CHARACTERIZATION OF SOME RINGS BY FUNCTOR $Z^*(.)$

Ayşe Çiğdem Özcan, Abdullah Harmancı

Abstract

Let $\underline{X}=\{M:Z^*(M)=0\}$ and $\underline{X}^*=\{M:Q\leq P\leq M,P/Q\in\underline{X} \text{ implies }P/Q=0\}$ be classes of R-modules. In this note we study the structure of rings R over which every module M has a decomposition $M=M_1\oplus M_2$ with $M_1\in\underline{X}$ and $M_2\in\underline{X}^*$.

Let R be a ring with identity. Throughout all modules will be unital right R-modules and RadM, E(M), Z(M) will denote the radical, injective hull and singular submodule of a module M.J(R) is the Jacobson radical of R.

A module N is called a small submodule in a module M if whenever N+L=M for some submodule L of M we have M=L. A module M is said to be small if M is small in E(M). Let M be an R-module. We set $Z^*(M)=\{m\in M:mR \text{ is small}\}$ and we define inductively $Z^*_n(M):Z^*_1(M)=Z^*_1(M),Z^*_1(M)=Z^*_n(M)/Z^*_{n-1}(M)(n=2,3,\ldots)$. It is well-known that $Z_2(M)=Z_3(M)=\cdots$ for Z(M). But it is not known in $Z^*_2(M)=Z^*_3(M)=\cdots$ In this note we consider the classes $\underline{X}=\{M:MR-\text{ module} \text{ and } Z^*(M)=0\}, \underline{X}^*=\{M:MR-\text{ module} \text{ and whenever } Q\leq P\leq M, P/Q\in \underline{X} \text{ implies } P/Q=0\}$, following [5]. Since RadM is the sum of small submodules of M, then $RadM\leq Z^*(M)$.

A class Ω of modules is called s-closed if Ω is closed under submodules and q-closed if Ω is closed under homomorphic images, and $\{s,q\}\text{-}closed$ if Ω is s-closed and q-closed. It is known that \underline{X}^* is $\{s,q\}\text{-}closed$. Let $H_{\underline{X}}(M)$ denote the sum of \underline{X}^* -submodules of M. Then $H_{\underline{X}}(M) \in \underline{X}^*$, $H_{\underline{X}}(M/H_{\underline{X}}(M)) = 0$, and $H_{\underline{X}}$ is fully invariant [5], and $\underline{X} \cap \underline{X}^* = 0$. It is known that the class \underline{X} is closed under submodules, direct products, direct sums, essential extensions and module extensions.

In [9] it is proved that if R is a quasi-Frobenius ring then every module is a direct sum of an injective module and a small module. In this note we show that every module M over a quasi-Frobenius ring has a decomposition $M=M_1\oplus M_2$ with $M_1\in \underline{X}$ and $M_2\in \underline{X}^*$. We also deal with the question: Let R be a ring such that every module M has a decomposition $M=M_1\oplus M_2$ with $M_1\in \underline{X}$ and $M_2\in \underline{X}^*$, then R is quasi-Frobenius?

Lemma 1. Let M be an R-module. Then

- (i) If M is small then $Z^*(M) = M$,
- (ii) If $Z^*(M) = M$ then $M \in \underline{X}^*$,
- (iii) If M is semisimple injective then $M \in X$.

Proof. (i) Clear from definitions.

- (ii) Let M be a module such that $Z^*(M) = M$. Assume $Q \leq P \leq M$ and $P/Q \in \underline{X}$. Then $Z^*(P/Q) = 0$. Since $Z^*(M) = M$ and any homomorphic image of a small module is small, then $P/Q = Z^*(P/Q)$. Hence P/Q = 0, and so $M \in \underline{X}^*$.
- (iii) Assume first M is simple injective. Let $0 \neq m \in M$ be such that mR is small in E(mR) = M. This is a contradiction for mR = M. Hence $Z^*(M) = 0$ and $M \in \underline{X}$. Assume M is semisimple injective. Since \underline{X} is closed under direct sums, then $M \in \underline{X}$. \square

Lemma 2. Let R be a right perfect ring. Then a module M is small if and only if $Z^*(M) = M$.

Proof. Let R be a right perfect ring. Assume M is small module. Let $0 \neq m \in M$. Then mR is small in E(M) and so in E(mR). Hence $m \in Z^*(M)$ and then $Z^*(M) = M$. Conversely suppose that $Z^*(M) = M$. Since R is right perfect and $Z^*(M) = M$, then $Z^*(M) \leq RadE(M)$ and RadE(M) is small in E(M) [1]. Hence M is small. \square

Theorem 3. Let R be a right hereditary ring. Then $\underline{X}^* = \{M : Z^*(M) = M\}$.

Proof. Let R be a right hereditary ring and M a module with $Z^*(M) = M$. By Lemma 1(ii), $M \in \underline{X}^*$. Assume M is a module with $M \in \underline{X}^*$. Let $m \in M$ be such that $m \notin Z^*(M)$. Then mR is not small in E(mR). Hence there is a submodule L of E(mR) such that mR + L = E(mR). Since R is right hereditary, then E(mR)/L is injective and so the cyclic module $mR/(mR \cap L)$ is injective. Let $K/(mR \cap L)$ be a maximal submodule in $mR/(mR \cap L)$. Then mR/K is simple, and injective as a quotient of injective module. By Lemma 1(iii), $mR/K \in \underline{X}$. Since $M \in \underline{X}^*$ and \underline{X}^* is $\{s-q\}$ -closed, then $mR/K \in \underline{X}^*$. Hence mR/K is a zero module. This is a contradiction. Thus $Z^*(M) = M$.

Theorem 4. Let R be a ring such that R/J(R) is a semisimple ring. Then $\underline{X} = \{M : M \text{ is semisimple injective } R\text{-module}\}.$

Proof. Let M be an \underline{X} -module. Since R/J(R) is a semisimple ring, then RadM = MJ(R) [1]. Since RadM is contained in $Z^*(M)$ and $Z^*(M) = 0$, then RadM = 0. It follows that M is semisimple. Since $M \in \underline{X}$, implies $E(M) \in \underline{X}$ then E(M) is semisimple. Hence M = E(M) and so M is injective. Conversely suppose M is a semisimple injective module. By Lemma 1(iii), $M \in \underline{X}$. It completes the proof.

Lemma 5. Let M be a semisimple module with $M = \bigoplus_{i \in I} M_i$, M_i simple for each $i \in I$. Then M has a decomposition $M = M_1 \oplus M_2$ where $M_1 \in \underline{X}$ and $M_2 \in \underline{X}^*$.

Proof. Let $M_i(i \in I)$ be a simple module. Then M_i is either small or injective. Let $M = \bigoplus_{i \in I} M_i, M_i$ simple, write $I = I_1 \cup I_2, I_1 \cap I_2, = \emptyset$ with $i \in I_1$ implies M_i is injective and $i \in I_2$ implies M_i is small. Then $M = M_1 \oplus M_2$ with $M_1 = \bigoplus_{i \in I_1} M_i$ and $M_2 = \bigoplus_{i \in I_2} M_i$. It is clear that $M_1 \in \underline{X}$ and $M_2 \in \underline{X}^*$

Lemma 6. Let R be a quasi-Frobenius ring. Then every R-module M has a decomposition $M = M_1 \oplus M_2$ with $M_1 \in \underline{X}$ and $M_2 \in \underline{X}^*$.

Proof. Assume R quasi-Frobenius ring. Let M be an R-module. Then $M=N_1\oplus N_2$ with N_1 is injective and N_2 is small by [9]. $N_2\in\underline{X}^*$ by Lemma 1(ii). Since R is Noetherian ring and N_1 is injective R-module, then $N_1=\oplus_{i\in I}L_i$ with L_i indecomposable injective [1]. Now if $H_{\underline{X}}(L_i)=0$ then $L_i\in\underline{X}$. If not, $L_i/H_{\underline{X}}(L_i)=K_1\oplus K_2$ where K_1 is injective and K_2 is small. Then $K_2\in\underline{X}^*$, and since $H_{\underline{X}}(L_i/H_{\underline{X}}(L_i))=0$, then $K_2=0$. Hence $L_i/H_{\underline{X}}(L_i)$ is injective, and so $L_i/H_{\underline{X}}(L_i)$ is projective since R is a quasi-Frobenius ring. Thus $L_i/H_{\underline{X}}(L_i)=L_i$ and then $L_i\in\underline{X}^*$. Hence for $i\in I$, either $L_i\in\underline{X}$ or $L_i\in\underline{X}^*$. Thus $N_1=L\oplus K$ with $L\in\underline{X}$ and $K\in\underline{X}^*$ as in the proof of Lemma 5. Therefore $M=L\oplus K\oplus N_2$ with $L\in\underline{X}, K\oplus N_2\in\underline{X}^*$. This completes the proof.

Corollary 7. Every module M over a semisimple ring has a decomposition $M = M_1 \oplus M_2$ with $M_1 \in \underline{X}, M_2 \in \underline{X}^*$.

Proof. Let M be a module over a semisimple ring R. Then M is semisimple. Corollary is now clear from Lemma 5.

In this note we investigate the converse statements of Lemma 5, Lemma 6 and Corollary 7. For this we set^(*).

Lemma 8. We assume R satisfies^(*). Then \underline{X}^* is closed under essential extensions. **Proof.** Let M be an \underline{X}^* -module. It is enough to show $E(M) \in \underline{X}^*$. By hypothesis, $E(M) = M_1 \oplus M_2, M_1 \in \underline{X}, M_2 \in \underline{X}^*$. Since M is essential in $E(M), M_1 \in \underline{X}$ and $M_1 \cap M \in \underline{X} \cap \underline{X}^* = 0$, then $M_1 = 0$. Hence $E(M) \in \underline{X}^*$.

Lemma 9. Assume \underline{X}^* closed under essential extensions. Then every injective module M has a decomposition $M=M_1\oplus M_2$ with $M_1\in \underline{X}$ and $M_2\in \underline{X}^*$.

^(*) Every module M has a decomposition $M=M_1\oplus M_2$ with $M_1\in \underline{X}, M_2\in \underline{X}^*$.

Proof. Let M be an injective R-module. We note that $H_{\underline{X}}(M) \in \underline{X}^*$ and then by assumption, $E(H_{\underline{X}}(M)) \in \underline{X}^*$. Since $E(M) = E(H_{\underline{X}}(M)) \oplus K$ for some submodule K of E(M), then $E(M) = H_{\underline{X}}(E(M)) + K$. Let $x \in K$ be such that $xR \in \underline{X}^*$. Since $xR \cap M \in \underline{X}^*$, then $xR \cap M \leq H_{\underline{X}}(M) \leq E(H_{\underline{X}}(M))$. Since $K \cap E(H_{\underline{X}}(M)) = 0$ then $xR \cap M = 0$ and so xR = 0 for all $x \in K$ with $xR \in \underline{X}^*$. Hence $H_{\underline{X}}(K) = 0$. Then $0 = H_{\underline{X}}(K) = K \cap H_{\underline{X}}(E(M))$ implies $E(M) = H_{\underline{X}}(E(M)) \oplus K$. Since $H_{\underline{X}}(E(M))$ is the largest submodule of E(M) belonging to \underline{X}^* , then $K \in \underline{X}$. This completes the proof. \square

Let M be an R-module and A, L submodules of M.L is called a supplement of A in M if it is minimal with the property A+L=M. A submodule K of M is called a supplement (in M) if K is a supplement of some submodule of M. It is easy to check that L is a supplement of A in M if and only if M=A+L and $A\cap L$ is small in L.M is called a supplemented module if every submodule has a supplement in M. The following lemma is in [6]. We prove for the sake of completeness.

Lemma 10. Let M be a supplemented module. Then M has a decomposition $M = M_1 \oplus M_2$ with M_1 semisimple and $RadM_2$ is essential in M_2 .

Proof. Let M_1 be a submodule of M such that $RadM \oplus M_1$ is essential in M. Since M is supplemented, then there exists a submodule M_2 of M such that $M = M_1 + M_2$ and $M_1 \cap M_2$ is small in M_2 . Hence $M_1 \cap M_2$ is submodule of both RadM and M_1 . It follows that $M = M_1 \oplus M_2$, and then $RadM = RadM_2$ is essential in M_2 . M_1 is semisimple because $M_1 \cap RadM = 0$ and M is supplemented. \square

Lemma 11. We assume \underline{X}^* is closed under essential extensions. Then every supplemented module M has a decomposition $M = M_1 \oplus M_2, M_1 \in \underline{X}, M_2 \in \underline{X}^*$.

Proof. Let M be a supplemented module. Then $M=M_1\oplus M_2$ with M_1 semisimple and $RadM_2$ is essential in M_2 by Lemma 10. By Lemma 5, $M_1=N\oplus K, N\in \underline{X}, K\in \underline{X}^*$. Also $RadM_2\in \underline{X}^*$. By hypothesis, $M_2\in \underline{X}^*$. Then $M=N\oplus K\oplus M_2, N\in \underline{X}, K\oplus M_2\in \underline{X}^*$.

Proposition 12. Let R be a ring such that every module has a projective cover (i.e: right perfect ring). Then the following are equivalent.

- (1) X^* is closed under essential extensions.
- (2) R satisfies (*).

Proof. We combine Lemma 8, Lemma 4.40 of [7] and Lemma 11 to prove the equivalence of (1) and (2).

Theorem 13. Let R be a right hereditary ring. Then R is a right perfect and R satisfies (1) if and only if R is a right H-ring and \underline{X}^* is closed under essential extensions.

Proof. Oshiro [8] class a ring R a right H-ring if every right R-module is a direct sum of an injective module and a small module. Now, if R is a right hereditary, right perfect ring satisfying (1) then by Lemma 2 and Theorem 3, $\underline{X}^* = \{M : Z^*(M) = M\} = \{M : M \text{ is small}\}$, and by Theorem 4 $\underline{X} = \{M : M \text{ is semisimple injective}\}$. Let M be an R-module. By hypothesis, $M = M_1 \oplus M_2$ with $M_1 \in \underline{X}$ is injective and $M_2 \in \underline{X}^*$ is small. Then R is a right H-ring. By Lemma 8, we have \underline{X}^* is closed under essential extensions. Assume R is a right H-ring and \underline{X}^* is closed under essential extensions. Then R is a right perfect. By Proposition 12, every module M has a decomposition $M = M_1 \oplus M_2, M_1 \in \underline{X}$ and $M_2 \in \underline{X}^*$. This completes the proof.

Example 14. The ring of integers is a (right) hereditary ring. It is not a quasi-Frobenius ring. Let K be a field and G a finite group such that the characteristic of K divides the order of G. Then by Mascke's Theorem [10] the group ring KG is not semisimple but a quasi-Frobenius ring [2, Proposition 9.6]. Then the following lemma shows that the quasi-Frobenius ring KG is not right hereditary.

Lemma 15. Let R be a quasi-Frobenius ring. Then R is a right hereditary if and only if R is semisimple.

Proof. Let R be a quasi-Frobenius ring. Assume R is semisimple. Then every R-module, in particular, every right ideal of R is projective [1]. Hence R is right hereditary. Conversely, suppose that R is right hereditary. Let $x \in Z(R)$. Then xR is a projective R-module. Since $xR \cong R/r(x)$ then the essential right ideal r(x) is a direct summand of R. Hence xR = 0. It follows that Z(R) = 0. Since R is a quasi-Frobenius ring, then J(R) = Z(R) by [8, Theorem 4.3] and R is artinian. Hence R is semisimple. \square

Remark. Let R be a ring. Then every direct sum of small modules is small if and only if for every injective module M, RadM is small in M [9]. In this case $Z^*(M) = M$ if and only if M is small. To prove this only note that $Z^*(M) = M \cap Rad(E(M))$ for any module M.

Theorem 16. Let R be a right hereditary ring. Then the following are equivalent.

- (1) R is a right perfect ring and satisfies (1),
- (2) R/J(R) is semisimple and direct sum of small modules is small and R satisfies (1),
- (3) R is a quasi-Frobenius ring,
- (4) R is a semisimple ring,
- (5) R is a right self-injective ring.

- **Proof.** (1) \Longrightarrow (2) Then R/J(R) is semisimple and for every injective R-module M, RadM is small in M [1]. Hence direct sum of small modules is small by remark.
- (2) \Longrightarrow (3) Let M be an R-module. Then by (2) $M=M_1\oplus M_2, M_1\in \underline{X}, M_2\in \underline{X}^*$. Since R/J(R) is semisimple, then M_1 is semisimple injective by Theorem 4. Since R is a right hereditary and direct sum of small modules is small, then M_2 is small by remark. Thus R is a right H-ring. We write $R=I_1\oplus I_2$ where $I_1\in \underline{X}, I_2\in \underline{X}^*$. Then I_1 is injective by Theorem 4, and $E(R)=I_1\in E(I_2)$. Since $I_2\in \underline{X}^*$ then $E(I_2)\in \underline{X}^*$ by Lemma 8, and so $E(I_2)$ is small. Hence $E(I_2)=0$. It follows that $H_{\underline{X}}(R)=0$ and R is a right self-injective. Since J(R) is \underline{X}^* -submodule of M, then J(R)=0. It is clear that every non-zero right ideal of R is injective and then direct summand of R. Hence Z(R)=0. By [8, Theorem 4.3] R is quasi-Frobenius ring.
- $(3) \Longrightarrow (4)$ By Lemma 15.
- $(4) \Longrightarrow (5)$ Clear.
- (5) \Longrightarrow (4) Let R be a right hereditary ring. Assume R right self-injective. Let M be a non-zero R-module and $0 \neq m \in M$. Then $mR \cong R/r(m)$ is injective. Hence M contains a non-zero injective R-module. By [3, Lemma 15.10] R is a semisimple ring.

 $(4) \Longrightarrow (1) \text{ Clear.}$

References

- [1] Anderson, F.W. and Fuller, K.R.: Rings and Categories of Modules, Berlin-Heidelberg-New York, 1974.
- [2] Curtis, C., Reiner, I.: Methods of Representation Theory, Wiley, New York, 1981.
- [3] Dung, N.V., Huynh, D.V., Smith, P.F., Wisbauer, R.: Extending Modules, New York, 1994.
- [4] Harada, M.: Non-small modules and non-cosmall modules, In Ring Theory: Proceedings of the 1978 Antwerp Conference, F. Van Oystaeyen, ed. New York: Marcel Dekker.
- [5] Harmancı, A. and Smith, P.F.: Relative injectivity and module classes, Comm. in Alg., 20(9), 2471-2501 (1992).
- [6] Keskin, D., Harmancı, A., Smith, P.F.: On \oplus -supplemented modules, preprint.
- [7] Mohamed, S.H. and Muller, B.J.: Continuous and Discrete Modules, No. 147, Cambridge University Press, 1990.
- [8] Oshiro, K.: Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. Journal, 13, 310-338 (1984).
- [9] Rayar, M.: On small and cosmall modules, Acta Math. Acad. Sci. Hungar, 39(4), 389-392 (1982).
- [10] Rotman, J.J.: An Introduction to Homological Algebra, Academic Press, New York, 1979.

$Z^*(.)$ Yardımıyla Bazı Halkaların Karakterizasyonu

Özet

 $\underline{X}=\{M:Z^*(M)=0\}$ ve $\underline{X}^*=\{M:Q\geq M,P/Q\in\underline{X}$ ise P/Q=0 dır.} modüllerin, sınıfları olsun. Bu çalışmada bir R halkası için her R-modül M, $M=M_1\oplus M_2$, $M_1\in\underline{X}$ $M_2\in\underline{X}^*$ olacak şekilde bir ayrışıma sahipse R'nin yapısı belirleniyor.

Ayşe Çiğdem ÖZCAN, Abdullah HARMANCI Hacettepe University, Department of Mathematics 06532 Beytepe, Ankara-TURKEY

Received 6.2.1996