Tr. J. of Mathematics 21 (1997), 431 - 435. © TÜBİTAK

SOME COMMUTATIVITY PROPERTIES FOR RINGS WITH UNITY

Hamza A.S. Abujabal

Abstract

In this paper, we prove the commutativity of a ring R with unity satisfying one of the following ring properties:

- (P_1) For each x,y in $R,~\{1-h(yx^r)\}[x,yx^r-f(yx^r)]\{1-g(yx^r)\}=0$ for some $f(X)\in X^2\mathbb{Z}[X]$ and $g(X),h(X)\in X\mathbb{Z}[X]$.
- (P₂) Given x, y in $R, \{1 h(yx^r)\}[x, yx^r f(x^ry)]\{1 g(yx^r)\} = 0$ and $\{1 \tilde{h}(xy^r)\}[y, y^rx \tilde{f}(xy^r)]\{1 \tilde{g}(xy^r)\} = 0$ for some $f(X), \tilde{f}(X) \in X^2\mathbb{Z}[X]$ and $g(X), \tilde{g}(X), h(X), \tilde{h}(X) \in X\mathbb{Z}[X]$.
- (P_3) For each $x, y \in R$, $[x, yx^r x^s f(y)x^t] = 0$ for some $f(X) \in X^2 \mathbb{Z}[X]$.

Introduction

Throughout this paper R will represent a ring with unity 1, N(R) the set of nilpotent elements in R, N'(R) the subset of N(R) consisting of all elements $a \in R$ with $a^2 = 0$ and U(R) the group of units in R. For $x, y \in R$, the commutator xy - yx will be denoted by [x, y]. Let $\mathbb Z$ be the ring of integers and let r, s and t be non-negative integers.

In this paper we consider the following properties:

- (P₁) For each x, y in R, $\{1 h(yx^r)\}[x, yx^r f(yx^r)]\{1 g(yx^r)\} = 0$ for some $f(X) \in X^2 \mathbb{Z}[X]$ and $g(X), h(X) \in X \mathbb{Z}[X]$.
- $\begin{array}{l} (P_2) \ \ \text{Given } x,y \ \text{in } R, \ \{1-h(yx^r)\}[x,yx^r-f(x^ry)]\{1-g(yx^r)\} = 0 \ \text{and} \ \{1-\tilde{h}(xy^r)\}[y,y^rx-\tilde{f}(xy^r)]\{1-\tilde{g}(xy^r)\} = 0 \ \text{for some} \ f(X),\tilde{f}(X) \in X^2\mathbb{Z}[X] \ \text{and} \ g(X),\tilde{g},h(X),\tilde{h}(X) \in X\mathbb{Z}[X]. \end{array}$
- (P_3) For each $x, y \in R$, $[x, yx^r x^s f(y)x^t] = 0$ for some $f(X) \in X^2 \mathbb{Z}[X]$.

Main Results

The main results of this paper are stated as follows:

Theorem 1. Let R be a ring with unity 1. If R satisfies (P_1) , then R is commutative.

Theorem 2. Let R be a ring with unity 1. If R satisfies (P_2) , then R is commutative.

Theorem 3. Let R be a ring with unity 1. If R satisfies (P_3) , then R is commutative.

As is easily seen from the proof of [5, Korollar (1)], if R is a non-commutative ring, then there exists a factor subring of R which is of type (a), (b), (c), (d) or (e):

- (a) $\begin{pmatrix} GF(p) & GF(p) \\ 0 & GF(p) \end{pmatrix}$, p a prime.
- (b) $M_{\sigma}(\mathbb{F}) = \left\{ \left(\begin{array}{cc} \alpha & \beta \\ 0 & \sigma(\alpha) \end{array} \right) \middle| \alpha, \beta \in \mathbb{F} \right\}$, where \mathbb{F} is a finite field with a non-trivial automorphism σ .
- (c) A non-commutative division ring.
- (d) A domain $S = \langle 1 \rangle + T, T$ is a simple radical subring of S.
- (e) $S = \langle 1 \rangle + T, T$ is a non-commutative subring of S such that T[T,T] = [T,T]T = 0.

The following result plays an essential role in our subsequent study:

Meta Theorem. Let P be a ring property which is inherited by factor subrings. If no rings of type (a), (b), (c), (d), or (e) satisfy P, then every ring with 1 and satisfying P is commutative.

Proof of Theorem 1. In view of Meta Theorem, it suffices to show that R cannot be of type (a), (b), (c), (d) or (e). For each $f(X) \in X^2\mathbb{Z}[X]$ and $g(X), h(X) \in X\mathbb{Z}[X]$, we set

$$x = e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, and $y = e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

in the hypothesis to get

$$\{1 - h(e_{21}e_{11}^r)\}[e_{11}, e_{21}e_{11}^r - f(e_{21}e_{11}^r)]\{1 - g(e_{21}e_{11}^r)\} = e_{21} \neq 0.$$

This is a contradiction.

Suppose that $R = M_{\sigma}(\mathbb{F})$, and put

$$x = \left(egin{array}{cc} lpha & 0 \ 0 & \sigma(lpha) \end{array}
ight), \quad (\sigma(lpha)
eq lpha) \quad ext{ and } \quad y = \left(egin{array}{cc} 0 & 0 \ 1 & 0 \end{array}
ight) = e_{21}.$$

Then for each $f(X) \in X^2 \mathbb{Z}[X]$ and $g(X), h(X) \in X \mathbb{Z}[X]$ we have

$$\{1 - h(yx^r)\}[x, yx^r - f(yx^r)]\{1 - g(yx^r)\} = e_{21}(\alpha^r(\alpha - \sigma(\alpha)) \neq 0,$$

which is a contradiction.

Suppose that R is a division ring. For any $x \neq 0$ and y in R, there exist $f(X) \in X^2 \mathbb{Z}[X]$ and $g(X), h(X) \in X \mathbb{Z}[X]$ such that

$$\{1 - h(yx^rx^{-r})\}[x, yx^rx^{-r} - f(yx^rx^{-r})]\{1 - g(yx^rx^{-r})\} = 0.$$

Thus

$$\{1 - h(y)\}[x, y - f(y)]\{1 - g(y)\} = 0.$$

Then either [r, y-f(y)] = 0, y-yg(y) = 0 or y-yh(y) = 0. Therefore R is commutative by [3, Theorem 3].

Let $v, w \in T$. Then $u = 1 + v \in U(R)$, and there exist $f(X) \in X^2\mathbb{Z}[X]$ and $g(X), h(X) \in X\mathbb{Z}[X]$ such that

$$0 = \{1 - h(wu^ru^{-r})\}[u, wu^ru^{-r} - f(wu^ru^{-r})]\{1 - g(wu^ru^{-r})\}.$$

Thus

$$0 = \{1 - h(w)\}[u, w - f(w)]\{1 - g(w)\}.$$

Then, either $[u, w - f(w_j)] = 0$, w - wg(w) = 0 or w - wh(w) = 0. Hence, T is commutative by [3, Theorem 3]. But this is a contradiction.

Finally, suppose that R is of type (e). Let $v, v \in T$. Then $u = 1 + v \in U(R)$ and there exist $f(X) \in X^2 \mathbb{Z}[X]$ and $g(X), h(X) \in X \mathbb{Z}[X]$. In the hypothesis, replace x by 1 + v and y by w, to get

$$0 = \{1 - h(w(1+v)^r)\}[(1+v), w(1+v)^r - f(w(1+v)^r)]\{1 - g(w(1+v))\}.$$

Thus

$$0 = \{1 - h(w(1+v)^r)\}(1+v)^r(1+v)^r[v,w]\{1 - g(w(1+v)^r)\}.$$

This implies that [v, w] = 0. Therefore T is commutative. This is a contradiction.

Proof of Theorem 2. Let $x, y \in R$ and let $f(X) \in X^2\mathbb{Z}[X]$ and $g(X), h(X) \in X\mathbb{Z}[X]$ such that $\{1-h(yx^r)\}[x, yx^r-f(x^ry)]\{1-g(yx^r)\}=0$. Let $z \in R$ such that $f(x^ry)=x^rz$ and $f(yx^r)=zx^r$. Now we choose $\tilde{f}(X) \in X^2\mathbb{Z}[X]$ and $\tilde{g}(X)\tilde{f}(X) \in X\mathbb{Z}[X]$ such that

$$0 = \{1 - \tilde{h}(f(yx^r))\}[x, f(x^ry) - \tilde{f}(f(yx^r))]\{1 - \tilde{g}(f(yx^r))\}$$
 (1)

and

$$0 = \{1 - \tilde{h}(zx^r)\}[x, x^r z - \tilde{f}(zx^r)]\{1 - \tilde{g}(zx^r)\}.$$
(2)

Now, combining (1) and (2) gives

$$0 = \{1 - \tilde{h}(f(yx^r))\}\{1 - h(yx^r)\}[x, yx^r - \tilde{f}(f(yx^r))]\{1 - g(yx^r)\}\{1 - \tilde{g}(f(yx^r))\}.$$

This implies that

$$0 = \{1 - h(yx^r)\}[x, yx^r - f(yx^r)]\{1 - g(yx^r)\}.$$

By using the same line of the proof of Theorem 1, we prove the commutativity of R.

In preparation for proving Theorem 3, we first establish the following Lemmas:

Lemma 1. If R satisfies (P_3) and x is in U(R), then for each $y \in R$, there exists $h(X) \in X^2 \mathbb{Z}[X]$ such that [x, y - h(y)] = 0.

Proof. Let $x \in U(R)$ and $y \in R$. Then we choose $f(X) \in X^2 \mathbb{Z}[X]$ such that $[x^{-1}, yx^{-r} - x^{-s}f(y)x^{-t}] = 0$. Hence $[x, yx^{-r} - x^{-s}f(y)x^{-t}] = 0$ and $[x, y]x^{-r} = x^{-s}[x, f(y)]x^{-t}$. Thus

$$x^{s}[x, y]x^{t} = [x, f(y)]x^{r}.$$
 (3)

Now let $g(X) \in X^2\mathbb{Z}[X]$ such that $[x,f(y)x^r-x^sg(f(y))x^t]=0$. Since $g(f(X))\in X^2\mathbb{Z}[X]$ and

$$[x, f(y)]x^r = x^s[x, h(y)]x^t.$$

$$(4)$$

Combining equation (3) and (4) gives $x^s[x,y]x^t = x^s[x,h(y)]x^t$ and so [x,y] = [x,h(y)]. Therefore, [x,y-h(y)] = 0.

Lemma 2. If R satisfies (P_3) and R is a division ring, then R is commutative.

Proof. Let R be a division ring. By Lemma 1, for each $x, y \in R$, there exists $f(X) \in X^2 \mathbb{Z}[X]$ such that [x, y - f(y)] = 0. Thus R is commutative by [3, Theorem 3].

Lemma 3. If R satisfies (P_3) and $R = \langle 1 \rangle + T$, T is a radical subring of R, then R is commutative.

Proof. Let $v, w \in T$. Then 1-v is a unit and by Lemma 1, there exists $f(X) \in X^2 \mathbb{Z}[X]$ such that

$$[v, w - f(w)] = [1 - v, w - f(w)] = [-v, w - f(w)] = -[1 - v, w - f(w)] = 0.$$

Thus R is commutative by [3, Theorem 3].

Proof of Theorem 3. In view of Lemma 2 and Lemma 3, no rings of type (c) or (d) satisfy (P_3) . In $R = M_2(GF(p))$, where GF(p) is the Galois field over a prime p, we see that $[e_{11}, e_{21}e_{11}^r - e_{11}^s f(e_{21})e_{11}^t] = e_{21} \neq 0$, for every $f(X) \in X^2\mathbb{Z}[X]$. Thus we have a contradiction. Hence, no rings of type (a) satisfy (P_3) .

Next consider the ring $M_{\sigma}(\mathbb{F})$. Let

$$x = \left(egin{array}{cc} lpha & 0 \ 0 & \sigma(lpha) \end{array}
ight), \quad (\sigma(lpha))
eq lpha
ight) \quad ext{ and } \quad y = e_{21}.$$

Then

$$[x, yx^r - x^s f(y)x^t] = [x, y]x^t$$
$$= (\sigma(\alpha) - \alpha)y\alpha^r$$
$$= (\alpha - \sigma(\alpha))\alpha^r y \neq 0$$

for every $f(X) \in X^2 \mathbb{Z}[X]$.

Finally, suppose that R is of type (e). For each $v,w\in T,$ there exists $f(X)\in X^2\mathbb{Z}[X]$ such that

$$[v, w] = [v, w](v+1)^r - (v+1)^s [v, f(w)](v+1)^t = 0.$$

This is a contradiction.

We have thus seen that no rings (a), (b), (c), (d) or (e) satisfy (P_3) . Hence R is commutative by Meta Theorem.

References

- [1] H.E. Bell, M.A. Quadri and M. Ashraf, Commutativity of rings with some commutator constraints, *Rodovi Mat.*, **5** (1989), 223-230.
- [2] H.E. Bell, M.A. Quadrari and M.A. Khan, Two commutativity theorems for rings, *Rodovi Mat.*, 3 (1987), 255-260.
- [3] I.N. Herstein, Two remarks on the commutativity of rings, Canad. J. Math., 7 (1955), 411-412.
- [4] H. Komatsu and H. Tominaga, Chacron's condition and commutativity theorems, *Math. J. Okayama Univ.*, **31** (1989), 101-120.
- [5] W. Streb, Zur struktur nichtkommutativer ringe, Math. J. Okayama Univ., 31 (1989), 135-140.

Hamza A.S. ABUJABAL Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 31464 Jeddah 21497, Saudi Arabia

Received 21.06.1996