NEAR ULTRAFILTERS AND LUC-COMPACTIFICATION OF REAL NUMBERS

Mahmut Koçak

Abstract

In this work we will investigate some of the topological properties of the \mathcal{LUC} -compactification of real numbers \mathbf{R} in terms of the concept of near ultrafilters.

1. Introduction

By a *compactification* of the topological space \mathbf{R} , we shall mean a compact Hausdorff space K with an embedding $e: \mathbf{R} \to K$ with $e[\mathbf{R}]$ is dense in K. We will usually identify \mathbf{R} with $e(\mathbf{R})$ and consider \mathbf{R} as a subspace.

The topological space \mathbf{R} has a compactification \mathbf{R} with the property that $C(\mathbf{R})$ is isomorphic to the algebra $\mathcal{LUC}(\mathbf{R})$ of bounded real-valued uniformly continuous functions defined on \mathbf{R} . $\widetilde{\mathbf{R}}$ is the spectrum of $\mathcal{LUC}(\mathbf{R})$ furnished with the Gelfand topology (i.e., weak topology from $\mathcal{LUC}(\mathbf{R})^*$) (see [1]). As is well known, this compactification has the property that a bounded continuous function f from \mathbf{R} to \mathbf{R} has a continuous extension $\widetilde{f}: \widetilde{\mathbf{R}} \to \mathbf{R}$ if and only if f is uniformly continuous (see [2]).

The compactification $\widehat{\mathbf{R}}$ was constructed in terms of the concept of near ultrafilters (see [4]). We shall say that a subset η of $\mathcal{P}(\mathbf{R})$ has the near finite intersection property if η is non-empty and if, for every finite subset F of η and every $W \in \mathcal{B}$, $\bigcap_{Y \in F} (W+Y) \neq \emptyset$.

We say that η is a near ultrafilter if η is maximal subject to being a subset of $\mathcal{P}(\mathbf{R})$ with the near finite intersection property. It is clear that every ultrafilter on \mathbf{R} is a near ultrafilter. We take $\widetilde{\mathbf{R}}$ to be set of near ultrafilters on \mathbf{R} . For each $Y \subseteq \mathbf{R}$, let $C_Y = \{\eta \in \widetilde{\mathbf{R}} : Y \in \eta\}$. Then $\widetilde{\mathbf{R}}$ is made into a topological space by taking the family of all sets C_Y as a base for the closed sets. With this topology $\widetilde{\mathbf{R}}$ is a compact Hausdorff space and the mapping $e : \mathbf{R} \to \widetilde{\mathbf{R}}$ is defined by $e(x) = \{Y \subseteq \mathbf{R} : x \in \overline{Y}\}$ for each $x \in \mathbf{R}$ is an embedding with $e(\mathbf{R})$ dense in $\widetilde{\mathbf{R}}$ (see [4]). We identify a subset Y of \mathbf{R} with e(Y).

If **X** is a topological space, β **X** will denote the Stone-Čech compactification of **X** and **X*** will denote the growth β **X****X**. β will denote the set of all neighborhoods of 0

in \mathbf{R} . \mathbf{R}^+ , \mathbf{R}^- denote the set of nonnegative reals and nonpossitive reals, respectively. $\gamma \mathbf{R}$ will denote $\widetilde{\mathbf{R}} \backslash \mathbf{R}$.

We give some of the properties of near ultrafilters that we will use in this paper. More details about near ultrafilters can be found in [4],[2].

1.1. Some Properties of Near Ultrafilters

Let ξ be a near ultrafilter,

- 1) If F be a finite subset of ξ , then $\bigcap_{Y \in F} (W + Y) \in \xi$ for all $W \in \mathcal{B}$.
- **2)** $Y \in \xi$ if and only if $(W+Y) \cap Z \neq \emptyset$ for every $Z \in \xi$ and every $W \in \mathcal{B}$ if and only if $Y \cap (Z+W) \neq \emptyset$ for every $Z \in \xi$ and every $W \in \mathcal{B}$.
- 3) $Y \in \xi$ if and only if $(Y + W) \in \xi$ for every $W \in \mathcal{B}$. Furthermore, this is the case if and only if $\operatorname{cl}_{\mathbf{R}} Y \in \xi$.
 - 4) If $Y_1, Y_2 \subseteq \mathbf{R}$, then $Y_1 \bigcup Y_2 \in \xi$ if and only if $Y_1 \in \xi$ or $Y_2 \in \xi$.
 - 5) $Y \in \xi$ if and only if $\xi \in \operatorname{cl}_{\widetilde{\mathbf{R}}} Y$.

2. Some Properties of the Space $\widetilde{\mathbf{R}}$

Lemma 2.1. Let $\xi \in \widetilde{\mathbf{R}}$. For any $X \in \xi$ and any $W \in \mathcal{B}$, the set C_{X+W} is a neighborhood of ξ , and the sets of this form provide a basis for the neighborhoods of ξ . **Proof.** Let $X \in \xi$ and $W \in \mathcal{B}$ and let $(X+W)^* = \mathbf{R} \setminus (X+W)$ and $C'_y = \widetilde{\mathbf{R}} \setminus C_y$ for a subset y of \mathbf{R} . Then it is clear that $\xi \in C'_{(X+W)^*}$ and that $C'_{(X+W)^*} \subseteq C_{(X+W)}$. Therefore, $C_{(X+W)}$ is a neighborhood of ξ .

Now suppose that $Y \subseteq \mathbf{R}$ and that $Y \notin \xi$. Then $Y \cap (W + X) = \emptyset$ for some $X \in \xi$ and some $W \in \mathcal{B}$. Let $W_1 \in \mathcal{B}$ symmetric and $W_1 + W_1 \subseteq W$. Then clearly $C_{(X+W_1)} \subseteq \widetilde{\mathbf{R}} \setminus C_Y$ since $(W_1 + X) \cap (W_1 + Y) = \emptyset$.

We remind that a topological space X is called an F-space if for each $f \in C(X)$, the sets $Negf = \{x \in X : f(x) < 0\}$ and $Posf = \{x \in X : f(x) > 0\}$ are completely separated, that is, there exists a mapping $h \in C(X)$ such that h(x) = 0 if $x \in Posf$ and h(x) = 1 if $x \in Negf$.

Theorem 2.1 $\gamma \mathbf{R}$ is not an F-space.

Proof. Let $f(x) = \sin x$, and let $\xi \in \gamma \mathbf{R}$ such that $\xi \in \mathbf{cl}_{\widetilde{\mathbf{R}}}\{2n\pi\}_{n \in \mathbf{N}}$. Because of the fact that f is uniformly continuous it extends to a continuous function \widetilde{f} from $\widetilde{\mathbf{R}}$ to $\widetilde{\mathbf{R}}$. Clearly, any neighborhood of ξ contains a point $\eta \in \mathbf{cl}_{\widetilde{\mathbf{R}}}\{2n\pi + \delta\}_{n \in \mathbf{N}} \setminus \mathbf{R}$ and a point $\xi \in \mathbf{cl}_{\widetilde{\mathbf{R}}}\{2n\pi - \delta\}_{n \in \mathbf{N}} \setminus \mathbf{R}$ for some $\delta \in]0, \pi[$. Since $\widetilde{f}(\eta) > 0$ and $\widetilde{f}(\xi) < 0$, $\xi \in \mathbf{cl}_{\widetilde{\mathbf{R}}}\{\mu \in \gamma \mathbf{R}: \widetilde{f}(\mu) > 0\} \cap \mathbf{cl}_{\widetilde{\mathbf{R}}}\{\mu \in \gamma \mathbf{R}: \widetilde{f}(\mu) < 0\}$ which is a contradiction. \square

KOÇAK

Theorem 2.2 Let $\xi \in \mathbf{cl}$ $\widetilde{\mathbf{R}}^{\mathbf{R}^+} \setminus \mathbf{R}$ and $Y \in \xi$. Then for any k > 0, there is a sequence $(y_r) \subseteq Y$ such that $y_{r+1} - y_r > k$ for every $r \in \mathbf{N}$ and $\{y_r : r \in \mathbf{N}\} \in \xi$.

Proof. Let $m \in \mathbb{N}$ with m > k. Then, either

$$\bigcup_{n \in 2\mathbf{N}_{-1}} [nm, (n+1)m] \in \xi \quad \text{or} \quad \bigcup_{n \in 2\mathbf{N}} [nm, (n+1)m] \in \xi.$$

Suppose that $X_1 = \bigcup_{n \in 2\mathbb{N}-1} [nm, (n+1)m] \in \xi$, and that A denote $2\mathbb{N}-1$, then either

$$\bigcup_{n\in A}[nm,(n+\tfrac{1}{2})m]\in\xi \ \text{or} \ \bigcup_{n\in A}[(n+\tfrac{1}{2})m,(n+1)m]\in\xi.$$

Suppose that $X_2 = \bigcup_{n \in A} [nm, (n + \frac{1}{2})m] \in \xi$. If we proceed in this way, we can define a sequence of sets (X_n) with the following properties:

- $i) X_n \in \xi;$
- ii) each X_n can be written as $\bigcup_{r=1}^{\infty} I_{n,r}$, where $I_{n,r}$ is a closed interval of length $\frac{m}{2n-1}$;
 - iii) for each n, $d(I_{n,r}, I_{n,r'}) > m$ if $r \neq r'$;
 - iv) for each n and r, $I_{(n+1),r} \subseteq I_{n,r}$;
 - v) for each r=1,2,3,..., there will be a unique point $x_r\in \bigcap_{n=1}^{\infty}I_{n,r}$.

Let $X = \{x_r : r \in \mathbf{N}\}$. It is clear that $x_r < x_{r+1}$ holds for each $r \in \mathbf{N}$. We claim that $X \in \xi$. To see this, let $Z \in \xi$ and let $\epsilon > 0$. Choose $n \in \mathbf{N}$ so that $\frac{m}{2^{n-1}} < \frac{\epsilon}{2}$. Since $X_n \in \xi$, there will be a point $x \in X_n$ such that $d(x, Z) < \frac{\epsilon}{2}$. If $x \in I_{n,r}$, then $d(x_r, x) < \frac{\epsilon}{2}$. Hence, $d(x_r, Z) < \epsilon$. Thus, $(X + (-\epsilon, \epsilon)) \cap Z \neq \emptyset$ and so $X \in \xi$.

Let $\delta \in \mathbf{R}$ and $0 < \delta < \frac{1}{5}$. Then

$$V = \{x_r : d(x_r, Y) < \delta\} \in \xi.$$

For otherwise we should have

$$V' = \{x_r : d(x_r, Y) > \delta\} \in \xi.$$

This is impossible since $((-\frac{\delta}{8}, \frac{\delta}{8}) + V') \cap Y = \emptyset$. Now, since the finite set $\{x_r : r \leq \frac{1}{\delta}\} \notin \xi$,

$$X_{\delta} = \{x_r : x_r \in V, \frac{1}{r} < \delta\} \in \xi.$$

Now for each r, choose $y_r \in Y$ with $d(x_r, y_r) < d(x_r, Y) + \frac{1}{r}$. We shall show that

$$Y_{\delta} = \{ y_r : x_r \in X_{\delta} \} \in \xi.$$

Let $0 < \epsilon < \delta$. Then if $x_r \in X_\epsilon$, we have that $y_r \in Y_\delta$ and $d(y_r, x_r) < 2\delta$. Thus, $X_\epsilon \subseteq (Y_\delta + (-2\delta, 2\delta))$ and so $(Y_\delta + (-2\delta, 2\delta)) \in \xi$ and that $Y_\delta \in \xi$. Since $x_{r+1} - x_r > m$, $d(y_r, x_r) < 2\delta < \frac{m-k}{2}$ and $d(y_{r+1}, x_{r+1}) < \frac{m-k}{2}$, we have $y_{r+1} - y_r > k$.

Remark 2.1 It is quite easy to prove that if $\xi \in \operatorname{\mathbf{cl}}_{\widetilde{\mathbf{R}}} \mathbf{R}^- \setminus \mathbf{R}$ and $Y \in \xi$, then for any k > 0 there is a sequence $(y_r) \subseteq Y$ such that $y_r - y_{r-1} > k$ for every $r \in \mathbf{N}$, and $\{y_r : r \in \mathbf{N}\} \in \xi$.

A point of $\widetilde{\mathbf{R}}$ is called a remote point if it does not belong to the closure of any discrete subspace of \mathbf{R} . As a consequence of Theorem 2.2, $\widetilde{\mathbf{R}}$ has no remote points, but under the continuum hypothesis the set of remote points of $\beta \mathbf{R}$ is dense in \mathbf{R}^* (see[5]).

Theorem 2.3 If $\xi \in \operatorname{cl}_{\widetilde{\mathbf{R}}} \mathbf{R}^+ \backslash \mathbf{R}$, then every neighborhood of ξ contains a topological copy of $\beta \mathbf{N} \backslash \mathbf{N}$.

Proof. We first note that for each $Y \in \xi$ and $W \in \mathcal{B}$

$$C_{(Y+W)} = \{ \eta \in \widetilde{\mathbf{R}} : Y + W \in \eta \}$$

is a neighborhood of ξ , and $\{C_{(Y+W)}: Y \in \xi, W \in \mathcal{B}\}$ forms a base for the neighborhoods system of ξ .

Now let G be a neighborhood of ξ . Then there exists $Y \in \xi$ and $W \in \mathcal{B}$ satisfying $C_{(Y+W)} \subseteq G$. There is a sequence $(x_n) \subseteq Y$ with $x_{n+1} - x_n \ge 1$ by Theorem 2.2. Hence, $C_{((x_n)+W)}$ is a neighborhood of ξ which is contained in G. Let $H = C_{((x_n)+W)}$. It is easy to see that $H \supseteq \mathbf{cl}_{\widetilde{\mathbf{P}}}(x_n) \setminus (x_n)$.

Now we define a mapping h from \mathbf{N} to \mathbf{R} such that $h(n) = x_n$. Clearly, the mapping h is continuous and it extends to a continuous mapping h^{β} from $\beta \mathbf{N}$ onto $\mathbf{cl}_{\widetilde{\mathbf{R}}}(x_n)$. Let ξ and η be two distinct points in $\beta \mathbf{N}$. Then there will be $U \in \eta$ and $V \in \xi$ satisfying $U \cap V = \emptyset$ and so $h^{\beta}(U) \cap h^{\beta}(V) = \emptyset$ because of the fact that h is one to one on \mathbf{N} . Let W be the interval $(-\frac{1}{3}, \frac{1}{3})$. Clearly, $(h^{\beta}(U) + W) \cap (h^{\beta}(V) + W) = \emptyset$ since $|h^{\beta}(n) - h^{\beta}(m)| \geq 1$ for every $n, m \in \mathbf{N}$ with $n \in U, m \in V$. Also,

$$\mathbf{cl}_{\widetilde{\mathbf{R}}}h^{\beta}(U)\cap\mathbf{cl}_{\widetilde{\mathbf{R}}}h^{\beta}(V)=\emptyset.$$

Since $\xi \in \mathbf{cl}_{\widetilde{\mathbf{R}}}U$, $h^{\beta}(\xi) \in \mathbf{cl}_{\widetilde{\mathbf{R}}}h^{\beta}(U)$ and since $\eta \in \mathbf{cl}_{\widetilde{\mathbf{R}}}V$, $h^{\beta}(\eta) \in \mathbf{cl}_{\widetilde{\mathbf{R}}}h^{\beta}(V)$. Therefore, $h^{\beta}(\xi) \neq h^{\beta}(\eta)$. Hence, h is one to one on $\beta \mathbf{N}$.

It is a well-known fact that a one to one continuous mapping of a compact space onto a Hausdorff space is a homeomorphism. Therefore, h^{β} is a homeomorphism between $[\mathbf{cl}_{\widetilde{\mathbf{R}}}(x_n)]\backslash (x_n)$ and \mathbf{N}^* .

Remark 2.2 It can be easily proved that every neighborhood of ξ in $\mathbf{cl}_{\widetilde{\mathbf{R}}}\mathbf{R}^-\backslash\mathbf{R}$ contains a topological copy of $\beta\mathbf{N}\backslash\mathbf{N}$.

Corollary 2.1 No point in $\gamma \mathbf{R}$ has a countable base of neighborhoods in $\gamma \mathbf{R}$.

Proof. If $\xi \in \gamma \mathbf{R}$, by Theorem 2.3 there is a subset X of \mathbf{R} such that $\xi \in X$ and X is homeomorphic to \mathbf{N}^* .

We may suppose that $\xi \in \mathbf{cl}_{\widetilde{\mathbf{R}}}^{\mathbf{R}^+} \backslash \mathbf{R}^+$ and that it has a countable base of neighborhoods of (U_n) in $\gamma \mathbf{R}$. Then $(\cap U_n) \cap X$ is a singleton. But this is a contradiction, since $(\cap U_n) \cap X$ is homeomorphic to a nonempty G_{δ} -set of \mathbf{N}^* , and it is a well-known fact that in \mathbf{N}^* every nonempty G_{δ} -set has nonempty interior (see[5]).

It is immediate from Corollary 2.1 that $\widetilde{\mathbf{R}} \backslash \mathbf{R}$ is not metrizable and has not have a countable base.

Theorem 2.4 If $\eta \in \gamma \mathbf{R}$, there is no sequence (x_n) in \mathbf{R} converging to η .

Proof. We may suppose that $\eta \in \operatorname{\mathbf{cl}}_{\widetilde{\mathbf{R}}} \mathbf{R}^+ \backslash \mathbf{R}$ and that there is such a sequence (x_n) in \mathbf{R} . By Theorem 2.2, we may suppose that $x_{n+1} - x_n \geq 1$ for all $n \in \mathbf{N}$. Clearly, the sequence (x_n) can not be bounded, otherwise it would have a subsequence (x_{n_r}) which converges to a real number k which is a contradiction since $x_{n_{r+1}} - x_{n_r} \geq 1$ and (x_{n_r}) also converges to η .

We define a function f from \mathbf{R} to \mathbf{R} as follows:

$$f(x_n) = \begin{cases} 0 & \text{if} \quad n \text{ even} \\ 1 & \text{if} \quad n \text{ odd} \end{cases}$$

and complete the definition by piecewise linearity. It is easy to see that f is uniformly continuous and hence that it extends to a continuous function \tilde{f} from $\tilde{\mathbf{R}}$ to $\tilde{\mathbf{R}}$ (cf.[4]). Therefore, $\tilde{f}(\eta) = \lim_n f(x_{2n}) = 0$ and $\tilde{f}(\eta) = \lim_n f(x_{2n+1}) = 1$ which is a contradiction since (x_{2n}) and (x_{2n+1}) both converges to η .

We state the following lemma that will be used later on, and its proof is straightforward.

Lemma 2.2 Let $\xi \in \operatorname{cl}_{\widetilde{\mathbf{R}}} \mathbf{R}^+ \backslash \mathbf{R}$ and (x_n) be a sequence in \mathbf{R} such that $x_{n+1} - x_n \ge 1$ and $\xi \in \operatorname{cl}_{\widetilde{\mathbf{R}}} \{x_n\}$. Then $U = \{A \subseteq \mathbf{N} : \xi \in \operatorname{cl}_{\widetilde{\mathbf{R}}} \{x_n\}_{n \in A}\}$ is an ultrafilter on \mathbf{N} .

Remark 2.3 We can easily proved that if $\xi \in \operatorname{cl}_{\widetilde{\mathbf{R}}} \mathbf{R}^- \backslash \mathbf{R}$ and if (x_n) is a sequence in \mathbf{R} such that $x_n - x_{n+1} \geq 1$ and $\xi \in \operatorname{cl}_{\widetilde{\mathbf{R}}} \{x_n\}$, then $U = \{A \subseteq \mathbf{N} : \xi \in \operatorname{cl}_{\widetilde{\mathbf{R}}} \{x_n\}_{n \in A}\}$ is an ultrafilter on \mathbf{N} .

Lemma 2.3 For each $m \in \mathbb{N}$, there is a unique point $\xi_m \in \operatorname{cl}_{\widetilde{\mathbf{R}}} \mathbf{R}^+ \backslash \mathbf{R}$ satisfying $\xi_m \in \bigcap_{A \in U} \operatorname{cl}_{\widetilde{\mathbf{R}}} \{x_n + \frac{1}{m}\}_{n \in A}$.

Proof. Clearly, for each $m \in \mathbf{N}$ $\{\{x_n + \frac{1}{m}\}_{n \in A}, A \in U\}$ has near finite intersection property and so such near ultrafilter exists. Now we will show that such near ultrafilter is unique. To see this, suppose that $\eta, \zeta \in \bigcap_{A \in U} \operatorname{cl}_{\widetilde{\mathbf{R}}} \{x_n + \frac{1}{m}\}_{n \in A}$. If $\eta \neq \zeta$, there exists $Y \in \eta$ and $Z \in \zeta$ and $W \in \mathcal{B}$ such that $(Y + W) \cap (Z + W) = \emptyset$. Now, for any $A \in U$, $\{x_n + \frac{1}{m}\}_{n \in A} \in \eta$ and $\{x_n + \frac{1}{m}\}_{n \in A} \in \zeta$. We claim that $A = \{n \in \mathbf{N} : x_n + \frac{1}{m} \in Y + W\} \in U$ for all $W \in \mathcal{B}$. To see this suppose that $A \notin U$, then there is a set $B \in U$ such that $A \cap B = \emptyset$. Since $\{x_n + \frac{1}{m}\}_{n \in B} \in \eta$ and $Y \in \eta$, for all $W \in \mathcal{B}$ $(\{x_n + \frac{1}{m}\}_{n \in B}) \cap (Y + W) \neq \emptyset$ which implies that $x_{n_0} + \frac{1}{m} \in Y + W$ for some $n_0 \in B$. Hence, $n_0 \in A$ and so $A \cap B \neq \emptyset$ and it is a contradiction. Hence, $A \in U$. Similarly, $C = \{n \in \mathbf{N} : x_n + \frac{1}{m} \in Z + W\}$ which implies that $(Y + W) \cap (Z + W) \neq \emptyset$, it is a contradiction. Therefore, for all $Y \in \eta$ and $Z \in \zeta$ and $W \in \mathcal{B}$, $(Y + W) \cap (Z + W) \neq \emptyset$ and so $\xi = \zeta$.

Remark 2.4 We can easily prove that for each $m \in \mathbb{N}$, there is a unique point $\xi_m \in \operatorname{cl}_{\widetilde{\mathbf{R}}} \mathbf{R}^- \backslash \mathbf{R}$ satisfying $\xi_m \in \bigcap_{A \in U} \operatorname{cl}_{\widetilde{\mathbf{R}}} \{x_n - \frac{1}{m}\}_{n \in A}$.

Theorem 2.5 Every point ξ in $\widetilde{\mathbf{R}} \backslash \mathbf{R}$ is a limit point of a countable subset of $\widetilde{\mathbf{R}}$ which does not contain ξ .

Proof. We may suppose that $\xi \in \operatorname{\mathbf{cl}}_{\widetilde{\mathbf{R}}} \mathbf{R}^+ \backslash \mathbf{R}$, the case $\xi \in \operatorname{\mathbf{cl}}_{\widetilde{\mathbf{R}}} \mathbf{R}^- \backslash \mathbf{R}$ can be proved similarly. To see this, we will show that $\xi \in \operatorname{\mathbf{cl}}_{\widetilde{\mathbf{R}}} \{ \xi_n \}$. Let $C_{(Y+W_1)}$ be a basic neighborhood of ξ . We will show that there exists $m_0 \in \mathbf{N}$ such that for every $W \in \mathcal{B}$ and $A \in U$, $(\{x_n + \frac{1}{m_0}\}_{n \in A}) \bigcap ((Y+W_1) + W) \neq \emptyset$. It will follow that for each fixed $m \geq m_0$, Y + W will be in ξ_m . Therefore, $\xi_m \in C_{(Y+W)}$ for each $m \geq m_0$.

Suppose that there is a set $A \in U$ and $W \in \mathcal{B}$ such that $(\{x_n + \frac{1}{m}\}_{n \in A}) \cap ((Y + W_1) + W) = \emptyset$. Then $(\{x_n + \frac{1}{m}\}_{n \in A}) \cap (Y + W_1) = \emptyset$. Let W_2 be symmetric such that $W_2 + W_2 \subset W_1$. Then $(\{x_n + \frac{1}{m}\}_{n \in A}) \cap (Y + W_2) = \emptyset$ which implies that $(\{x_n\}_{n \in A}) \cap (Y + W_2 - \frac{1}{m}) = \emptyset$. Let m_0 be the smallest integer such that $\frac{1}{m_0} \in W_2$, then $W_2 - \frac{1}{m_0} = W_3$ is in \mathcal{B} and $(\{x_n\}_{n \in A}) \cap (Y + W_3) = \emptyset$ which is a contradiction since $Y \in \xi$ and $\{x_n\}_{n \in A} \in \xi$ for all $A \in U$.

We remind the reader that a point of a topological space is called a P-point if every G_{δ} -set containing the point is a neighborhood of the point. Since no P-point can be a non-trivial limit of any sequence (see [5]), we have the following Corollary.

KOÇAK

Corollary 2.2 $\widetilde{\mathbf{R}} \backslash \mathbf{R}$ has no P-point.

References

- J. F. Berglund, H. D. Junghenn and P. Milles, Analysis on Semigroups, Wiley, New York, 1989.
- [2] M. Koçak, Compactification of a Uniform Space and the LUC-compactification of the Real Numbers in Terms of the Concept of Near Ultrafilters, Ph.D theses, University of Hull (1995).
- [3] M. Koçak, Z. Arvasi, Near Ultrafilters and Compactification of Topological Groups, To appear in Turkish Journal of Mathematics.
- [4] M. Koçak and D. Strauss, Near Ultrafilters and Compactifications, To appear in Semigroup Forum
- [5] R. C. Walker, The Stone-Čech Compactification, Springer-Verlag, New York, Heidelberg, Berlin (1974).

Mahmut KOÇAK Osmangazi University, Department of Mathematics, 26480 Eskişehir-TURKEY e-mail: mkocak at ogu.edu.tr

home page: http://www.fen.ogu.edu.tr/ mkocak/

Received 03.10.1996