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NEAR ULTRAFILTERS AND
LUC-COMPACTIFICATION OF REAL NUMBERS

Mahmut Kogak

Abstract

In this work we will investigate some of the topological properties of the LUC-
compactification of real numbers R in terms of the concept of near ultrafilters.

1. Introduction

By a compactification of the topological space R, we shall mean a compact Haus-
dorff space K with an embedding e : R — K with ¢[R] is dense in K. We will usually
identify R with e(R) and consider R as a subspace.

The topological space R has a compactification R with the property that C (ﬁ) is
isomorphic to the algebra LUC(R) of bounded real-valued uniformly continuous functions
defined on R. R is the spectrum of LUC(R) furnished with the Gelfand topology (i.e.,
weak topology from LUC(R)*) (see [1]). As is well known, this compactification has the
property that a bounded continuous function f from R to R has a continuous extension
f:R — R if and only if f is uniformly continuous (see [2]).

The compactification R was constructed in terms of the concept of near ultrafilters
(see [4]). We shall say that a subset n of P(R) has the near finite intersection property if

7 is non-empty and if, for every finite subset F of n and every W € B, () (W+Y) # 0.
YEF
We say that 7 is a near ultrafilter if 1 is maximal subject to being a subset of P(R)

with the near finite intersection property. It is clear that every ultrafilter on R is a
near ultrafilter. We take R to be set of near ultrafilters on R. For each Y C R, let
Cy ={n€R:Y €n}. Then R is made into a topological space by taking the family of
all sets Cy as a base for the closed sets. With this topology R isa compact Hausdorff
space and the mapping e : R — R is defined by e(z) = {Y C R : z € Y} for each
z € R is an embedding with e(R) dense in R (see [4]). We identify a subset ¥ of R
with e(Y).

If X is a topological space, 3X will denote the Stone-Cech compactification of X
and X* will denote the growth 8X\X. B will denote the set of all neighborhoods of 0
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in R. R, R~ denote the set of nonnegative reals and nonpossitive reals, respectively.
vR will denote R\R.

We give some of the properties of near ultrafilters that we will use in this paper.
More details about near ultrafilters can be found in [4],[2].

1.1. Some Properties of Near Ultrafilters

Let £ be a near ultrafilter,

1) If F be a finite subset of &, then [ (W +7Y) € ¢ for all W e B.
YeF

2) Y c & ifand only if (W+Y)()Z # 0 for every Z € £ and every W € B if and
only f Y(WZ + W) #£ @ for every Z € € and every W € B.

3) Y e ifand only if (Y + W) € £ for every W € B. Furthermore, this is the
case if and ouly if clRY € &

4) U Y, Y5 CR, then VY2 € ifand only if YV, € £ or Y, € &.

5) Y e ¢ if and only if £ € clﬁY.

2. Some Properties of the Space R

Lemma 2.1. Let & € R. For any X € £ and any W € B, the set Cx w is a
neighborhood of £, and the sets of this form provide a basis for the neighborhoods of £.
Proof. Let X € { and W € B and let (X +W)* = R\(X + W) and C} = R\C, for
a subset y of R. Then it is clear that & € C,(X+W)* and that C2X+W)* C C(x+w)-
Therefore, €' (x;w) is a neighborhood of &.

Now suppose that ¥ C R and that ¥ ¢ & Then Y N (W + X) = (§ for some
X € £ and some W € B. Let Wy € B symmetric and Wy + W; € W. Then clearly
C(X+‘Vl) CR\Cy since (W +X)ﬂ(W1+Y):®. O

We remind that a topological space X is called an F-space if for each f € C(X),
the sets Negf = {z € X : f(z) < 0} and Posf = {x € X : f(z) > 0} are completely
separated, that is, there exists a mapping h € C(X) such that hA{x) =0 if z € Posf and
h(z)=11if z € Negf.

Theorem 2.1 vR s not an F-space.
Proof. Let f(z) = sinz, and let £ € yR such that £ € clﬁ{er}neN. Because of

the fact that f is uniformly continuous it extends to a continuous function f from R
to R. Clearly, any neighborhood of ¢ contains a point 1 € clﬁ{er +0},.N\R and

a point ¢ € clﬁ{er —0},eN\R for some § €]0,7[. Since f(n) > 0 and f(¢) < 0,

£e clﬁ{u e~vR: f(u) >0}n clﬁ{,u € vR: f(u) <0} which is a contradiction. ]
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Theorem 2.2 Let £ € cl ﬁR+\ R and Y € £&. Then for any k > 0, there is a sequence
(yr) CY such that yr41 — yr > k for every r € N and {y, : 7 € N} € £.
Proof. Let m € N with m > k. Then, either

U [nm, (n+1)m] €€ or U [nm, (n + 1)m] € €.
ne2N-1 ne2N

Suppose that X; = |J [nm,(n+1)m] € £, and that A denote 2N—1, then either
ne2N-1

EJA[nm, (n+ %)m] et or LGJA[(n + %)m, (n+1)m] € &.

Suppose that Xo = |J [nm, (n+ %)m] € £. If we proceede in this way, we can define a

neA
sequence of sets (X,) with the following properties:
i) Xn €&
o0
i1) each X, can be written as |J In.r, where I, is a closed interval of length
m r=1
TS

i11) for each n, d(Lyp, In) >m if r #1715
iv) for each n and 7, Inq1),r C Inss

v) for each r = 1,2,3, ..., there will be a unique point z, € [ I,
n=1
Let X = {x, :r € N}. It is clear that z, < z,41 holds for each » € N. We claim
that X € £. To see this, let Z € £ and let € > 0. Choose n € N so that 7%y < 5

s
Since X, € &, there will be a point z € X,, such that d(z,Z) < §. If © € I,,, then
d(z,,z) < §. Hence, d(z,,Z) <e. Thus, (X 4+ (—¢,€))NZ #0 and so X € ¢£.
Let 6 € R and 0 < 6 < £. Then
V ={z, : d(z,,Y) < §} € £
For otherwise we should have
V' ={z, : d(z,,Y) > 8} € &
This is impossible since ((—2,2)+V’)NY = 0. Now, since the finite set {z, : 7 < $} ¢ ¢,

1
X,;:{xr:xreV,;<6}e§.

Now for each r, choose vy, € Y with d(z,,y,) < d(z,,Y) + % We shall show that

Vs ={yr: 2, € X5} €E.
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Let 0 < e < 4. Then if z,. € X, we have that y, € Y5 and d(y,,z,) < 2. Thus,
Xe C(Y5+(—26,26)) and so (Y5 +(—26,26)) € € and that Ys € €. Since @, —z, > m,
d(yr, z,) < 26 < m;k and d(y,r41,Zrs1) < 22;’3, we have y,..1 — vy, > k. O

Remark 2.1 It is quite easy to prove that if £ € clﬁR‘\ R and Y € &, then for any

k > 0 there is a sequence (y,) C Y such that y, —y,_1 > k for every r € N, and
{yr :7 e N} e £

A point of R is called a remote point if it does not belong to the closure of any
discrete subspace of R. As a consequence of Theorem 2.2, R has no remote points, but
under the continuum hypothesis the set of remote points of SR is dense in R* (see[5]).

Theorem 2.3 If £ clﬁR+\R, then every neighborhood of £ contains a topological
copy of BN\N. _
Proof. We first note that for each Y € £ and W € B

C(Y+W):{7I€ﬁ1Y+WE77}

is a neighborhood of ¢, and { Cyiw) : Y € & W € B} forms a base for the
neighborhoods system of £.

Now let G be a neighborhood of €. Then there exists Y € £ and W € B satisfying
Ciy 1wy € G. There is a sequence (z,) CY with z,.1 ~x, > 1 by Theorem 2.2. Hence,
C((z.)+w) is a neighborhood of ¢ which is contained in G. Let H = Cia,n)+w)- It is

easy to see that H D clﬁ(xn)\(mn)

Now we define a mapping h from N to R such that h(n) = z,. Clearly, the
mapping h is continuous and it extends to a continuous mapping h? from SN onto

clﬁ(a:n). Let £ and 7 be two distinct points in SIN. Then there willbe U € p and V € ¢

satisfying U NV =0 and so h®(U) NP (V) = @ because of the fact that h is one to one
on N. Let W be the interval (-3, 3). Clearly, (R?(U) + W) N (R?(V) + W) = 0 since
‘hﬂ(n) — RhP(m)| > 1 for every n,m € N with n € U,m € V. Also,

Y 1BV —
cth (U)ﬂcth (V)=0.
Since £ € clgU, RA(€) € clﬁhﬁ(U) and since 7 € clgV, RA(n) € clﬁhﬁ(V).
Therefore, h%(€) # hP(n). Hence, h is one to one on GN. ’
It is a well-known fact that a one to one continuous mapping of a compact space

onto a Hausdorff space is a homeomorphism. Therefore, h? is a homeomorphism between

[clﬁ(:cn)]\(a:n) and N*. a
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Remark 2.2 It can be easily proved that every neighborhood of ¢ in clﬁR_\R contains

a topological copy of SN\N.

Corollary 2.1 No point in v R has a countable base of neighborhoods in YR.
Proof. If £ € YR, by Theorem 2.3 there is a subset X of R such that £ € X and X
is homeomorphic to N*.

We may suppose that & € clﬁR+\R+ and that it has a countable base of neigh-
borhoods of (U,) in vR. Then (NU,) N X is a singleton. But this is a contradiction,
since (NU,) N X is homeomorphic to a nonempty G s-set of N*, and it is a well-known
fact that in N* every nonempty G s-set has nonempty interior (see[5)). O

It is immediate from Corollary 2.1 that f{\R is not metrizable and has not have
a countable base.

Theorem 2.4 If n € YR, there is no sequence (z,) in R converging to 1.
Proof. We may suppose that n € clﬁR+\R and that there is such a sequence (z,) in

R. By Theorem 2.2, we may suppose that z,+; —z, > 1 for all n € N. Clearly, the
sequence (z,) can not be bounded, otherwise it would have a subsequence (z,,) which
converges to a real number k which is a contradiction since z,., — zn, > 1 and (z,,)
also converges to 7.

We define a function f from R to R as follows:

0 if n even
f(x")—{l if n odd

and complete the definition by piecewise linearity. It is easy to see that_f is uniformly
continuous and hence that it extends to a continuous function f from R to R (cf.[4]).

Therefore, f(n) = lim, f(z2,) =0 and f(n) = lim, f(22,41) = 1 which is a contradic-
tion since (xg,) and (zan+1) both converges to 7. O

We state the following lemma that will be used later on, and its proof is straight-
forward.

Lemma 2.2 Let £ € clﬁR+\R and (z,) be a sequence in R such that z,.; —z, > 1
and £ € clﬁ{xn} .Then U={ACN:£{¢ clﬁ{xn}neA} is an ultrafilter on N.

Remark 2.3 We can easily proved that if £ € clﬁR_\R and if (z,) is a sequence in

R such that z, — 2,41 > 1 and £ € clﬁ{mn}, then U={ACN:£{¢ clﬁ{xn}neA} is
an ultrafilter on N.
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Lemma 2.3 For each m € N, there is a unique point &, € clﬁR+\R satisfying

ém € ﬂ CIR{xn + = }nEA

AcU
Proof. Clearly, for each m € N {{zn, + L},ca,A € U} has near finite intersection
property and so such near ultrafilter exists. Now we will show that such near ultra-

filter is unique. To see this, suppose that n,{ € () clR{:cn + Llnca. I # ¢,
AcU
there exists ¥ € 5 and Z € C and W € B such that Y +W)NZ+ W) = 0.

Now for any A € U, {z, + }nEA € n and {z, + }neA € (. We claim that

={neN:u, + % €Y+W} e U for all W ¢ B. To seethls suppose that 4 ¢ U,
then there is a set B e U such that A\ B = 0. Since {z, + L}ncp € 17 and Y € 5, for
all W e B ({zn+ 2} nen) (Y + W) # 0 which implies that Tpg + - €Y + W for
some ng € B. Hence, ng € A and so A(YB # @ and it is a contradiction. Hence, 4 € U.
Similarly, C = {n € N :x, + m € Z+W} € U. Therefore, there exists n € AﬂC and so
Tn+ = €Y +W and z, + L € Z+ W which implies that (Y +W)((Z+W) #£ 0, it is
a contradiction. Therefore, for all Yen and Z € ( and W € B, (Y +W)(W(Z+W) # 0
and so ¢ = (. a

Remark 2.4 We can easily prove that for each m € N, there is a unique point

Em € cl R™\R satisfying &, € N CIR{zn - Llea
AeU

Theorem 2.5 Fvery point £ in f{\R is a limit point of a countable subset of R which
does not contain £.

Proof. We may suppose that £ € clﬁR+\R, the case £ € clﬁR‘\R can be proved
similarly. To see this, we will show that £ € clﬁ{gn}. Let C(y4+w,) be a basic ncigh-

borhood of £. We will show that there exists mg € N such that for every W € B and
AceU, {z,+ mLO}nEA) A + W)+ W) # 0. It will follow that for each fixed m > my,
Y + W will be in §,,. Therefore, £, € Cyw) for each m > my.

Suppose that there is a set A €U and W € B such that ({zn, + L} nca) N((Y +
Wi) 4+ W) = 0. Then ({xn + L}aca) Y + Wi) = 0. Let Wy be symmetric such
that Wo + Wy, C W,. Then ({xn ;l}neA)ﬂ(Y + Ws) = @ which implies that
{a;n}nEA)ﬂ(Y + Wy — %) = (. Let mp be the smallest integer such that ,i e Wy,

g

then Wy — — = W3 is in B and ({zn}nea)( WY + W3) = 0 which is a contradiction

o

since Y € ¢ and {Tn}nea € forall AecU. O

We remind the reader that a point of a topological space is called a P-point if every
Gs-set containing the point is a neighborhood of the point. Since no P-point can be a
non-trivial limit of any sequence (see [5]), we have the following Corollary.
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Corollary 2.2 R\R has no P-point.
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