ON ONE SIDED (σ, τ) -LIE IDEALS IN PRIME RINGS

Neşet Aydın

Abstract

In this paper, we proved some results for one-sided (σ, τ) -Lie ideals in prime rings.

1. Introduction

Let R be a ring and U an additive subgroup of R, σ and $\tau: R \to R$ two mappings. In [5] the following definitions were given: (i) $[U,R]_{\sigma,\tau} \subset U$ then U is called (σ,τ) -right Lie ideal of R (ii) U is (σ,τ) -left Lie ideal of R if $[R,U]_{\sigma,\tau} \subset U$ (iii) U is said to be (σ,τ) -Lie ideal of R if U is both a (σ,τ) -left Lie ideal of R and a (σ,τ) -right Lie ideal of R, where the commutator $[x,y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x$ for $x,y \in R$.

In this paper the following results are proved. Let R be a prime ring and $\sigma, \tau \in AutR$, the set of automorphisms of R. (1) Let U be a (σ, τ) -left Lie ideal of R. If $[R, U]_{\sigma,\tau} \subset C_{\sigma,\tau}$ then $\sigma(u) = \tau(u)$, for all $u \in U$ or R is commutative. (2) Let U be a (σ, τ) -left Lie ideal such that $[U, U]_{\sigma,\tau} = 0$ and [U, U] = 0. Then $U \subset Z$. (3) Let U be a (σ, τ) -left Lie ideal of R such that $\tau(u) \neq \sigma(u)$ and $\tau(v) + \sigma(v) \notin Z$, for some $u, v \in U$. (a) There exist a nonzero left ideal A of R and a nonzero right ideal B of R such that $[R, A]_{\sigma,\tau} \subset U$ and $[R, B]_{\sigma,\tau} \subset U$; but $[R, A]_{\sigma,\tau} \not\subset Z$ and $[R, B]_{\sigma,\tau} \not\subset Z$. (b) Suppose a, $b \in R$ such that aUb = 0. Then a = 0 or b = 0. (4). Let R be of characteristic not 2. Suppose U is a nonzero (σ, τ) -right Lie ideal of R such that $U \subset Z$. Then $\sigma = \tau$ or R is commutative. (5) Let R be of characteristic not (2). Suppose U is a nonzero (σ, τ) -Lie ideal of R such that $U \subset C_{\sigma,\tau}$. Then $\sigma = \tau$ or R is commutative.

Throughout this paper R will be a prime ring, $\sigma, \tau \in AutR$, and Z, the center of R, $C_{\sigma,\tau} = \{c \in R : c\sigma(x) = \tau(x)c, \forall x \in R\}$ and C the extended centroid of R (See [7] and [4,p20-31] for the notion of the extended centroid). We will often use the identities: (i) $[xy,z]_{\sigma,\tau} = x[y,z]_{\sigma,\tau} + [x,\tau(z)]y = [y,\sigma(z)] + [x,z]_{\sigma,\tau}y$ and (ii) $[x,yz]_{\sigma,\tau} = \tau(y)[x,z]_{\sigma,\tau} + [x,y]_{\sigma,\tau}\sigma(z)$.

2. Results

Lemma 1. [6, Lemma 3] Let R be a prime ring. If $ab, b \in C_{\sigma,\tau}$ for $a, b \in R$ then $a \in Z$ or b = 0.

Lemma 2. [1, Lemma 4] Let R be a prime ring and $(0) \neq U$ a (σ, τ) -left Lie ideal of R such that $U \subset C_{\sigma, \tau}$ then $U \subset Z$.

Lemma 3. [2, Lemma 3] Let R be a prime ring and $a \in R$ such that aU = (0) (or Ua = (0)). (i) if U is a (σ, τ) -left Lie ideal of R then a = 0 or $U \subset Z$. (ii) if U is a (σ, τ) -right Lie ideal of R then a = 0 or $U \subset C_{\sigma, \tau}$.

Lemma 4. [3, Lemma 2.3] Let R be a prime ring and d, f, g and h be derivations of R. Suppose that

$$d(x)g(y) = h(x)f(y)$$
 for all $x, y \in R$.

If $d \neq 0$ and $f \neq 0$ then there exists $\lambda \in C$ such that $g(x) = \lambda f(x)$ and $h(x) = \lambda d(x)$ for all $x \in R$.

Lemma 5. Let U be a (σ, τ) -left Lie ideal of R. If $U \subset Z$ then $\sigma(u) = \tau(u)$, for all $u \in U$ or R is commutative.

Proof. For all $x \in R$, $u \in U$, $[x,u]_{\sigma,\tau} \in U$. Therefore $\sigma(u) - \tau(u)$, $[x,u]_{\sigma,\tau} \in Z$. Then $[x,u]_{\sigma,\tau} = x\sigma(u) - \tau(u)x = x(\sigma(u) - \tau(u)) \in Z$. By the primeness of R, we conclude $\sigma(u) = \tau(u)$, for all $u \in U$ or R is commutative.

Theorem 1. Let R be a prime ring and U be (σ, τ) -left Lie ideal of R. If $[R, U]_{\sigma, \tau} \subset C_{\sigma, \tau}$, then $\sigma(u) = \tau(u)$, for all $u \in U$ or R is commutative

Proof. For all $x \in R, u \in U, [\tau(u)x, u]_{\sigma,\tau} = \tau(u)[x, u]_{\sigma,\tau} + [\tau(u), \tau(u)]x = \tau(u)[x, u]_{\sigma,\tau} \in C_{\sigma,\tau}$. By Lemma 1 we have for any $u \in U, u \in Z$ or $[x, u]_{\sigma,\tau} = 0$. That is, U is the union of its additive subgroups $L = \{u \in U : u \in Z\}$ and $K = \{u \in U : [R, u]_{\sigma,\tau} = 0\}$. Since a group cannot be the union of two proper subgroups we arrive at U = L or U = K. If U = K then $0 = [xy, u]_{\sigma,\tau} = x[y, \sigma(u)] + [x, u]_{\sigma,\tau}y = x[y, \sigma(u)]$, for all $x, y \in R$ and all $u \in U$. Since R is prime we have $U \subset Z$. By Lemma 5 we prove the theorem.

Example. In [2], N. Aydın, and H. Kandamar, proved that if U is (σ, τ) -Lie ideal and $a \in R$, [a, U] = 0 then $a \in Z$ or $U \subset Z$. The following easy example shows that this is not the case when U is a (σ, τ) -left Lie ideal of R.

$$Let \ R = \left\{ \left(\begin{array}{c} x \ y \\ z^t \end{array} \right) \colon x,y,z,t \in I, \ \ the \ set \ of \ integers \right\} \ \ and \ \ U = \left\{ \left(\begin{array}{c} x \ y \\ 0 \ x \end{array} \right) \colon x,y \in I \right\}.$$

Let $\tau: R \to R, \tau(x) = b \times b$, where $b = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \in R$, then τ is an automorphism of

R.U is a $(1,\tau)$ -left Lie ideal of R such that $U \not\subset Z$. If $a = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \in R$, then $a \not\in Z$ and [a,U]=0.

From now on, we will assume that $\sigma \neq \tau$ on (σ, τ) -left Lie ideal U of R.

Lemma 6. Let R be a prime ring and U be (σ, τ) -left Lie ideal of R. Suppose there exists $a \in R$ such that [a, U] = 0, then $\tau(u) + \sigma(u) \in Z$, for all $u \in U$ or $a \in Z$.

Proof. Assume that $a \notin Z$. From the definition of U for all $x \in R$ and all $u \in U$. $[\tau(u)x,u]_{\sigma,\tau} = \tau(u)[x,u]_{\sigma,\tau} + [\tau(u),\tau(u)]x = \tau(u)[x,u]_{\sigma,\tau} \in U$. Therefore $0 = [\tau(u)[x,u]_{\sigma,\tau},a] = \tau(u)[[x,u]_{\sigma,\tau},a] + [\tau(u),a][x,u]_{\sigma,\tau} = [\tau(u),a][x,u]_{\sigma,\tau}$. Consequently,

$$[\tau(u), a][x, u]_{\sigma, \tau} = 0$$
, for all $x \in R$ and all $u \in U$. (1)

Taking xy for x in (1) we get $[\tau(u), a]x[y, \sigma(u)] = 0$ for all $x, y \in R$ and all $u \in U$. The primeness of R implies that for any $u \in U$, either $[\tau(u), a] = 0$ or $u \in Z$. It implies that $[\tau(u), a] = 0$. That is,

$$[\tau(U), a] = 0. \tag{2}$$

On the other hand, for $u \in U, x, y \in R$, expanding $0 = [[x, u]_{\sigma, \tau}, a]$ and using (2) we have

$$\tau(u)[x,a] = x\sigma(u)a - ax\sigma(u) \text{ for all } x \in R, \text{ and all } u \in U.$$
 (3)

Replacing $xby\ v,\ v\in U$, in (3) we arrive at $U[\sigma(v),a]=0$, for all $v\in U$. By Lemma 3(i) we obtain

$$[\sigma(U), a] = 0. \tag{4}$$

Considering (3) together with (4), one obtains

$$0 = [x, a]\sigma(u) + \tau(u)[a, x] \text{ for all } x \in R, \text{ and all } u \in U.$$
 (5)

Replacing x by xy in (5) and using (5) we have

$$[x, \tau(u)][y, a] = [a, x][y, \sigma(u)] \text{ for all } x \in R, \text{all } u \in U.$$
(6)

Now let $d(x) = [x, \tau(u)], g(y) = [y, a], h(x) = [a, x]$ and $f(y) = [y, \sigma(u)]$ be derivations of R. Moreover, d(x)g(y) = h(x)f(y) by (6). If d = 0 and f = 0 then it is clear that $\sigma(u) + \tau(u) \in Z$ for all $u \in U$. Therefore we may assume that $d \neq 0$ and $f \neq 0$. Then by Lemma 4, (6) implies that there exists $\lambda \in C$ such that

$$\lambda[x, \sigma(u)] = [x, a] = \lambda[\tau(u), x] \text{ for all } x \in R$$
 (7)

Therefore, from (7) we have $\tau(u) + \sigma(u) \in Z$, for all $u \in U$.

Lemma 7. Let R be a prime ring and U be (σ, τ) -left Lie ideal of R. Suppose there exists $a \in R$ such that $[a, U]_{\sigma, \tau} = 0$ and [a, U] = 0, then $\tau(u) + \sigma(u) \in Z$ for all $u \in U$ or a = 0.

Proof. By assumption, there exists a $(0 \neq)u_0 \in U$ such that $\sigma(u_0) \neq \tau(u_0)$. That is, $\sigma(u_0) - \tau(u_0) \neq 0$. By Lemma 6, we have $a \in Z$ or $\tau(u) + \sigma(u) \in Z$, for all $u \in U$. If $a \in Z$ then $0 = [a, u_0]_{\sigma, \tau} = a\sigma(u_0) - \tau(u_0)a = a(\sigma(u_0) - \tau(u_0))$. Since R is prime we have a = 0.

Theorem 2. Let R be a prime ring of characteristic not 2 and U be a (σ, τ) -left Lie ideal of R such that $[U, U]_{\sigma, \tau} = 0$ and [U, U] = 0. Then $U \subset Z$.

Proof. Suppose $U \not\subset Z$. Then by Lemma 7 we get $\tau(u) + \sigma(u) \in Z$ for all $u \in U$. $[\dot{x}v,u]_{\sigma,\tau} = x[v,u]_{\sigma,\tau} + [x,\tau(u)]v = [x,\tau(u)]v \in U$. By hypothesis we also have $0 = [w,[x,\tau(u)]v] = [w,[x,\tau(u)]]v$, for all $x \in R$ and all $u,v,w,\in U$. Therefore we have $[w,[x,\tau(u)]]U = 0$. By Lemma 3 (i), we obtain $[w,[\tau(u),x]] = 0$, for all $u,v\in U$ and all $x\in R$. Now let I_w and $I_{\tau(u)}$ be two inner derivations determined by w and $\tau(u)$ respectively. Then it implies that $I_wI_{\tau(u)}(R) = 0$. By [8, Theorem 1] we arrive at $U \subset Z$. A contradiction.

Lemma 8. Let R be a prime ring and U be both a (σ, τ) -left Lie ideal of R and a subring of R. Then either $\tau(u) + \sigma(u) \in Z$, for all $u \in U$ or U contains a nonzero left ideal of R and a nonzero right ideal of R.

Proof. Suppose that for $u_0 \in U$, $\sigma(u_0) + \tau(u_0) \notin Z$. Then for $x \in R$, $v \in U$, $[xu_0, v]_{\sigma,\tau} = x[u_0, \sigma(v)] + [x, v]_{\sigma,\tau}u_0 \in U$. Then second member of this is in U (since U is both (σ, τ) -left Lie ideal and subring). And os we have

$$x[u_0, \sigma(v)] \in U$$
 for all $v \in U$ and all $x \in R$

We have shown that the left ideal $R[u_0, \sigma(U)]$ is in U. If $R[u_0, \sigma(U)] = 0$, by the primeness of R we obtain $[\sigma^{-1}(u_0), U] = 0$. By Lemma 6, we have $u_0 \in Z$. And so, $\sigma(u_0) + \tau(u_0) \in Z$ gives a contradiction. Similarly, using the identity $[ux, v]_{\sigma,\tau} = u[x, v]_{\sigma,\tau} + [u, \tau(u)]x \in U$ one can obtains that U contains a nonzero right ideal of R.

Theorem 3. Let R be a prime ring. Let U be a (σ,τ) -left Lie ideal of R such that $\tau(v) + \sigma(v) \not\in Z$, for some $v \in U$. Then there exist a nonzero left ideal A of R and a nonzero right ideal B of R such that $[R,A]_{\sigma,\tau} \subset U$ $[R,B]_{\sigma,\tau} \subset U$ but $[R,A]_{\sigma,\tau} \not\subset Z$ and $[R,B]_{\sigma,\tau} \not\subset Z$.

Proof. Let $T = \{x \in R : [R,x]_{\sigma,\tau} \subset U\}$. By the previous note, Theorem 1 in [2], we know T is both a (σ,τ) -left Lie ideal of R and a subring of R such that $U \subset T$. Since $U \not\subset Z$ we have $T \not\subset Z$. By Lemma 8, T contains a nonzero left ideal A of R and a nonzero right ideal B of R. From the definition of T, we obtain $[R,A]_{\sigma,\tau} \subset U$ and $[R,B]_{\sigma,\tau} \subset U$. If $[R,A]_{\sigma,\tau} \subset Z$ then for $x \in R$ and $a \in A, [\tau(a)x,a]_{\sigma,\tau} = \tau(a)[x,a]_{\sigma,\tau} \in Z$. And so, we arrive at $a \in Z$ or $[x,a]_{\sigma,\tau} = 0$. If $[x,a]_{\sigma,\tau} = 0$, for all $x \in R$ then replacing x by xy, we obtain $[x,\tau(a)]y = 0$ for all $x,y \in R$. The primeness of R implies that $a \in Z$. Therefore we have $A \subset Z$. Then for all $x,y \in R$ and all $x \in R$ then $x \in R$ and $x \in R$ this implies that $x \in R$ this implies that $x \in R$ then implies that $x \in R$ then for all $x,y \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ on $x \in R$ and all $x \in R$ on $x \in R$ on $x \in R$ and all $x \in R$ on $x \in$

Theorem 4. Let R be a prime ring. Let U be a (σ, τ) -left Lie ideal of R such that $\tau(v) + \sigma(v) \notin Z$, for some $v \in U$ and $a, b \in R$. If AUb = 0. Then a = 0 or b = 0.

Proof. Assume $b \neq 0$. By Theorem 3, there exists a nonzero right ideal B of R such that $[R,B]_{\sigma,\tau} \subset U$, but $[R,B]_{\sigma,\tau} \not\subset Z$. Therefore, for all $x \in R$ and all $s \in B$, $a[x,s]_{\sigma,\tau}b=0$. Replacing x by xy, we obtain $0=ax[y,s]_{\sigma,\tau}b+a[x,\tau(s)]yb$. In this equation, taking $ub, u \in U$, for x we get

$$a[ub, \tau(s)]yb = 0$$
 for $\forall y \in R, \forall u \in U, \forall s \in B$.

Since R is prime and $b \neq 0$, we have $0 = a[ub, \tau(s)] = aub\tau(s) - a\tau(s)ub = -a\tau(s)ub$. It implies that $a\tau(B)RUb = 0$ because B is a right ideal of R. By Lemma 3(i) and since $b \neq 0$, $Ub \neq 0$. Thus we have $a\tau(B) = 0$ since R is prime. Then $0 = a[x,s]_{\sigma,\tau}b = ax\sigma(s)b - a\tau(s)xb = ax\sigma(s)b$ for all $x \in R$ and all $s \in B$. That is

$$aR\sigma(B)b = 0$$

Since $R\sigma(B)$ is a nonzero ideal of R and $b \neq 0$, the primeness of R implies that a = 0. \square

Lemma 9. Let R be a prime ring of characteristic not 2. Suppose U is a nonzero (σ, τ) -right Lie ideal of R such that $U \subset Z$. Then $\sigma = \tau$ or R is commutative

Proof. Assume that R is not commutative. For all $x \in R$ and all $u \in U$, $[u, x]_{\sigma, \tau} = u\sigma(x) - \tau(x)u = u(\sigma(x) - \tau(x)) \in Z$. Since R is prime we have u = 0 or $\sigma(x) - \tau(x) \in Z$, for all $x \in R$ and all $u \in U$. Since $U \neq (0)$ we get $\sigma(x) - \tau(x) \in Z$, for all $x \in R$. Hence for all $x, y \in R$, $0 = [\sigma(x) - \tau(x), y] = [\sigma(x), y] - [\tau(x),]$, from which we get

$$[\sigma(x), y] - [\tau(x), y] = 0 \text{ for all } x, y \in R.$$
(8)

Replacing x by x^2 in (8) and using (8) and char $R \neq 2$, we obtain $(\sigma(x) - \tau(x))[\sigma(x), y] = 0$. Since R is prime we get $\sigma(x) = \tau(x)$ or $x \in Z$, for any $x \in R$. Therefore R is the union of its additive subgroups $\{x \in R : \sigma(x) = \tau(x)\}$ and $\{x \in R : x \in Z\}$. Since a group cannot be the union of two proper subgroups and we have assumed that R is not commutative, it follows that $\sigma(x) = \tau(x)$, for all $x \in R$.

Theorem 5. Let R be a prime ring of characteristic not 2. Suppose U is a nonzero (σ, τ) -Lie ideal of R such that $U \subset C_{\sigma, \tau}$. Then $\sigma = \tau$ or R is commutative

Proof. By Lemma 2 we have $U \subset Z$. And so, by Lemma 9 the proof of theorem is completed.

References

- [1] Aydın, N. and Soytürk, M.: (σ, τ) -Lie Ideals in Prime Rings with Derivation, Tr. J. of Mathematics, 19(2), (1995), 239-244.
- [2] Aydın, N. and Kandamar, H.: (σ, τ) -Lie Ideals in Prime Rings, Tr. J. of Math., 18(2), (1994), 143-148.
- [3] Bresar, M.: Centralizing Mappings and Derivations in Prime Ring, J. of Algebra 156 (1993), 385-394.
- [4] Herstein, I.N.: Rings with Involution, Univ. of Chicago Press, Chicago, 1976.
- [5] Kaya, K.: (σ, τ) -Right Lie Ideals in Prime Rings, Proc. 4. National Mathematics Symposium, Antakya, 1991.
- [6] Kaya, K.: On (σ, τ)-Derivation of Prime Ring, Doğa TU. Math. D.C. 12, s. 2 (1988), 46-51.
- [7] Martindale III, W.S.: Prime Rings Satisfying a Generalized Polynomial Identity. J. Algebra 12 (1969), 576-584.
- [8] Posner, E.C.: Derivations in Prime Rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

Asal Halkalarda Tek Yanlı (σ, τ) - Lie İdealler

Özet

Bu makalede, asal halkalarda tek yanlı $(\sigma,\tau)\text{-Lie}$ ide
aller için bazı sonuçlar ispatlanmıştır.

Neşet AYDIN Mersin University Faculty of Arts and Sciences Department of Mathematics 33100 Mersin-TURKEY

Received 8.12.1995 Revised 4.12.1996