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Abstract

Let X ={M:Z"(M) =0} and X* ={M :Q < P < M,P/Q € X implies
P/Q = 0} be classes of R-modules. In this note we study the structure of rings R
over which every module M has a decomposition M = M; @ M, with M; € X and
M, e X*.

Let R be a ring with identity. Throughout all modules will be unital right R-
modules and RadM,E(M),Z(M) will denote the radical, injective hull and singular
submodule of a module M.J(R) is the Jacobson radical of R.

A module N is called a small submodule in a module M if whenever N+ L = M for
some submodule L of M we have M = L. A module M is said to be smallif M is small
in E(M). Let M be an R-module. We set Z*(M) = {m € M : mR is small} and we
define inductively Z}(M) : Z{(M) = Z*(M), Z*(M/Z:_(M)) = Z:(M)/Z%:_(M)(n =
2,3,...). It is well-known that Zy(M) = Z3(M) = --- for Z(M). But it is not known
in Z;(M) = Z;(M) = --- In this note we consider the classes X = {M : M R— module
and Z*(M) = 0}, X* = {M : MR— module and whenever Q < P < M,P/Q € X
implies P/Q = 0}, following [5]. Since RadM is the sum of small submodules of M,
then RadM < Z*(M).

A class €2 of modules is called s-closed if 2 is closed under submodules and g¢-closed
if  is closed under homomorphic images, and {s, ¢} -closed if © is s-closed and g-closed.
It is known that X™ is {s,q}-closed. Let Hx (M) denote the sum of X*-submodules
of M. Then Hx(M) € X*,Hx(M/Hx(M)) = 0, and Hx is fully invariant [5], and
X NX*=0. It is known that the class X is closed under submodules, direct products,
direct sums, essential extensions and module extensions.

In [9] it is proved that if R is a quasi-Frobenius ring then every module is a direct
sum of an injective module and a small module. In this note we show that every module
M over a quasi-Frobenius ring has a decomposition M = M, & M, with M; € X and
M, € X*. We also deal with the question: Let R be a ring such that every module M has
a decomposition M = M, & M, with M; € X and M, € X*, then R is quasi-Frobenius?

325



OZCAN, HARMANCI

Lemma 1. Let M be an R-module. Then

(1) If M is small then Z*(M) = M,

(i) If Z*(M) = M then M € X*,

(iii) If M is semisimple injective then M € X .

Proof. (i) Clear from definitions.

(ii) Let M be a module such that Z*(M) = M. Assume Q@ < P < M and P/Q € X.
Then Z*(P/Q) = 0. Since Z*(M) = M and any homomorphic image of a small module
is small, then P/Q = Z*(P/Q). Hence P/Q =0, and so M € X*.

(iii) Assume first M is simple injective. Let 0 # m € M be such that mR is small in
E(mR) = M. This is a contradiction for mR = M. Hence Z*(M) = 0 and M ¢ X.

Assume M is semisimple injective. Since X is closed under direct sums, then M € X. O

Lemma 2. Let R be a right perfect ring. Then a module M is small if and only if
Z*(M) =M.

Proof. Let R be a right perfect ring. Assume M is small module. Let 0 # m € M.
Then mR issmall in E(M) and so in E(mR). Hence m € Z*(M) and then Z*(M) = M.
Conversely suppose that Z*(M) = M. Since R is right perfect and Z*(M) = M, then
Z*(M) < RadE(M) and RadE(M) is small in E(M) [1]. Hence M is small. a

Theorem 3. Let R be a right hereditary ring. Then X* ={M : Z*(M) = M}.

Proof. Let R be a right hereditary ring and M a module with Z*(M) = M. By
Lemma 1(ii), M € X*. Assume M is a module with M € X*. Let m € M be such that
m & Z*(M). Then mR is not small in E(mR). Hence there is a submodule L of E(mR)
such that mR + L = E(mR). Since R is right hereditary, then E(mR)/L is injective
and so the cyclic module mR/(mR N L) is injective. Let K/(mR N L) be a maximal
submodule in mR/(mR N L). Then mR/K is simple, and injective as a quotient of in-
jective module. By Lemma 1(iii), mR/K € X. Since M € X" and X™ is {s-q}-closed,
then mR/K € X*. Hence mR/K is a zero module. This is a contradiction. Thus
Z*(M) = M. O

Theorem 4. Let R be a ring such that R/J(R) is a semisimple ring. Then X = {M : M
is semisimple injective R-module} .

Proof. Let M be an X-module. Since R/J(R) is a semisimple ring, then RadM =
MJ(R) [1]. Since RadM is contained in Z*(M) and Z*(M) = 0, then RadM = 0. It
follows that M is semisimple. Since M € X, implies E(M) € X then E(M) is semisim-
ple. Hence M = E(M) and so M is injective. Conversely suppose M is a semisimple
injective module. By Lemma 1(iii), M € X. It completes the proof. O
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Lemma 5. Let M be a semisimple module with M = ®;e1 M;, M; simple for each i € I.
Then M has a decomposition M = My & My where M, € X and My, € X*.

Proof. Let M;(i € I) be a simple module. Then M; is either small or injective. Let
M = ®;erM;, M; simple, write I = I, Uy, I, NI,,= § with ¢ € I; implies M; is in-
jective and i € I implies M; is small. Then M = M; @ M, with My = ®;cr, M; and
My = ®ier, M;. It is clear that M; € X and M, € X~ a

Lemma 6. Let R be a quasi-Frobenius ring. Then every R-module M has a decomposition
M =M, ® M, with M; € X and M, E&*,

Proof. Assume R quasi-Frobenius ring. Let M be an R-module. Then M = N; & N,
with Ny is injective and N, is small by [9]. N; € X* by Lemma 1(ii). Since R is
Noetherian ring and N; is injective R-module, then Ny = ®;¢;L; with L; indecom-
posable injective [1]. Now if Hx(L;) = 0 then L; € X. If not, L;/Hx(L;) = K; & K>
where K is injective and K3 is small. Then K, € X*, and since Hx(L;/Hx(L;)) =0,
then K = 0. Hence L;/Hx(L;) is injective, and so L;/Hx(L;) is projective since R is a
quasi-Frobenius ring. Thus L;/Hx(L;) = L; and then L; € X*. Hence for i € I, either
Lie X or L € X*. Thus N; = L@ K with L € X and K € X* as in the proof of
Lemma 5. Therefore M = L & K @ N, with L € X, K ® N, € X*. This completes the
proof. ]

Corollary 7. Every module M over a semisimple ring has a decomposition M = M, &M,
with My € X, M, € X*.

Proof. Let M be a module over a semisimple ring R. Then M is semisimple. Corollary
is now clear from Lemma 5. |

In this note we investigate the converse statements of Lemma 5, Lemma 6 and
Corollary 7. For this we set™*) .

Lemma 8. We assume R satisfies*). Then X* is closed under essential extensions.

Proof. Let M be an X"-module. It is enough to show EF(M) € X*. By hypothesis,
E(M) = M, & My, M; € X, M, € X*. Since M is essential in E(M),M; € X and
MiNnMeXNX*=0, then M; =0. Hence E(M) € X*. a

Lemma 9. Assume X* closed under essential extensions. Then every injective module
M has a decomposition M = My & My with M, € X and M, € X*.

() Every module M has a decomposition M = M; & M2 with My € X, M, € X*.
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Proof. Let M be an injective R-module. We note that Hx (M) € X* and then by
assumption, F(Hx(M)) € X*. Since E(M) = E(Hx(M)) & K for some submodule K
of E(M), then E(M) = Hx(E(M))+ K. Let © € K be such that R € X*. Since
tRNM € X”, then zkRNM < Hx (M) < E(Hx(M)). Since K N E(Hx(M)) =0 then
tRNM =0 and so xR =0 for all x € K with zR € X*. Hence Hx(K) = 0. Then
0=Hx(K)=KnNHx(E(M)) implies E(M) = Hx(E(M))®K. Since Hx(E(M)) is the
largest submodule of F(M) belonging to X™, then K € X . This completes the proof. O

Let M be an R-module and A, L submodules of M.L is called a supplement of A
in M if it is minimal with the property A + L = M. A submodule K of M is called a
supplement (in M) if K is a supplement of some submodule of M. It is easy to check
that L is a supplement of A in M if and only if M = A+ L and AN L is small in
L.M is called a supplemented module if every submodule has a supplement in M. The
following lemina is in [6]. We prove for the sake of completeness.

Lemma 10. Let M be a supplemented module. Then M has a decomposition M =
M, & My with M, semisimple and RadM, is essential in Ms.

Proof. Let M; be a submodule of M such that RadM & M, is essential in M. Since
M is supplemented, then there exists a submodule M, of M such that M = M; + M,
and M; N M, is small in M,. Hence M; N My is submodule of both RadM and M;.
It follows that M = M; & M5, and then RadM = RadM, is essential in M,. M is
semisimple because M; N RadM = 0 and M is supplemented. O

Lemma 11. We assume X* is closed under essential extensions. Then every supple-
mented module M has a decomposition M = My ® My, M, € X, M, € X*.

Proof. Let M be asupplemented module. Then M = M;& M, with M; semisimple and
RadM, is essential in M, by Lemma 10. By Lemma 5, M = N®d K, Nec X, K e X*.
Also RadM, € X*. By hypothesis, My € X*. Then M = NOK®M,, N € X, K@M, ¢
X", O

Proposition 12. Let R be a ring such that every module has a projective cover (i.e:
right perfect ring). Then the following are equivalent.
(1) X* is closed under essential extensions.

(2) R satisfies ).

Proof. We combine Lemma 8, Lemma 4.40 of [7] and Lemma 11 to prove the equivalence
of (1) and (2). O
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Theorem 13. Let R be a right hereditary ring. Then R is a right perfect and R satisfies
(1) if and only if R is a right H-ring and X* is closed under essential extensions.

Proof. Oshiro [8] class a ring R a right H-ring if every right R-module is a direct sum
of an injective module and a small modyle. Now, if R is a right hereditary, right perfect
ring satisfying (') then by Lemma 2 and Theorem 3, X* = {M : Z*(M) = M} = {M :
M is small}, and by Theorem 4 X = {M : M is semisimple injective}. Let M be an
R-module. By hypothesis, M = M; & M, with M; € X is injective and My € X* is
small. Then R is a right H-ring. By Lemma 8, we have X is closed under essential
extensions. Assume R is a right H-ring and X* is closed under essential extensions.
Then R is a right perfect. By Proposition 12, every module M has a decomposition
M =M, ® My, M; € X and M, € X*. This completes the proof. 0

Example 14. The ring of integers is a (right) hereditary ring. It is not a quasi-Frobenius
ring. Let K be a field and G a finite group such that the characteristic of K divides
the order of G. Then by Mascke’s Theorem [10] the group ring KG is not semisimple
but a quasi-Frobenius ring [2, Proposition 9.6]. Then the following lemma shows that the
quasi-Frobenius ring KG is not right hereditary.

Lemma 15. Let R be a quasi-Frobenius ring. Then R is a right hereditary if and only
if R is semisimple.

Proof. Let R be a quasi-Frobenius ring. Assume R is semisimple. Then every R-
module, in particular, every right ideal of R is projective [1]. Hence R is right hereditary.
Conversely, suppose that R is right hereditary. Let x € Z(R). Then zR is a projective
R-module. Since zR = R/r(z) then the essential right ideal r(z) is a direct summand
of R. Hence zR = 0. It follows that Z(R) = 0. Since R is a quasi-Frobenius ring, then
J(R) = Z(R) by [8, Theorem 4.3] and R is artinian. Hence R is semisimple. O

Remark. Let R be aring. Then every direct sum of small modules is small if and only
if for every injective module M, RadM is small in M [9]. In this case Z*(M) = M if
and only if M is small. To prove this only note that Z*(M) = M N Rad(E(M)) for any
module M.

Theorem 16. Let R be a right hereditary ring. Then the following are equivalent.

(1) R is a right perfect ring and satisfies (1),

(2) R/J(R) is semisimple and direct sum of small modules is small and R satisfies (1),
(3) R is a quasi-Frobenius ring,

(4) R is a semisimple ring,

(5) R is a right self-injective ring.
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Proof. (1) = (2) Then R/J(R) is semisimple and for every injective R-module
M, RadM is small in M [1]. Hence direct sum of small modules is small by remark.

(2) = (3) Let M be an R-module. Then by (2) M = M; & My, M, € X, M, € X*.
Since R/J(R) is semisimple, then M; is semisimple injective by Theorem 4. Since R is
a right hereditary and direct sum of small modules is small, then M, is small by remark.
Thus R is a right H-ring. We write R = I & I, where I; € X,I, € X*. Then I; is
injective by Theorem 4, and E(R) = I; € E(I3). Since I, € X* then E(l;) € X* by
Lemma 8, and so E(Iz) is small. Hence E(I3) = 0. It follows that Hx(R) =0 and R
is a right self-injective. Since J(R) is X*-submodule of M, then J(R) = 0. It is clear
that every non-zero right ideal of R is injective and then direct summand of R. Hence
Z(R) = 0. By [8, Theorem 4.3] R is quasi-Frobenius ring.

(3) = (4) By Lemma 15.

(4) = (5) Clear.

(5) = (4) Let R be a right hereditary ring. Assume R right self-injective. Let M
be a non-zero R-module and 0 # m € M. Then mR = R/r(m) is injective. Hence M
contains a non-zero injective R-module. By [3, Lemma 15.10] R is a semisimple ring.
(4) = (1) Clear. O
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Z*(.) Yardimiyla Bazi Halkalarin Karakterizasyonu

Ozet

X={M:Z"M)=0}ve X*={M:Q > MP/Q € X ise P/Q = 0dir.}
modiillerin, smiflar1 olsun. Bu ¢aligmada bir R halkas: i¢in her R-modil M,
M=M@&M, , Mi € X My, € X” olacak gekilde bir ayrigima sahipse R’nin
yapisi belirleniyor.
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