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GROUPS
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Abstract

In this paper, we will study finite algebraic group actions on real algebraic sets
and compare the topological quotient X/G with the algebraic quotient X//G. We
will give a different and shorter proof of a result of Procesi and Schwarz, stating
that if the order of the group G, acting algebraically on a real algebraic set X, is
odd then X/G is equal to X//G. In the case of even order groups, we will a give
sufficient condition (and a necessary condition in the case G = Zs ) for the X/G to
be equal to X//G.

1. Introduction and Preliminaries

The problem of real algebraic realization of topological or smooth objects has been
studied by many authors. In [11], Seifert showed that any closed smooth submanifold
M C R™ with trivial normal bundle is isotopic to a nonsingular component of a real
algebraic set X C R™. Nash showed that every closed smooth manifold is diffeomorphic
to a component of a nonsingular real algebraic set in some RM ([7]). Later, Tognoli
proved that any closed smooth manifold is diffeomorphic to a nonsingular real algebraic
set in some RY ([13]). In [2, 3] Akbulut and King improved Tognoli’s result by showing
that any closed smooth submanifold of R™ can be isotoped to the nonsingular points of
an algebraic subset of R”. Dovermann and Masuda showed that, in some cases, smooth
manifolds with group actions can be realized as equivariant nonsingular algebraic sets
([6])-

In this paper, we will study finite algebraic group actions on real algebraic sets
and compare the topological quotient X/G with the algebraic quotient X//G. If the
order of the group G, acting algebraically on a real algebraic set X is odd, then X/G is
canonically equal to X//G (Theorem 2.1). When the order |G| is even, in general, this
is not true (see the counterexample after Theorem 2.1). In the case of even order groups,
we will a give sufficient condition (and a necessary condition in the case G = Z,) for the
X/G to be equal to X//G (Theorem 2.2 and Theorem 2.3).

In [9] Procesi and Schwarz had proved Theorem 2.1.a in the case of linear ¢ actions.
However, the proof we give is shorter and does not require linear G actions.
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Definition 1.1. 1) Let X C R™ and Z C R™ be semialgebraic sets. A map
F: X — Z s said to be entire rational if there exist f;,g; € Rlz1,...,z,], i =1,...,m,
such that each g; vanishes nowhere on X and

F = (fl/glaafm/gm)

We say X and Z are isomorphic if there are entire rational maps F : X — Z and
G:7Z — X such that FoG = idz and GoF = idx .

2) Let X C R" be a semialgebraic set and G be a finite group acting on X .
Then G is said to be acting algebraically on X , if for each g € G the map ¢g: X — X,
x — g - x 1is the restriction of some polynomial map P, : R* — R™.

Remark. By the last theorem in Section 9 in [6], in the case that X is an algebraic set,
any algebraic G action on X is equivalent to a linear action if we are willing to replace
X with an isomorphic copy of it possibly in a larger Euclidean space. Nevertheless, our
proofs work in the polynomial case and hence we will assume that the action is given by
polynomial maps.

Let X be an algebraic set in R™. Suppose that G is a finite group acting
algebraically on X. Let S = R[zy,...,z,]/J(X) be the ring of polynomial functions
on X where J(X) C R[zy,...,x,] is the ideal of vanishing polynomials on X . We define
a G action on S as follows: for g € G and f € S, let g- f = fog~!. Consider the
subring T of S defined by

T=5°={feS|g-f=f VYgeG}.

Both T" and S are R algebras. Moreover, it is well known that S is an algebraic extension
of T and therefore T is also a finitely generated R algebra (Exercise 5.12 and Proposition
7.8in [4]). Say T is generated by yi,...,ym over the reals. Consider the complexification
Tc and S¢ of T and S defined by

Tce=TRrC and S¢c=S®rC.

Clearly, these are finitely generated C algebras and Sg is the ring of polynomial functions
on the complexification X¢ of X. The above action of G on S extends to Sc, linearly
over C. With this definition of G action, immediately, we have that Sg =1Tc.

Consider the maps Fr: X¢ — C™ and F = Feix + X — R™, where both are
given by

z — (y1(2),. .., ym(2)).
If Z is the complex algebraic set corresponding to the C algebra T (i.e. the embedding
of the maximal spectrum of T¢ into C™ via Fg), then Fp : X¢ — Z is the map
corresponding to the inclusion of C algebras i : T — S¢ and Fp(X¢) = Z.

Let Yy = F(X) CR” and Y denote the Zariski closure of the semialgebraic set Y;
in R™. We endow Y, with its subspace topology and X/G with the quotient topology.
Now we state a well known result which we will need later. We refer the reader to Section
1.3 in [5] or Chapter 1 in [8] or [10] for a proof this lemma.
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Lemma 1.2. F:X — Y} induces a homeomorphism F : X/G — Y. Moreover, if
X is nonsingular and the G action on X is free, then Y} is a subset of nonsingular points
of its Zariski closure Y and the induced map F : X/G — Y; becomes a diffeomorphism.

Lemma 1.3. Y=ZNR™ or Z =Y.

Proof. Since Yy = F(X) C Fe(Xc)NR™ = ZNR™ we see that Y C ZNR™ C Z.
Hence, Yo € Z, where Y¢ is the complexification of the real algebraic set Y. Also,
since X C Fcfl(F@(X)) C F@‘l(Y) C F(Cfl(Y(g), we have X¢ C FC‘I(Y(C). Therefore,
Z=Fc(Xe) C Fe(Fe ' (Ye)) CYe CZ and thus Yo = Z and YV = ZNR™. ]

This is nothing but the first paragraph of the proof of Proposition 2.10.3 in [1]. In
the literature, Y is usually denoted by X//G, the algebraic quotient of X by G.

2. Results

Theorem 2.1. Let X be an irreducible real algebraic set and G is a finite group acting
algebraically on X . Let Y be the Zariski closure of Y. Then:

a) if |G| is odd, then Yo =Y ; i.e. Yy is algebraic;

b) if G acts freely on X and X is nonsingular, then Y, is a union of topological
components of Nonsing(Y') (G might have even order);

c) if |G| is odd, X is nonsingular and G acts freely on X , then Yy is a nonsingular
algebraic set.

Proof. First let us prove (a): Assume that the conclusion of the theorem is not true.
So there exists a point p € ¥ — ¥;. Let {qi,...,q;} be the preimage of p under
Fe : X¢ — Yc. Since G acts transitively on the fibers | = |G|/Stabg(q1). But G
is of odd order and hence [ is an odd number. However, since p € Y — Y, none of the
g;’s is contained in the real part of X¢, because all the real points of X¢ are sent to
Y. Moreover, since Fg is a real polynomial map, and X¢ is defined over the reals, the
complex conjugation of C™ preserves the fibers of Fr : X¢ — Y¢ over real points. In
particular, it preserves the fiber over p. So [ should be an even number, which is a
contradiction. Hence, Y =Y.

For part (b) consider the map F : X — Y. Since this map is a local diffeomor-
phism at each point of X (Lemma 1.2) and dim(X )=dim(Y ) we have that Y; is an
open subset of Nonsing(Y') CY. The map F¢ : X¢c — Y¢ is a closed mapping ([8] or
Corollary A on page 49 in [12]). Now since X C X¢ is closed, Yy = F(X) is closed in
Yc and hence in Y. So Yj is a union of topological components of Nonsing(Y). Finally,
part (c) follows from parts (a) and (b). O
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Remark. The following example shows that Theorem 2.1.a. does not hold for groups
of even order. Let X be the zero set of the irreducible polynomial z* + y* — 1 in R2.
Then, X is a nonsingular irreducible algebraic set diffeomorphic to the unit circle S!.
Let f:R2 — R? be the involution of R? given by

f((x7y)) = ('—',L'7 —“y)
Note that G = {id, f} acts freely on X . Let S,T be as in Section 1. Then,
S=Rlz,y)/(z* +y* ~1) and T =Ri?y%2y)/(=" +y' - 1)

The map F : X — R3 is given by (z,y) — (2?%,%%,zy), and, as before, let us
denote its image by Yp, which is a smooth manifold diffeomorphic to S'. The Zariski
closure Y of Yy in R® is given by the polynomial equations t? + ¢t2 — 1 = 0 and
tit —t2 = 0. In Y, the first two coordinates are always non negative, whereas in Y
these two coordinates can be negative. Actually, YoUY;] =Y (Example 2 after Theorem
2.2), where Yy = {(t1,t2,t3) | (—t1, —t2, —t3) € Yo} and Yy NYy = 0. Therefore, Y, can
not be a Zariski open set and thus Yy = F(X) is not algebraic.

Even order group case: To be able to get a result similar to Theorem 2.1 in the case
of even order groups we will assume that X is a nonsingular real algebraic set and the G
action on X is free. First let us consider the case where G = Zy =< g >. By Theorem
2.1.b Y, is a union of the components of Nonsing(Y). Let us look at Y carefully and
see when Y; is an algebraic set or a Zariski open subset of Y.

The points in Y — Y) are coming from the non real points of X¢. So, the preimage
of any point in Y — Y, under Fg : X¢ — Y consists of two complex conjugate points
in X¢ — X . Let W be the set of the points in all such fibers. Note that W is nothing
but the subset of X¢ on which complex conjugation and ¢ agree. So it is a real algebraic
subset of Xc.

G acts freely on X and complex conjugation acts trivially on X and thus XNW =
0. Since Fr : X¢ — Y is a finite to one map, the semialgebraic set Fc(W) =Y — Yy
has the same dimension as W. So, dim(W) < dim(Y) = k. If dim(W) < k — 1, then
Y — Y} is contained in Sing(Y') and therefore Yy is a Zariski open subset of Y. If W =
then Yy =Y and hence is algebraic in R™. So we have proved the following theorem.

Theorem 2.2. Let G = Zy =< g > act freely on a k dimensional nonsingular real
algebraic set X C R™. Let W be as above, then Y =Yy U FC(W). In particular,

a) if W=0, then Yo =Y and hence Yy is algebraic in R™ ;

b) if dim(W) <k —1, then Yy is a Zariski open subset of Y ;

¢) if dim(W) =k, then Yy s not a Zariski open subset of Y .
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Remark. Assume that the above G action is linear. So, by a linear change of coordinates
we have

g(x1,. o, xn) = (T4, ., Tjm1, —Tj, .o, —Tn)
for some 1 < j < n. In this case W = Xc NV, where V, is the linear subspace of
R2" = C" given by
=0, l=4,...,mn and 4 =0, [=1,...,5—1,
where (21,Y1,...,Zn,Yn) € RZ" (R = C" by 2, = z; + iy, ). By identifying
(.’El,O,IL’g,O,...,$j_1,0,0,yj,0,yj+1,...,O,yn) with (wl,...,xj_l,yj,...,yn),

we can identify W with the algebraic subset W C R", given by

W= {(X,Y) = (@1, .,8j1,Yj - yn) | F(X,i¥) =0 ,¥f € J(X)).

Examples. 1) Let X = §* C R¥*! be the standard k-sphere and g be the antipodal
map. Then,

W ={(z1,...,2p01) € R | (iz))2 4+ - + (izps1)? = 1} = 0.

So W = 0. The coordinate functions of F' are z;z; for : < j=1,...,k+1. So RP*
sits in REHD(*+2)/2 55 an algebraic set.

2) Let us look at the counterexample following Theorem 2.1 once more. W C
R* = C? is equal to

W:{(O7Z‘raoazy) | -'E,yER, $4+y4 = 1}’

so that, W has dimension one. Moreover, W is sent onto Yj by the map Fr(z,y) =
(22,y%,zy). Therefore Y = Yo UY].

3) Let X C R? be given by % +y? = 1. X is diffeomorphic to S'. Let g be
as above. Then, Yj is diffeomorphic to S* but, the Zariski closure Y of Y, contains an
unbounded curve. Hence, ¥ may not be compact even if X is compact.

A weaker version of Theorem 2.2 generalizes to arbitrary finite groups as follows.

Theorem 2.3. Let G be any finite group acting freely on a k dimensional nonsingular
real algebraic set X . Let W be the set

{p € Xc | g(p) = B, for some order two element g € G},

where p denotes the complex conjugate of p. Now, if dim(W) < k — 1 then Yy =
Nonsing(Y') and therefore Yy is a Zariski open subset of Y .
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Proof. By Theorem 2.1.b Y, is union of topological components of Nonsing(Y).
Assume that the conclusion of the theorem is not true. So Nonsing(Y) has components
other than the ones contained in Yy. In particular, Y —Y; has real dimension k = dim(Y).
Let p € Nonsing(Y) — Yy and A = (F¢)™!(p). Since p is a real point and everything is
defined over the reals, A is invariant under complex conjugation. Moreover, AN X = 0
and G acts transitively on A. Note that the set Z of points in X¢ on which G does not
act freely is a proper algebraic subset of X¢. So F(Z) has complex dimension at most
k — 1 and thus its real part Y N F(Z) has real dimension not more than k — 1.

Let g€ A, then g € A. Assume that ¢ ¢ Z; then ANZ = 0. Thus G acts freely
and transitively on A and therefore, there exists an element g € G so that g(q) = g.
Since g : X¢ — Xc is defined over the reals we get g(q) = ¢ and therefore g% = idg.
Hence, A C W and we conclude that any fiber (Fg)~'(p), for p € Nonsing(Y) — Yy, is
contained in W U Z. Hence, Nonsing(Y) — Yy, C Fc(W U Z) which is a contradiction
since the real dimension of Y N Fc(W U Z) is less than k = dim(Y). a

Let us now consider the entire rational functions on Yy and Y. For any semi-
algebraic subset X of R™ let I'(X) denote the ring of entire rational functions on X.
Assuming the previous notation we have a G action on I'(X) and the map F : X — Y,
induces a homomorphism F* : I'(Y;) — I'(X) via composition by F. Moreover, we
have the following.

Proposition 2.4. (I'(X))® = F*(I'(Yo)) and T(Y) C I'(Yy), where the equality holds
if and only if Yo =Y. In particular, if X and Z are irreducible algebraic sets with
algebraic G actions and if they are G equivariantly isomorphic to each other, then their
quotients X/ /G and Z//G are isomorphic.

Proof. First let us show that (['(X))¢ = F*(I'(Yp)). Clearly F*(T'(Yo)) C (I'(X))C.
Let f1/g1 € (0(X)). Then, I fi/g1 = fi/g1 + -+ fi/gi € (D(X)) where the sets
{fi,..., fi} and {g1,...,g;} are the G orbits of f; and g; respectively. Now
hi+---+h

L-g1- g
where h; = fi-91---9i—1 - giy1---gi. Note that hy +---+ h; and g, ---g; are in the
invariant subring T and hence f1/g1 € F*(I'(Yp)).

For the second statement, evidently we have that ['(Y) C I'(Yy). If Yy # Y let
P =(p1,...,pm) €Y — Y, and consider the function
1
(@L—p1)? + -+ (Tm — Pm)?

which is entire rational on Yy but not on Y. So I'(Yp) # I'(Y) and therefore I'(Yp) =
[(Y) if and only if Y; =Y. The third statement follows easily. a

fi/gr =
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