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ON THE SOLUTION OF THE E.P.D. EQUATION USING
FINITE INTEGRAL TRANSFORMATIONS

Nege Dernek

Abstract

In this paper, a solution is given for the following initial boundary value problem:
k
Au = uy + ?ut + g(z,t) (t > 0)
4(0,t) = u(a,t) =0

u(x,0) = f(z), ut(x,0) =0

where z,a € R", t is the time variable, k < 1,k # —1,—2,—3,... is a real parame-

ter, A is the n dimensional Laplace operator, f and g real analytic functions. The

equation in this problem is known as the nonhomogeneous Euler-Poisson-Darboux

(E.P.D.) Equation. The solution is obtained using finite integral transformation

technique and is the sum of two uniformly and absolutely convergent power series.
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1. Introduction

Let us consider the following nonhomogeneous initial boundary value problem

Au=uy + —];—:ut +g(z,t) (t > 0) (1)
u(0,t) = u(a,t) =0 (2)
u(z,0) = f(z),us(z,0) =0 (3)
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where =z = (z1,72,...,Zn),a = (a1,02,...,a,) € R", t is the time variable, k < 1 is
a real parameter, A is the n dimensional Laplace operator, f and g are real analytic
functions.

(1) is known as the nonhomogeneous Euler-Poisson-Darboux (E.P.D.) Equation.
The initial value problem (1), (3) was solved by Germain and Bader [3] for f(z) =0 and
n=2k= % using Riemann’s method. The case n = 3,k > 0 was considered by Diaz and
Lunford [2] using Hadamard’s method. In this case however it didnot lead to divergent
integrals. The solution of the n dimensional initial value problem (1), (3) was given by
Young [5] for f(z) = 0. In Young’s paper extensive use of the techniques of Davis [1]
and Diaz and Lunford [2] was made. The solution of the nonhomogeneous problems can
result in quite complicated formulas. In the present paper we shall consider the initial
value problem (1), (2), (3) and apply a new solution method which consists of using
finite integral transformations (see [4]). Finite integral transformation method was used
to solve some initial boundary value problems (For example, Daniel Bernoulli’s problem
of the vibrations of a heavy thread, the problems of small vibrations of a rectangular
membrane fastened at the edges etc. (see [4], pp. 542-562). In the present paper finite
integral transformation method is used for the first time for the nonhomogeneous E.P.D.
equation. The solution is expressed in terms of uniformly convergent power series for
k<1 and k #,1,-2,.... The solution has been obtained a much simpler manner than
by other methods mentioned above.

Let us seek a solution to initial boundary value problem (1), (2), (3) in the form
of a sum

uw(z,t) = v(z,t) + w(z,t) (4)

where v(z,t) is the solution to the nonhomogeneous equation

k
Av = vy + ;'Ut + g(x, t) (t > 0) (5)

satisfying the initial-boundary conditions

v(z,0) = v(z,0) =0 (6)

v(0,t) = v(a,t) = 0. (7

and w(zx,t) is the solution to the homogeneous equation

k
Aw = wy + ?wt (t > 0) (8)

satisfying the initial-boundary conditions
w(z,0) = f(z),w(z,0) =0 9)
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w(z,0) = w(a,t) =0 (10)

We first consider the problem (5), (6), (7) and apply a finite integral transformation
to each variable z1,z2,...,2, respectively on the intervals (0,a;) (i = 1,2,...,n).
According to the terminology of finite integral transformations given in [4], the kernel
of this transformation in the ¢-th step is

2 TY;
K(z;,y;) = —sin yza:z-.
Qa; a;
The transformed equation will not contain the derivatives with respect to z;(i = 1,2,...,n ).

There is the following relation between the kernels of direct transformations and inverse
transformaitons:

1 -
K(zi,yi) = — Ky, (z:),
Cy;
where ¢, ’s are normalizing divisors and are given by

@
L 9 Y a4

Cy, = sin r;dr; = —.
0 2

a;

The kernel of the inverse transformation is the solution of the following boundary value
problem:

K - i
= + MK =0, ) = 2
Bxi a;

f{ ;=0 — Rlzi:ai =0.

The direct transformation is applied to equation (5) for the variable z; and

8%v -
gzz = MY

is obtained. This transformation is applied n times to equation (5) leading to
) n
Av= -2, \2 =) "\
1=1

is arrived at. Under this transformation, the problem (5), (6), (7) is transformed to the
following:

k I
T + B0+ A5+ §(y,t) =0 (t > 0) (11)
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9(y,0) = 04(y,0) = 0 (12)

(11) is an ordinary differential equation and (12) gives the initial conditions, where
¥(y,t),d(y,t) are transformed functions obtained respectively, from v(z,t), g(z,t) and

on ay az an n Ty
g(y,t) = a_“/o /0 /0 g(zl,m2,...,a:n;t)i:1_[151n o zido,
oo
=Y byt
n=0

is a real analytic function (do; = dz1,dz2...dTn,y = (y1,Y2,--->Yn))-
Let us seek a solution ¥ in the form of the series 9(y,t) = Y oo, dn(y)t™ to the

n=0 "
problem (11), (12) and apply inverse transformations to the solution. We obtain

o0

v(T1, T2, ..., Tpjt) = Z oy, t) Ky, - Ky,

Y1,¥2,..,yn=1

where the kernels of inverse transformations are K(z;,y;) = Ky, (z;) = sin “x;.
;

2. The Solution

We define (k)(2,—1) and [k](2,) as following for n € N

(k)—1y =1, (k)@@n—1) = A+ k)B+E)(5+k)---(2n -1+ k)

and

[k](o) =1, [k](gn) = (2 -+ k)(4 + k) cee (277, + k)

where k < 1,k g Z~.

. 00 t2n _ (_l)n+1A2n
Lemma 1. The power series y ., Bn——(k)(%_l),Bn = —mr

uniformly convergent for t > 0. Furthermore, the recurrence relations

, is absolutely and

2nB, + X’B,_1=0 (n=1,2,...) (13)

are satisfied for the coefficients By, where k <1 and k # —1,-3,....
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Lemma 2. The coefficients b, which are defined by

( 1)"/\271 z loi— 1 ~ —24
ban = 27nl(k)2n-1) 1+Z 277 (0 = DUK) 2i-3)Pai—2A"") (14a)

(=1)mA%m " (—1)7 (2 = 1)![k]2i—2)P2ic1 A2
boni1 = .
T 135, (20 + 1)[K]2n 2 2i—1(; — 1)! (14b)
satisfy the following relations
(n+2)(n+1+k)byra+Ab, = —pn. (n=1,2,...) (15)

Lemma 3. The solution of (11), (12) is

e 2 2n+1—k el

ﬁ(y,t):ZB(i—DZB t)7+2bnt" (16)

ne1 (Zn 1

where the coefficient B,, and b, are given, respectively, by Lemma 1 and Lemma 2 for
k<l kgZ™.

Proof. Let us consider (11). The solution of the adjoint homogeneous equation is

1+ZB DZB(I

(Zn 1) )(2n+1)

t2n+1 k
(17a)

where C and D are arbitrary constants. The special solution of (11) has the form

)= bat",by =0 (17b)
n=0

If we choose by = 1, we obtain the coefficients b,, given by (14.a) and (14.b) for n =
1,2,3,.... From the initial conditions (12), we have C = —by = —1 and D is arbitrary,
k <1 and k # —1,—-2,.... The general solution of the problem (11), (12) is

5(y,t) = On(y,t) + 0s(y, 1) (16)

where ¥), and 05 are given respectively by (17.a) and (17.b). O
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Theorem 1. The solution of problem (5), (6), (7) is

o0

n
~ . TY;
vz, T2y Ty t) = E v(y,t)Hsm y‘l:r,v (18)
=1 i

a
Y1,Y2,--,Yn=1

where t(y,t) is given by (16).
Proof. It can be easily seen from (13) and (15) that

k k
Av — vy — ?Ut —g(z,t) = —\v - (vee + ?Ut) - g(:c,t)

(3

oo ) k ) i n —
= — Z (D4 + 70t + A%9) H sin ayl z; — g(z,t)

Y1,Y2,-.Yn=1 =1
_ 5 . K3 L
S DR T)) | R e
Y1,Y2,--Yn=1 i=1
= 0.
O
Theorem 2. The solution of the problem (8), (9), (10) is given by
w(z1,Za,...,Tn;t) = Z w(y,t)Hsin a;:v,- (19)
Y1,Y2,--,Yn=1 =1
where k # —1,-3,...,c is an arbitrary constant and W is given by
- el tZ‘n St t2n+1_k
By, t) = f1 - Bp—]-cY Bo(l1—k)—— 20
w.8) = FWl EZ: " (k)(2n—1)] ; " )(_k)(2n+1) (20)
n=1 n=0

Proof. If we use integral transformations on the intervals (0, a;),n times to the problem
(8), (9), (10) we have the following ordinary differential equation and its initial values;

k
Dy + S0 + M =0 (t>0) (21)
@(y, 0) = f(y), D (y,0) = 0. (22)
The kernel of this transformation is K (x;,y;) = sin %wz,z =1,2,...,n. The func-

tions w(y,t), f(y) are transformed functions respectively of w(z,t), f(z). The solution
of (21), (22) is given by (20), where k < 1,k # —1,-3,...,—(2n + 1),... and c is an
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arbitrary constant. When inverse transformation is applied to this solution, is obtained
(19). The solution of the problem (8), (9), (10) is obtained as (19). Indeed, as in Theorem
1 we see that from (13)

Aw — (wy + %wt) = -\ - (wee + %wt)
= — Z (ﬁltt + ?ﬂit + )\27I)) H sin 71—3{7, T;
Y1,¥2,--Yn=1 i=1 v
= 0.

From the above analysis we arrive at the following theorem:

Theorem 3. The solution of the initial boundary value problem (1), (2), (3) is expressed
in the form of the sum of two uniformly and absolutely convergent power series

u(z,t) = v(z,t) + w(z,t)

where v(z,t) is given by (18) and w(z,t) is given by (19).

Corollary. When the arbitrary constant D is chosen as D = 0 in (16) Walter’s [6]
solution for singular homogeneous E.P.D. equation is obtained.
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Sonlu integral Doniigiimii ile E.P.D. Denkleminin C6ziimii

Ozet

A, n-boyutlu Laplace operatorii, £ < 1,k # —1,—2,... bir reel parametre,
z,a € R", f ve g reel analitik fonksiyonlar1 gostermek tizere

k
Au = ug + T +g(z,t) (t>0)
u(0,t) = u(a,t) =0

u(z,0) = f(z),us(z,0) =0
baglangi¢ ve sinir deger probleminin ¢6ziimi, sonlu integral déntsiimleri kullamlarak
diizgiin ve mutlak yakinsak iki kuvvet serisinin toplami olarak elde edilmigtir. Au =
uee + Sur + g(w,t) (¢ > 0), homogen olmayan Euler - Poisson - Darboux (E.P.D.)
denklemidir. E.P.D. denkleminin ¢ziimiinde sonlu integral doniisim yo6ntemi ilk
kez bu galismada kullamlmigtir. Cozlim, daha 6nce kullanilan yéntemlere gére daha
yalin bir bigimde elde edilmigtir.
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