Tr. J. of Mathematics 21 (1997), 493 – 499. © TÜBİTAK

QUOTIENTS OF REAL ALGEBRAIC SETS VIA FINITE GROUPS

Yıldıray Ozan

Abstract

In this paper, we will study finite algebraic group actions on real algebraic sets and compare the topological quotient X/G with the algebraic quotient X/G. We will give a different and shorter proof of a result of Procesi and Schwarz, stating that if the order of the group G, acting algebraically on a real algebraic set X, is odd then X/G is equal to X//G. In the case of even order groups, we will a give sufficient condition (and a necessary condition in the case $G = \mathbb{Z}_2$) for the X/G to be equal to X//G.

1. Introduction and Preliminaries

The problem of real algebraic realization of topological or smooth objects has been studied by many authors. In [11], Seifert showed that any closed smooth submanifold $M \subseteq \mathbb{R}^n$ with trivial normal bundle is isotopic to a nonsingular component of a real algebraic set $X \subseteq \mathbb{R}^n$. Nash showed that every closed smooth manifold is diffeomorphic to a component of a nonsingular real algebraic set in some \mathbb{R}^N ([7]). Later, Tognoli proved that any closed smooth manifold is diffeomorphic to a nonsingular real algebraic set in some \mathbb{R}^N ([13]). In [2, 3] Akbulut and King improved Tognoli's result by showing that any closed smooth submanifold of \mathbb{R}^n can be isotoped to the nonsingular points of an algebraic subset of \mathbb{R}^n . Dovermann and Masuda showed that, in some cases, smooth manifolds with group actions can be realized as equivariant nonsingular algebraic sets ([6]).

In this paper, we will study finite algebraic group actions on real algebraic sets and compare the topological quotient X/G with the algebraic quotient X//G. If the order of the group G, acting algebraically on a real algebraic set X is odd, then X/G is canonically equal to X//G (Theorem 2.1). When the order |G| is even, in general, this is not true (see the counterexample after Theorem 2.1). In the case of even order groups, we will a give sufficient condition (and a necessary condition in the case $G = \mathbb{Z}_2$) for the X/G to be equal to X//G (Theorem 2.2 and Theorem 2.3).

In [9] Procesi and Schwarz had proved Theorem 2.1.a in the case of linear G actions. However, the proof we give is shorter and does not require linear G actions.

Definition 1.1. 1) Let $X \subseteq \mathbb{R}^n$ and $Z \subseteq \mathbb{R}^m$ be semialgebraic sets. A map $F: X \longrightarrow Z$ is said to be entire rational if there exist $f_i, g_i \in \mathbb{R}[x_1, \ldots, x_n]$, $i = 1, \ldots, m$, such that each g_i vanishes nowhere on X and

$$F = (f_1/g_1, \dots, f_m/g_m).$$

We say X and Z are isomorphic if there are entire rational maps $F: X \longrightarrow Z$ and $G: Z \longrightarrow X$ such that $FoG = id_Z$ and $GoF = id_X$.

2) Let $X\subseteq\mathbb{R}^n$ be a semialgebraic set and G be a finite group acting on X. Then G is said to be acting algebraically on X, if for each $g\in G$ the map $g:X\longrightarrow X$, $x\longmapsto g\cdot x$ is the restriction of some polynomial map $P_g:\mathbb{R}^n\longrightarrow\mathbb{R}^n$.

Remark. By the last theorem in Section 9 in [6], in the case that X is an algebraic set, any algebraic G action on X is equivalent to a linear action if we are willing to replace X with an isomorphic copy of it possibly in a larger Euclidean space. Nevertheless, our proofs work in the polynomial case and hence we will assume that the action is given by polynomial maps.

Let X be an algebraic set in \mathbb{R}^n . Suppose that G is a finite group acting algebraically on X. Let $S = \mathbb{R}[x_1, \ldots, x_n]/J(X)$ be the ring of polynomial functions on X where $J(X) \subseteq \mathbb{R}[x_1, \ldots, x_n]$ is the ideal of vanishing polynomials on X. We define a G action on S as follows: for $g \in G$ and $f \in S$, let $g \cdot f = fog^{-1}$. Consider the subring T of S defined by

$$T = S^G = \{ f \in S \mid g \cdot f = f, \ \forall g \in G \}.$$

Both T and S are $\mathbb R$ algebras. Moreover, it is well known that S is an algebraic extension of T and therefore T is also a finitely generated $\mathbb R$ algebra (Exercise 5.12 and Proposition 7.8 in [4]). Say T is generated by y_1,\ldots,y_m over the reals. Consider the complexification $T_{\mathbb C}$ and $S_{\mathbb C}$ of T and S defined by

$$T_{\mathbb{C}} = T \otimes_{\mathbb{R}} \mathbb{C}$$
 and $S_{\mathbb{C}} = S \otimes_{\mathbb{R}} \mathbb{C}$.

Clearly, these are finitely generated $\mathbb C$ algebras and $S_{\mathbb C}$ is the ring of polynomial functions on the complexification $X_{\mathbb C}$ of X. The above action of G on S extends to $S_{\mathbb C}$, linearly over $\mathbb C$. With this definition of G action, immediately, we have that $S_{\mathbb C}^G = T_{\mathbb C}$.

Consider the maps $F_{\mathbb{C}}: X_{\mathbb{C}} \longrightarrow \mathbb{C}^m$ and $F = F_{\mathbb{C}|X}: X \longrightarrow \mathbb{R}^m$, where both are given by

$$x \longrightarrow (y_1(x), \dots, y_m(x)).$$

If Z is the complex algebraic set corresponding to the $\mathbb C$ algebra $T_{\mathbb C}$ (i.e. the embedding of the maximal spectrum of $T_{\mathbb C}$ into $\mathbb C^m$ via $F_{\mathbb C}$), then $F_{\mathbb C}:X_{\mathbb C}\longrightarrow Z$ is the map corresponding to the inclusion of $\mathbb C$ algebras $i:T_{\mathbb C}\longrightarrow S_{\mathbb C}$ and $F_{\mathbb C}(X_{\mathbb C})=Z$.

Let $Y_0 = F(X) \subseteq \mathbb{R}^n$ and Y denote the Zariski closure of the semialgebraic set Y_0 in \mathbb{R}^m . We endow Y_0 with its subspace topology and X/G with the quotient topology. Now we state a well known result which we will need later. We refer the reader to Section 1.3 in [5] or Chapter 1 in [8] or [10] for a proof this lemma.

Lemma 1.2. $F: X \longrightarrow Y_0$ induces a homeomorphism $\overline{F}: X/G \longrightarrow Y_0$. Moreover, if X is nonsingular and the G action on X is free, then Y_0 is a subset of nonsingular points of its Zariski closure Y and the induced map $\overline{F}: X/G \longrightarrow Y_0$ becomes a diffeomorphism.

Lemma 1.3. $Y = Z \cap \mathbb{R}^m$ or $Z = Y_{\mathbb{C}}$.

Proof. Since $Y_0 = F(X) \subseteq F_{\mathbb{C}}(X_{\mathbb{C}}) \cap \mathbb{R}^m = Z \cap \mathbb{R}^m$ we see that $Y \subseteq Z \cap \mathbb{R}^m \subseteq Z$. Hence, $Y_{\mathbb{C}} \subseteq Z$, where $Y_{\mathbb{C}}$ is the complexification of the real algebraic set Y. Also, since $X \subseteq F_{\mathbb{C}}^{-1}(F_{\mathbb{C}}(X)) \subseteq F_{\mathbb{C}}^{-1}(Y) \subseteq F_{\mathbb{C}}^{-1}(Y_{\mathbb{C}})$, we have $X_{\mathbb{C}} \subseteq F_{\mathbb{C}}^{-1}(Y_{\mathbb{C}})$. Therefore, $Z = F_{\mathbb{C}}(X_{\mathbb{C}}) \subseteq F_{\mathbb{C}}(F_{\mathbb{C}}^{-1}(Y_{\mathbb{C}})) \subseteq Y_{\mathbb{C}} \subseteq Z$ and thus $Y_{\mathbb{C}} = Z$ and $Y = Z \cap \mathbb{R}^m$. \square

This is nothing but the first paragraph of the proof of Proposition 2.10.3 in [1]. In the literature, Y is usually denoted by X//G, the algebraic quotient of X by G.

2. Results

Theorem 2.1. Let X be an irreducible real algebraic set and G is a finite group acting algebraically on X. Let Y be the Zariski closure of Y_0 . Then:

- a) if |G| is odd, then $Y_0 = Y$; i.e. Y_0 is algebraic;
- b) if G acts freely on X and X is nonsingular, then Y_0 is a union of topological components of Nonsing(Y) (G might have even order);
- c) if |G| is odd, X is nonsingular and G acts freely on X, then Y_0 is a nonsingular algebraic set.

Proof. First let us prove (a): Assume that the conclusion of the theorem is not true. So there exists a point $p \in Y - Y_0$. Let $\{q_1, \ldots, q_l\}$ be the preimage of p under $F_{\mathbb{C}}: X_{\mathbb{C}} \longrightarrow Y_{\mathbb{C}}$. Since G acts transitively on the fibers $l = |G|/Stab_G(q_1)$. But G is of odd order and hence l is an odd number. However, since $p \in Y - Y_0$ none of the q_i 's is contained in the real part of $X_{\mathbb{C}}$, because all the real points of $X_{\mathbb{C}}$ are sent to Y_0 . Moreover, since $F_{\mathbb{C}}$ is a real polynomial map, and $X_{\mathbb{C}}$ is defined over the reals, the complex conjugation of \mathbb{C}^n preserves the fibers of $F_{\mathbb{C}}: X_{\mathbb{C}} \longrightarrow Y_{\mathbb{C}}$ over real points. In particular, it preserves the fiber over p. So l should be an even number, which is a contradiction. Hence, $Y = Y_0$.

For part (b) consider the map $F: X \longrightarrow Y$. Since this map is a local diffeomorphism at each point of X (Lemma 1.2) and $\dim(X) = \dim(Y)$ we have that Y_0 is an open subset of $Nonsing(Y) \subseteq Y$. The map $F_{\mathbb{C}}: X_{\mathbb{C}} \longrightarrow Y_{\mathbb{C}}$ is a closed mapping ([8] or Corollary A on page 49 in [12]). Now since $X \subseteq X_{\mathbb{C}}$ is closed, $Y_0 = F_{\mathbb{C}}(X)$ is closed in $Y_{\mathbb{C}}$ and hence in Y. So Y_0 is a union of topological components of Nonsing(Y). Finally, part (c) follows from parts (a) and (b).

Remark. The following example shows that Theorem 2.1.a. does not hold for groups of even order. Let X be the zero set of the irreducible polynomial $x^4 + y^4 - 1$ in \mathbb{R}^2 . Then, X is a nonsingular irreducible algebraic set diffeomorphic to the unit circle S^1 . Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the involution of \mathbb{R}^2 given by

$$f((x,y)) = (-x, -y).$$

Note that $G = \{id, f\}$ acts freely on X. Let S, T be as in Section 1. Then,

$$S = \mathbb{R}[x, y]/(x^4 + y^4 - 1)$$
 and $T = \mathbb{R}[x^2, y^2, xy]/(x^4 + y^4 - 1)$.

The map $F: X \longrightarrow \mathbb{R}^3$ is given by $(x,y) \longrightarrow (x^2,y^2,xy)$, and, as before, let us denote its image by Y_0 , which is a smooth manifold diffeomorphic to S^1 . The Zariski closure Y of Y_0 in \mathbb{R}^3 is given by the polynomial equations $t_1^2+t_2^2-1=0$ and $t_1t_2-t_3^2=0$. In Y_0 the first two coordinates are always non negative, whereas in Y these two coordinates can be negative. Actually, $Y_0 \cup Y_0' = Y$ (Example 2 after Theorem 2.2), where $Y_0' = \{(t_1,t_2,t_3) \mid (-t_1,-t_2,-t_3) \in Y_0\}$ and $Y_0 \cap Y_0' = \emptyset$. Therefore, Y_0 can not be a Zariski open set and thus $Y_0 = F(X)$ is not algebraic.

Even order group case: To be able to get a result similar to Theorem 2.1 in the case of even order groups we will assume that X is a nonsingular real algebraic set and the G action on X is free. First let us consider the case where $G = \mathbb{Z}_2 = \langle g \rangle$. By Theorem 2.1.b Y_0 is a union of the components of Nonsing(Y). Let us look at Y carefully and see when Y_0 is an algebraic set or a Zariski open subset of Y.

The points in $Y-Y_0$ are coming from the non real points of $X_{\mathbb{C}}$. So, the preimage of any point in $Y-Y_0$ under $F_{\mathbb{C}}:X_{\mathbb{C}}\longrightarrow Y_{\mathbb{C}}$ consists of two complex conjugate points in $X_{\mathbb{C}}-X$. Let W be the set of the points in all such fibers. Note that W is nothing but the subset of $X_{\mathbb{C}}$ on which complex conjugation and g agree. So it is a real algebraic subset of $X_{\mathbb{C}}$.

G acts freely on X and complex conjugation acts trivially on X and thus $X \cap W = \emptyset$. Since $F_{\mathbb{C}}: X_{\mathbb{C}} \longrightarrow Y_{\mathbb{C}}$ is a finite to one map, the semialgebraic set $F_{\mathbb{C}}(W) = Y - Y_0$ has the same dimension as W. So, $\dim(W) \leq \dim(Y) = k$. If $\dim(W) \leq k-1$, then $Y-Y_0$ is contained in Sing(Y) and therefore Y_0 is a Zariski open subset of Y. If $W=\emptyset$ then $Y_0=Y$ and hence is algebraic in \mathbb{R}^m . So we have proved the following theorem.

Theorem 2.2. Let $G = \mathbb{Z}_2 = \langle g \rangle$ act freely on a k dimensional nonsingular real algebraic set $X \subseteq \mathbb{R}^n$. Let W be as above, then $Y = Y_0 \cup F^{\mathbb{C}}(W)$. In particular,

- a) if $W = \emptyset$, then $Y_0 = Y$ and hence Y_0 is algebraic in \mathbb{R}^m ;
- **b)** if $\dim(W) \leq k-1$, then Y_0 is a Zariski open subset of Y;
- c) if dim(W) = k, then Y_0 is not a Zariski open subset of Y.

Remark. Assume that the above G action is linear. So, by a linear change of coordinates we have

$$g(x_1, \ldots, x_n) = (x_1, \ldots, x_{j-1}, -x_j, \ldots, -x_n)$$

for some $1 \leq j \leq n$. In this case $W = X_{\mathbb{C}} \cap V_g$, where V_g is the linear subspace of $\mathbb{R}^{2n} = \mathbb{C}^n$ given by

$$x_l = 0, \quad l = j, \dots, n \quad \text{and} \quad y_l = 0, \quad l = 1, \dots, j - 1,$$

where $(x_1, y_1, \dots, x_n, y_n) \in \mathbb{R}^{2n}$ $(\mathbb{R}^{2n} = \mathbb{C}^n \text{ by } z_l = x_l + iy_l)$. By identifying

$$(x_1, 0, x_2, 0, \dots, x_{j-1}, 0, 0, y_j, 0, y_{j+1}, \dots, 0, y_n)$$
 with $(x_1, \dots, x_{j-1}, y_j, \dots, y_n)$,

we can identify W with the algebraic subset $\tilde{W} \subseteq \mathbb{R}^n$, given by

$$\tilde{W} = \{(X,Y) = (x_1, \dots, x_{i-1}, y_i, \dots, y_n) \mid f(X,iY) = 0, \forall f \in J(X)\}.$$

Examples. 1) Let $X = S^k \subseteq \mathbb{R}^{k+1}$ be the standard k-sphere and g be the antipodal map. Then,

$$\tilde{W} = \{(x_1, \dots, x_{k+1}) \in \mathbb{R}^{k+1} \mid (ix_1)^2 + \dots + (ix_{k+1})^2 = 1\} = \emptyset.$$

So $W = \emptyset$. The coordinate functions of F are $x_i x_j$ for $i \leq j = 1, \ldots, k+1$. So $\mathbb{R}P^k$ sits in $\mathbb{R}^{(k+1)(k+2)/2}$ as an algebraic set.

2) Let us look at the counterexample following Theorem 2.1 once more. $W\subseteq \mathbb{R}^4=\mathbb{C}^2$ is equal to

$$W = \{(0, ix, 0, iy) \mid x, y \in \mathbb{R}, \ x^4 + y^4 = 1\}.$$

so that, W has dimension one. Moreover, W is sent onto Y_0' by the map $F_{\mathbb{C}}(x,y) = (x^2, y^2, xy)$. Therefore $Y = Y_0 \cup Y_0'$.

3) Let $X \subseteq \mathbb{R}^2$ be given by $x^4 + y^2 = 1$. X is diffeomorphic to S^1 . Let g be as above. Then, Y_0 is diffeomorphic to S^1 but, the Zariski closure Y of Y_0 contains an unbounded curve. Hence, Y may not be compact even if X is compact.

A weaker version of Theorem 2.2 generalizes to arbitrary finite groups as follows.

Theorem 2.3. Let G be any finite group acting freely on a k dimensional nonsingular real algebraic set X. Let W be the set

$$\{p \in X_{\mathbb{C}} \mid g(p) = \bar{p}, \text{ for some order two element } g \in G\},\$$

where \bar{p} denotes the complex conjugate of p. Now, if $\dim(W) \leq k-1$ then $Y_0 = Nonsing(Y)$ and therefore Y_0 is a Zariski open subset of Y.

Proof. By Theorem 2.1.b Y_0 is union of topological components of Nonsing(Y). Assume that the conclusion of the theorem is not true. So Nonsing(Y) has components other than the ones contained in Y_0 . In particular, $Y-Y_0$ has real dimension $k=\dim(Y)$. Let $p\in Nonsing(Y)-Y_0$ and $\Delta=(F_{\mathbb{C}})^{-1}(p)$. Since p is a real point and everything is defined over the reals, Δ is invariant under complex conjugation. Moreover, $\Delta\cap X=\emptyset$ and G acts transitively on Δ . Note that the set Z of points in $X_{\mathbb{C}}$ on which G does not act freely is a proper algebraic subset of $X_{\mathbb{C}}$. So $F_{\mathbb{C}}(Z)$ has complex dimension at most k-1 and thus its real part $Y\cap F_{\mathbb{C}}(Z)$ has real dimension not more than k-1.

Let $q \in \Delta$, then $\bar{q} \in \Delta$. Assume that $q \notin Z$; then $\Delta \cap Z = \emptyset$. Thus G acts freely and transitively on Δ and therefore, there exists an element $g \in G$ so that $g(q) = \bar{q}$. Since $g: X_{\mathbb{C}} \longrightarrow X_{\mathbb{C}}$ is defined over the reals we get $g(\bar{q}) = q$ and therefore $g^2 = id_G$. Hence, $\Delta \subseteq W$ and we conclude that any fiber $(F_{\mathbb{C}})^{-1}(p)$, for $p \in Nonsing(Y) - Y_0$, is contained in $W \cup Z$. Hence, $Nonsing(Y) - Y_0 \subseteq F_{\mathbb{C}}(W \cup Z)$ which is a contradiction since the real dimension of $Y \cap F_{\mathbb{C}}(W \cup Z)$ is less than $k = \dim(Y)$.

Let us now consider the entire rational functions on Y_0 and Y. For any semi-algebraic subset X of \mathbb{R}^n let $\Gamma(X)$ denote the ring of entire rational functions on X. Assuming the previous notation we have a G action on $\Gamma(X)$ and the map $F: X \longrightarrow Y_0$ induces a homomorphism $F^*: \Gamma(Y_0) \longrightarrow \Gamma(X)$ via composition by F. Moreover, we have the following.

Proposition 2.4. $(\Gamma(X))^G = F^*(\Gamma(Y_0))$ and $\Gamma(Y) \subseteq \Gamma(Y_0)$, where the equality holds if and only if $Y_0 = Y$. In particular, if X and Z are irreducible algebraic sets with algebraic G actions and if they are G equivariantly isomorphic to each other, then their quotients X//G and Z//G are isomorphic.

Proof. First let us show that $(\Gamma(X))^G = F^*(\Gamma(Y_0))$. Clearly $F^*(\Gamma(Y_0)) \subseteq (\Gamma(X))^G$. Let $f_1/g_1 \in (\Gamma(X))^G$. Then, $l \cdot f_1/g_1 = f_1/g_1 + \cdots + f_l/g_l \in (\Gamma(X))^G$ where the sets $\{f_1, \ldots, f_l\}$ and $\{g_1, \ldots, g_l\}$ are the G orbits of f_1 and g_1 respectively. Now

$$f_1/g_1 = \frac{h_1 + \dots + h_l}{l \cdot g_1 \cdots g_l}$$

where $h_i = f_i \cdot g_1 \cdots g_{i-1} \cdot g_{i+1} \cdots g_l$. Note that $h_1 + \cdots + h_l$ and $g_1 \cdots g_l$ are in the invariant subring T and hence $f_1/g_1 \in F^*(\Gamma(Y_0))$.

For the second statement, evidently we have that $\Gamma(Y) \subseteq \Gamma(Y_0)$. If $Y_0 \neq Y$ let $P = (p_1, \dots, p_m) \in Y - Y_0$ and consider the function

$$\frac{1}{(x_1 - p_1)^2 + \dots + (x_m - p_m)^2}$$

which is entire rational on Y_0 but not on Y. So $\Gamma(Y_0) \neq \Gamma(Y)$ and therefore $\Gamma(Y_0) = \Gamma(Y)$ if and only if $Y_0 = Y$. The third statement follows easily.

OZAN

References

- [1] Akbulut, S., King, H.: *Topology of real algebraic sets*, M.S.R.I. book series, New York Berlin Heidelberg, Springer 1992.
- [2] ————: "On approximating submanifolds by algebraic sets and a solution to the Nash conjecture", *Invent. Math.*, **107**, (1992), 87-98.
- [3] ---: "Algebraicity of immersions", Topology, 31, no.4, (1992), 701-712.
- [4] Atiyah, M. F., Macdonald, I. G.: Introduction to commutative algebra, Addison -Wesley 1967.
- [5] Bredon, G.: Introduction to compact transformations groups, New York, Academic Press 1972.
- [6] Dovermann, K. H., Masuda, M.: "Equivariant algebraic realization of smooth manifolds and vector bundles", Contemp. Math., 182, (1995), 11-28.
- [7] Nash, J.: "Real algebraic manifolds", Annals of Math., 56, (1952), 405-421.
- [8] Ozan, Y.: Ph.D thesis. Michigan State University, 1994.
- [9] Procesi, C., Schwarz, G.: "Inequalities defining orbit spaces", Invent. Math., 81, (1985), 539-554.
- [10] Schwarz, G.: "Smooth functions invariant under the action of a compact Lie group", Topology, 14, (1975), 63-68.
- [11] Seifert, H.: "Algebraische approximation von mannigfaltigkeiten", Math. Zeitschrift., 41, (1936), 1-17.
- [12] Shafarevich, I. R.: Basic algebraic geometry, Berlin Heidelberg New York, Springer 1977.
- [13] Tognoli, A.: "Su una Congettur di Nash", Ann. Scuola Norm. Sup. Pisa, 27, (1973), 167-185.

Yıldıray OZAN Middle East Technical University, Department of Mathematics, e-mail: ozan@rorqual.cc.metu.edu.tr 06531, Ankara-TURKEY

Received 21.03.1997