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THE LINEAR MEAN VALUE OF THE REMAINDER
TERM IN THE PROBLEM OF ASYMPTOTIC BEHAVIOR
OF EIGENFUNCTIONS OF THE AUTOMORPHIC
LAPLACIAN

Zernisan Emirleroglu

Abstract

The purpose of this paper is to obtain the estimate for the average mean value
of the remainder term of the asymptotic formula for the quadratic mean value
of the Fourier coefficients of the eigenfunctions over the discrete spectrum of the
automorphic Laplacian.

1. Introduction

An asymptotic formula for the quadratic mean value of the Fourier coefficients of
the eigenfunctions of the discrete spectrum of the Laplace operator which are automorphic
for a modular group was found in the paper of N.V Kuznetsov [4].

It can be formulated as follows:

x Chﬂ'li

where
R (X) € XInX 4+ Xn® +n2te

for any fixed ¢ > 0 and for any X > 2, n > 1. The true order of this remainder term is
unknown.

The remainder term of the asymptotic formula can be introduced with a small
difference from the paper. As well as the Fourier coefficients of the eigenfunctions of
discrete spectrum of Laplace operator, the Fourier coefficients of the eigenfunctions of a
continuous spectrum are also taken into consideration. So we define the remainder term
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by the equality:

lp;()|? 1 /X |71 4ir ()] 2 /X
R, (X) = — 4 — A —dr — — th dr,
(X) n;X chmk; + m J_x [C(1 + 2ir)|? - 0 rth{mr)dr

where the p;(n)’s, T1_,,.(n)’s are the Fourier coefficients of the eigenfunctions of the
discrete spectrum and continuous spectrum, correspondingly.
Now we define the mean value of the remainder term by the equality

B@T) = 3 w(2)Ra(e),

where w(z) is infinitely smooth, identically zero outside of the fixed interval [1,2], and is
near to 1 inside this interval. And 7" determines the length of averaging and would be
taken sufficiently large.

Our main result is the following assertion:

Theorem 1. Let w(z) be an infinitely smooth finite function whose support is separated
from zero, and T > X?. Then

3 w(%)Rn(X) = o TXlog(2nT) + ;TX — 267X log X + 2e,T(L(1, x) + L(1, x'))
” W(1)TX + O(VTX? + X+/log X),
where )
o = %% Lo —al2+ %(1) +3y— 2%(2) + %(%))
" x(n) = (55), Xm) = (2)
n n

(Here, w(s) is the Mellin transform of w(z) ).

2. Auxiliary Results

To prove the theorem we use following lemmas:

Lemma 1. Let h(r) be an even function of r, regular in the strip [Imr| < A for some
A > 1, and for some p >0, as [Imr| — oo, |[Imr| < A:

|h(r)| = O(Ir|~>77).
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Then
o 4
| R )ar = 3 s, m e, (1)
0 e>1 ¢
where S(n,m,c) is the classical Kloosterman sums and
2 [ T
=— J2ir () ——=h(r)d
o) =2 [ o) g hiryar
with the usual notation for the Bessel function.
Proof. Follows from the main identity [4] after puttin n = m. O
Lemma 2. 3¢ _ S(m,m,c)e®™(**) = cu,(c), where v,(c) is the number of the

solutions of the quadratic congruence a? + na + 1 =0 (mod c).
Proof. It follows directly from the definition of Kloosterman sums.

By multiplying both sides of the equation (1) by w(%), and taking summing over
n, we get

| R e = 23 w(3) 3 18mm e 2)

c>1

3. The Dirichlet Series

Now we choose h(r) as
h(r) = tx,A(r)7f](4T) for M >0,
q

where

and

X o2 © (rg? -1
tx,A = e a7 d¢ e a d¢ .
-X —0o0

Clearly t, a is almost 1 if r is in the interval [—X, X] and it rapidly decreases outside.
Equation (2) equals to

Z% i S(m,m,c) i w <%(n1 + %)) @ (47r (% +n1))

c>1 m=1 n1=0
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since we can replace n by m + ny ¢, where n; = 0,1,2.. and 1 < m < ¢. Note that
S(n,m,c) is a periodic function. Now we consider the following function

faio =Y w (g +2)) plan(m +2)). 3)

ny =0

The series in (3) determines a periodic function of z, with period 1. Hence f(z;c) has

the Fourier expansion
o0

flee)= 3" e(n=) dule),

n=—oo

where the coefficients are given by the integrals

Pn(c) = /000 6(-—n$)w(%x)g0(47rm)dz.

Putting the expansion into the equation and by using Lemma 2, (2) equals to

Z Z’/n(c) én(c), (4)

n=—o0 c>1

and it may be expressed in terms of Dirichlet series; for that we use the Mellin transform
of w(z) which is

. < e 1
= £ s ld
w(s) /0 w(Ta:)x z,
and the inversion formula
1
w(%x) —/w(s)c_sm_sTsds

= i

holds. (Here [ means the integration is over the line Res = ¢.) It can be seen from
integration by parts that w(s) is an rapidly decreasing function. We can arbitrary choose
o since w(s) is an entire function. Then (4) equals to

> 5 [, enloita)T Lads, 6
n=0 g

where

L,(s)= Z V"c—(sc) for Res > 1

c>1
and
o0
on(s) :/ cos(2mnz)z " p(drz)dr .
0
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(The possibility of changing the order of summation and integration, and two integration
will be clear after calculating ¢, (s).)

Now two questions arise, of what is the inner integral and what is the analytic
continuation of L, (s)? We will solve these questions separately.

Lemma 3. La(s) = 755¢(5)¢(2s - 1).

Lemma 4. When n # 2

)= gy T1 0550000
phZ-4
where
(2 v (4 Vp, v (p? 1
n(s):(1+ 2(s)+ 2§S)+---> 11 (1+ p(sp)+ p(£)+---> II (1+E>'
ptf,;z_él p|:7;2—4

Now we can give the explicit expression for the integrals of ¢, (s).

Lemma 5. For any p with the condition 0 < p < % we have for Res < 1+ 2p,

e h(r)
_ 5—2
on(s) =ir /Im:__p U (r, s)rchm* dr,

where
Yn(rs) = 27Wmg (o F(j )5 )(F(j;;;f)_ ay ifn=2
2° 1?2 7 ;F(lgs—i-ir,l;s zr,%n;), ifn=0or1,
ns_lﬁ(;)%TF@;(—:— ls)lj_(ir)— ir) (1 ; : el - g o 2ir + 1 545)’
ifn>2
Here

L =T@+n)Tb+n) T ,
Flb ) =) 1o T M+ m)

n=0
is the Gauss hypergeometric function.

Proof. It can be proved by using the discontinuous integral of Weber and Schafheitlin
[2]. |
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The Principal Term

As a result of Lemma 5, we have for p € (0,2), 1< Res<1+2p

g , _ > rh(r) - .
/0 R(r, T)R (r)dr = :L:?) /I Tt Qu(r T, (6)

mr=—p

where

Qn(r,T) = /_R 7534 (1, 8)W(8)T° L (3)ds.

Firstly we consider the case n = 2. The integrand of Q.(r,T) is a meromorphic
function since La(s) has the double pole at s=1, and other multipliers have no singularity
for % < Res < 1+ 2p. We move the line of integration to the left and we integrate now
on the line Res = o1 = % +¢e, €>0. Thus

1, (1) chrr w' ¢’ I 1
—2logr — izcthﬂr) + / 75 3o (1, )W (s)T° La(s)ds.
2 0:%+5

After integrating Qo(r,T) with multiplier ™M) on the line Imr = —p (here, p
chrr

can be taken as 0) we get the main term of the series in the formula (6), which is :
e1TX log(2nT) 4 caTX — 2¢;TX log X + O(VTX?), where

1 w(1)
= ———= 7
e g
and
w' ¢ 1
C2 =C1 (E(1)+3’Y—2Z(2)+F(§)> : (8)
Here, v is the Euler constant, v = ~—F1:'(1). And the second integral can be

estimated as O(VTX?).
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The Cases n # 2

For the case m > 2, again the integrand of Q,(r,T) is meromorphic function
for L,(s) has a simple pole at s = 1. We move the line of integration to the line
Res=o01=%1+¢, >0 for n < T%. We get

2 .
Qn(r,T) = —n‘2”6h£

m r 1

w(1)TB, +/ 7573 (7, 8)W(8)T° Ly (s)ds  n > 2,
0‘1:5-’-6
where B, is the residue of L,(s) at s =1. The result follows by the equality

[(ir) 1
[(2ir + 1)I(% —ir) ir

and
- 1 . . ir 2ir —ir€
F(ir, 3 +ir, 1+ 2ir;z) 27 = 2%"e

where z = % and ¢ = log% [3].

Here in order to estimate the integral on the line o; = % + €, it is necessary to find a
bound for L,(s). To do this we express L,(s) in terms of the classical Dirichlet’s series
with the Kronecker symbol,

L(s) =Y ("20_4> Cl

c>1

Since our character is not primitive, we write n? — 4 = k2Q, where Q is square free and

k> 0. We get
Q.1
Ln(s) = 1— (=)= ) L(s,x)
(- &2)

where y = (%) is real, primitive character. Then we have the following Lemma.

Lemma 6.
1
L(s,x) < Qit%  for any e > 0.

Proof. Proof can be obtained by expressing L(s, x) as a finite sum. We introduce the
function a(zx) such that a € C*(0,00), a=1 forz <zy<1 anda(z) =0 ifz > ﬁ
Then we apply the functional equation for L(s, x) (see [1] e.g.).

It is clear that the product Ln(s) =[], (1 — (%)p_la) is not larger than }_,, d™7 (0=
Res), but is smaller than k° for any € > 0. So we have the estimate

|Ln(s)| < k°Q3Te if n? — 4 = k2Q.
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h
When we integrate Q,(r,7) with multiplier rh(r) on the line I'mr = —p, we get
chrr

TXn~ % B,w(1) + O(T? X% +0).

In order to obtam the estimate we find the asymptotic expansion of F (1 £ +dgr, 1—
3 +ar, 2ir + 1, ) for large values of r and n. We use the standard methods of the
asymptotlc 1ntegrat10n of differential equation with large parameter. We get

1- 4
F(—Qf—i-ir,l—g—l—ir,%r—i—l;ﬁ)

— 4 —ir 4 & Lo2ir —irg 1 > e "
_(ﬁ) (1_ﬁ)2 224"e <1+E/5 f(mydn + O( > )
where . .
-3 i~ 2s8% + 2s
- d ¢~21
f(’?) 16(Ch2g — 1)Ch2g 4Chzg an ¢ ogn

And for n > T2, we approximate Q,(r,T) on the line Res = 01 = 1 + ¢y, and
with € > 0 we get

h 1
/ O, T) ) gy piveo gimeo L
Imr=—p chmr n4P

So we have in (6)

TXw(l) > B

Sty Tl x1-e0 1 O(TiteoXx3%0) if T > X,
3<n<N n>N

n2e
where N = T3+e0,
The cases n =0 and n = 1 are the trivial ones since we have exponentially small

function in the integrand. And we get first and second term of the series in the formula
(6) as

%mm( )L(1,x) + O(T#)
and 9 1

7 2@ POLWX) + OTh),
correspondingly. Here x(n) = (2_71) and x/(n) = (=2).

As a result: For T >

S @) [ Ralo ()i =

n=0
aTX 1og(2aT) + c2TX — 2c;TX log X + W(1)T(X + 2, T(L(1, x) + L(1,x")))
+0(VTX?),
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where ¢; and c; are as defined in (7) and (8).
By estimating the integral [~ R, (r)h/(r)dr from below by R, (X —2A/log X) +
O(X+/log X) and from above by R, (X + 2A+/log X) + O(X+/log X) we prove the theo-

rem. O

From the theorem it is seen that the average mean value of the remainder term of
R,(X) is positive. As a conclusion: There are infinitely many n’s and X ’s such that for
n € (T,2T) and T > X2, for which we have

R, (X) > X(logn)*, Va<l1.

The mean value of integral with the Fourier coeflicients of the eigenfunctions of the
continuous spectrum can be computed as

1 n, [ 9 h(r)
;;w(f)/m|7§+ir(")| Wdr

1 9(1) 19(1) ' ¢ .
;@TlogTX + ;@(E(l) - 22(2) +27)TX 4+ O(Tlog X) + O(T=*).

So we can assert that there exist infinitely many n’s and X ’s satisfying

R.(X) < ;—71—?((—21))X10gX

for n € (T,2T) and T > X?2.
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