Theorem. Suppose, to the contrary, that $U \not\subseteq Z$. By Lemmas 5 and 9, it is sufficient to show that U'''=0. But this follows from the proof of [4, Theorem]. We give that proof here for convenience. For any $r \in R$, $u, v \in U$, $[r, v]''_{\sigma,\tau} \in Z$ implies that

$$Z \ni [ru'', v]''_{\sigma,\tau} = [r, v]_{\sigma,\tau} u^{(iv)} - ([r', v]_{\sigma,\tau} + [r, v']_{\sigma,\tau}) u''.$$

Hence, from

KAYA

$$Z \ni [rw'', v]_{\sigma,\tau}u^{(iv)} - ([(rw'')', v]_{\sigma,\tau} + [rw'', v']_{\sigma,\tau})u'',$$

it follows that $u'''w'''[r,v]_{\sigma,\tau}\in Z$ for all $u,v,w\in U,r\in R$. So, if $U'''\neq 0$, then $[R,U]_{\sigma,\tau}\in Z$, contradicting Lemma 4 (b). U'''=0.

Acknowledgement.

The author thanks to the referee for his remarks.

References

- [1] N. Jacobson: Lectures in Alstract Algebra, vol. III, Van Nonstrand, Princeton, 1964.
- [2] P.H. Lee-T.K. Lee: On derivations of prime rings, Clinese J. of Math. 9(2), (1981), 107-110.
- [3] M. Soytürk: Türevli Halkalarda Bazı Genelleştirmeler, Doktora Tezi, Cumhuriyet Üniversitesi,
- [4] M. Soytürk: (σ, τ) -Lie ideals in prime rings with derivation, Tr. J. Math. 20 (1996). 233-236.

Asal Halkalarda Lie İdeallerin Bir Genelleşmesi Üzerine

Özet

Bu çalışmada, R karakteristiği 3 ve merkezi Z olan asal bir halka, σ ve τ R nin iki otomorfizması, U R nin sıfırdan farklı bir (σ,τ) -Lie ideali, d R nin $d\sigma = \sigma d$, $d\tau = \tau d$, $d(U) \subseteq U$, $d^2(U) \subseteq Z$ olarak şekilde bir türemesi olmak üzere $U \subseteq Z$ olduğu gösterilmiştir.

Arif KAYA Department of Mathematics Middle East Technical University 06531 Ankara-TURKEY Received 6.7.1995 Revised 8.11.1996