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CAHIT ARF’S CONTRIBUTION TO ALGEBRAIC
NUMBER THEORY AND RELATED FIELDS

by
Masatoshi G. Ikeda*
Dedicated to the memory of Professor Cahit ARF

1. Introduction

Since 1939 Cahit Arf has published number of papers on various subjects in Pure
Mathematics. In this note I shall try to give a brief survey of his works in Algebraic
Number Theory and related fields. The papers covered in this survey are: two papers on
the structure of local fields ([1], [5]), a paper on the Riemann-Roch theorem for algebraic
number fields ([6]), two papers on quadratic forms ([2], [3]), and a paper on multiplicity
sequences of algebraic braches ([4]). The number of the papers cited above is rather few,
but the results obtained in these papers as well as his ideas and methods developed in
them constitute really essential contributions to the fields. I am firmly convinced that
these papers still contain many valuable suggestions and hidden possibilities for further
investigations on these subjects. I believe, it is the task of Turkish mathematicians
working in these fields to undertake and continue further study along the lines developed
by Cahit Arf who doubtless is the most gifted mathematician Turkey ever had.

In doing this survey, I did not follow the chronological order of the publications, but
rather divided them into four groups according to the subjects: Structure of local fields,
Riemann-Roch theorem for algebraic number fields, quadratic forms, and multiplicity
sequences of algebraic braches. My aim is not to reproduce every technical detail of
Cahit Arf’s works, but to make his idea in each work as clear as possible, and at the same
time to locate them in the main stream of Mathematics.

*This is the modified version of the author’s article dated October 23, 1981 Written on the occasion
of Professor Cahit Arf’s recieving Doctor honoris causa from the Middle East Technical University.
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2. Algebraic Number Theory in 1930’s

In order to locate Cahit Arf’s works, on Algebraic Number Theory and related
fields, in the main stream of Mathematics properly, we need some knowledge about the
history of Algebraic Number Theory. Besides Cahit Arf completed his thesis in Gottingen
in 1938, so we also have to know what the mathematical atmosphere in Germany was
like in 1930’s. I think therefore, it is not meaningless to begin this note with talking how
Algebraic Number Theory developed.

As is known, the Gottingen school of Mathematics has had a long glorious tradition
beginning with C.F. Gauss followed by B. Riemann and others. Algebraic Number Theory
was born in Gottingen by Gauss, and was raised to a gigantic theory, Class Field Theory,
by mathematicians in or closely related to Goéttingen. Algebraic Number Theory founded
by Gauss at the beginning of the 19th century, however, was merely the theory of quadratic
extensions of @, the field of rational numbers, in which the central theorem was the so-
called reciprocity law of quadratic residue symbol. The general development of Algebra
in the 19th century, in particular the invention of the duality by E. Galois, enabled
algebraic number theorists at that time to tackle more general extensions of Q than
quadratic ones. In 1890’s D. Hilbert, one of the representative figures of the Gottingen
school then, continued further study on cyclotomic fields, i.e. number fields of the form
Q(¢n) where ¢, is a primitive n-th root of unity, following the investigations initiated
by Kronecker. Hilbert then realized that one can completely describe the decomposition
law of primes in Q({,) by means of the multiplicative group (Z/n)®. This observation
led him to formulate - though in a rather vague fashion - one of the most important
problems in Algebraic Number Theory. The problem is this: How can one completely
describe the decomposition law of primes in a finite Galois extension F/Q in terms of
some (canonically definable) object in Q7 Of course this object must coincide with
(Z/n)* for the cyclotomic case. The same problem can be asked for finite Galois (relative
galoisien) extensions of any algebraic number field of a finite degree over Q. The year 1920
may be considered as a turning point of Algebraic Number Theory. Namely T. Takagi,
an ex-student at Gottingen but an unknown mathematician then, succeeded to solve the
problem for the case of relative abelian extensions. After seven years, the theory of Takagi
was perfected in a surprisingly beautiful way by the discovery of the general reciprocity
law by E. Artin in Hamburg; this gives an explicit description of the decomposition law via
the Artin symbol. By the way, it is very remarkable that this fundamental discovery was
in fact a by-product of another investigation on general L-functions defined by him (Artin
L-functions). In trying to show that his general L-functions coincide with the classical L-
functions for abelian extensions, E. Artin was led to conjecture the reciprocity mentioned
above. In this way, the problem raised by Hilbert at the beginning of this century was
completely solved by Takagi-Artin for relative abelian extensions; today their theory is
know as the “global” class field theory.

The valuation theory founded by K. Hensel in Marburg was intensively and suc-
cessful applied by his pupil H. Hasse both in Number Theory and Algebraic Function
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Theory; roughly speaking, Hasse’s idea consists in the deduction of a statement about
an algebraic number (or function) field from its counter-part for all local completions of
the field (Hasse’s principle). So it was quite natural to look for the counter-part of the
“global” class field theory for local number fields. The theory thus obtained is the “local”
class field theory. It is the theory of relative abelian extensions of local number fields.
The local class field theory was established by applying the structure theory of central
simple algebras over local and/or global number fields which was intensively studied for
its own sake by many mathematicians in Gottingen, such as R. Brauer, H. Hasse and E.
Noether. By the way, this approach is in fact the origin of the cohomological approach in
class field theory initiated by J. Tate in 1950’s and accepted as standard approach today.
Because local number fields are of much more simple structure than global ones, the local
class field theory is less complicated than global one. It is therefore natural to try to
construct the “global” theory upon the local ones. In fact, this was done by C. Chevalley
in 1940 by using the concept of ideles.

Now in his thesis in 1923, Artin close hyperelliptic function fields over finite con-
stant fields as analogues of quadratic number fields, and defined the zeta-function on
such fields. Further he pointed out that the analogue of the famous Riemann hypothesis
seemed to be true for these zeta-functions. This was the origin of the problem known
as the Riemann hypothesis for congruence zeta-functions; the problem engaged enthu-
siastic interest in 1930-41, and was solved for algebraic function field of genus 1 by H.
Hasse in 1936, and for general case by A. Weil in 1941. Under these circumstances there
revived the approach based on tracking down the parallelism between theories of alge-
braic numbers and algebraic functions. This approach was not new, for instance when
Hilbert and others were trying to establish the class field theory, the model they had
in mind was Riemann surfaces. In any case, this approach stimulated investigations in
the general theory of algebraic function fields over arbitrary constant fields. A typical
example for this, is the Riemann-Roch theorem for algebraic function fields over arbitrary
constant fields obtained by A. Weil in 1938. In this work Weil successfully utilized adeles,
analogues of Chevalley’s ideles. The approach cited above also intensified the attempts
making analogy of known facts in number fields for function fields and vice versa. This
in turn stimulated the study of the structure of local fields. Everything known for local
number fields was re-examined from the point of view in what extent it remains valid for
local fields. This was mainly done by young mathematicians in Géttingen in 1930’s, such
as O. Teichmiiller and E. Witt.

It should not be forgotten that in 1930’s a radical political change took place
in Germany. In the middle of 1930’s the traditional autonomy of German Universities
finally gave way to the political pressure, as a result, many brilliant mathematicians of
non-German origin, E. Artin among others, were compelled to leave the country. Thus
the golden age of the German school came to a sudden end. But there remained still
number of brilliant mathematicians in Gottingen, such as H. Hasse and E. Witt. It was
like that in Gottingen when Cahit Arf arrived there in 1937.



IKEDA

3. Structure of Local Fields

(a) The paper [1] appeared in the Crelle Journal in 1939 was the thesis of Cahit
Arf, and was accepted by the University of Goéttingen in June 1938, soon after his arrival
in Gottingen. This fact shows not only that Cahit Arf was highly gifted in Mathematics,
but that he was then already mathematically mature enough. In order to talk about the
content of this paper, we have to mention the work [7] by E. Artin. In the course of
his study on the functional equation for his L-functions Artin was led to the concept of
“non-abelian” conductor (Artin conductor), which was defined and studied in [7]. The
main result of [7] is a generalization of the so-called conductor-discriminant theorem. To
be explicit, we adopt the usual notations: K, a Galois extension of an algebraic number
field k of a finite degree over Q; G stands for the Galois group of K/k; for any prime
ideal p of k and for any prime factor P of p in K, the inertia group of P is denoted by

T(= VO) and the ramification groups by Vi, Vs, ...; z denotes any character of G, and
2(T) =Y a(0), (i)=Y (o)
c€eT 4%
etc.

The Artin conductor belonging to z is then defined by

flz, K/k)= HpN(“’p)

where
z,p) (|Vil(

N(z, P) is independent of the choice of P. Now the main results of Artin can be
summarized as follows:

1. f(z, K/k) is an integral ideal of k (i.e. N(z,p) is a non-negative integer);

2. if K/k is abelian, f(z, K/k) coincides with the conductor in the class field theory;

3. some formulas for f(z, K/k);

4. {z,} being the totality of irreducible characters of G, the discriminant D, is
equal to 11_)[ f(z,, K/k)z®).

As Cahit Arf pointed out in [1], the statements above, except (1) and (2), are
formal consequences of the definition of f(z, K/k). In fact, one of the main problems
in [7] was the proof of the integrality of N(z,p). But N(z,p) is the number defined in
the completion of K at p. So Cahit Arf aimed in [1] to show the integrality of N(z,p)
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for any Galois extension K of an arbitrary complete field k with respect to a discrete
valuation, so that the result of Artin, except (2), will be valid for such K/k. This was
the motivation of [1]. A typical example of one of the approach already mentioned in the
formed section. Cahit Arf, however, did in [1] much more than that. Namely he started
with the question how one can construct a finite extension of a complete field with respect
to a discrete valuation. A very fundamental question. What Cahit Arf did in §1-3 in [1]
can be considered as the ramification theory in non-normal totally ramified extensions of
a complete field with respect to a discrete valuation. (For the sake of simplicity, I call
such a field local). Usually the ramification theory is done for Galois extensions, so that
Galois groups are available, and every thing can be neatly done by using ramification
groups. But for non-normal extensions, the corresponding theory is difficult to formulate
because of the lack of automorphisms. A naive idea for this will be the imbedding of
the extension into its Galois closure. But Cahit Arf developed a quite different and very
original approach to this. I have strong feeling that §1-3 of [1] still contain many useful
informations about the structure of local fields. Now let us look at the contents of [1]
more closely.

The sections 1-3 are devoted, as said above, to obtain invariants of a totally ramified
extension K of a local field k. For this purpose, he chooses a fixed multiplicatively closed
system of representatives, say R, of the residue class field k, and consider the expressions
of the form

Sp(x) = (f1(2)" + (fo(@)” +--+ (fs(x)”

where p is the characteristic of k, and f; (x)’s are formal power series in the variable
x with coefficients in R. If {f;(x)} is a sequence of formal power series with the initial
terms of orders tending to infinity, then the infinite sum of the form

Se(w) =3 (i)

i=1

will be taken into consideration (Look at Sy, (z) in the following discussion).
Let II be a prime element of K, then for any element

O=1"Y &II' (& €R).

=0

Can be written in the form
h

=T 1S, (I0).
£=0
The whole theory developed in [1] is based on this rather strange looking decomposition.
Of course the decomposition is not unique; after some discussions about connections
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between different decompositions, the concept of “minimal decomposition” is introduced:

14
=1 IS, (II)

£=0
is said to a minimal decomposition if {ig,é1,...,%} is the greatest in the sense of
lexicographical order. It is shown that {i1,...,4,} depends only on the order of 6.
Furthermore it is shown that the ration
0 :10"S,,(w) - : "G, () mod “TI

depends only on the order of #. Taking a prime element 7 in place of 8, we can speak
of the sequence {i1,...,in} and the ratio belonging to m; they are the invariants of
K/k. In fact they determine K/k up to isomorphism. By the way, a necessary and
sufficient condition for K/k to be Galois is given in terms of these invariants. Now in
§2, the most important part of [1], the ramification theory is developed. To reproduce
the technical details here is almost impossible, but, roughly speaking, starting from a
minimal decomposition of any element 6 in K, a number sequence and a function are
defined which turn out respectively to be the sequence of jump indices of ramification
groups and the Herbrand function if K/k is Galois. Really the process in defining them
is wonderful. §4 is devoted to the imbedding of a totally ramified Galois extension into
a central simple algebra; maybe this part can be interpreted in cohomological language,
and maybe simplified in some extent. Finally in §5 the proof of the integrality of N(z,p)
is given. This is done by proving a more general statement concerning geneating elements
of maximal (totally ramified) subfields of a central simple algebra. By the way, the proof
of the integrality of N(z,p) is reduced first to the case of abelian extensions, and the
statement reduced to the latter case is usually referred as the Hasse-Arf theorem.

(b) The paper [5] appeared in the Abhandlungen aus dem mathematischen Seminar
der Universitdt Hamburg in 1955. In this remarkable paper Cahit Arf gave an explicit
construction of the separable closure of the field of formal Laurent series over a finite
field (i.e. a local field with a finite residue class field of the equi-characteristic case).
The method of construction consists in symbolizing the process of taking the successive
extensions of Artin-Schreier type. If k is a field of characteristic p, the extension defined
by the equation zP? — x = w with w € k in said to be of Artin-Schreier type. This
type of extensions play the counter-part of the role Kummer extensions play in the zero
characteristic case. It may be worthwhile to mention that the extensions of Artin-Schreier
type are always normal, so that the construction problem of Galois extensions by the
characteristic p case is rather easy compared with the zero characteristic case.

Not let P be the prime field of characteristic p,k be the algebraic closure of P,
and L = P(t) be the field of formal Laurent series over P. Further let K be the field
of formal Laurent series such that each series in K has coefficients in a finite extensions
of P. Clearly K is a separable algebraic extension of L. Let Q be the union of all
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extensions of the form K( v\/t) where v ranges over all positive integers not divisible by
p. Then we consider the vector space S over 2 spanned by symbols

(él,---,§n>
Viy...,VUn

where n is any positive integer, the &; ’s are elements of ), and the v; ’s are positive
p-integers. The addition and multiplication of vectors are defined. The addition is simple,
but the multiplication is rather complicated and defined by recursion on n. The meaning

of the symbols
61) M ] §/n/
Viy...,VUn
can be seen from the relations:

(E-(5)-$m (58 ) - (58)
v v tv Ui,y Vn Ui,y Vn
— (51,---,§n—1>§_n
V1y.--3Vn—1 tvn
It is shown that S is the desired closure of L, then the action of elements in the Galois
group of S/L is explicitly given by using these symbols.
It must be noted that this short but elegant paper is the starting point of Cahit
Arf’s further study on the structure of S/L in which he attempts to establish the “non-
abelian” local class field theory for L. So far as I remember, his idea in doing this is to put
Artin representations into connection. More precisely, if one can construct a canonical
Gal(S/L)-module M in such a way that the Artin representation belonging to any finite
Galois subextension F/L of S/L is afforded by a factor module (or a submodule) of M,
then this module M may serve as the object in the formation of the “non-abelian” local
class field. Cahit Arf always says that this will be one of his life work. Unfortunately the

most part of his recent works in this line, including his painstaking research done during
his stay in the States in 1963-65, has never been published.

4. Riemann-Roch Theorem for Algebraic Number Fields

As was already mentioned in Section 1, the classical theorem of Riemann-Roch,
one of the most fundamental theorems in Complex Analysis, was first generalized by A.
WEeil to the case of algebraic function fields over arbitrary constant fields. In his work,
Weil introduced the concept of adele groups in analogy of Chevalley’s idele group. The
latter was successfully utilized by Chevalley in establishing the global class field theory
without using zeta-functions. On the other hand, as already mentioned in Section 1,
it has long been recognized that there is a certain parallelism between the theories of
algebraic numbers and algebraic functions in one variable. These theories have developed
and are still developing stimulating each other. Hence it is quite natural to ask if there is
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an analogue of Riemann-Roch theorem in Weil’s version for algebraic number fields. This
is the motivation of this paper.

Before entering into detail, it will be worthwhile to outline the Riemann-Roch
theorem in Weil’s version.

Let K be an algebraic function in one variable over the constant field k£, and Ax
be the adele ring of K, i.e. the subset of the Cartesian product of the completions K,
where P ranges over all prime divisor of K, such that Iz, € Ax iff vy(zp) > 0 for

P

almost all P. The field K is imbedded into Ax by the diagonal map, and Ax is a k-

algebra under the componentwise operations. Further Ag is a topological algebra under

a topology defined as follows. A divisor a of K is a finite formal product of prime divisors

of K. Now a = IIp"»%) being a divisor of K, N (a) denotes the k-subspace consisting
P

of all adeles IIx, satisfying the condition v,(z,) > —vp(a) for all P. The topology on
[Z

A is then defined by taking {N(a)} (a ranging over all divisors of K ) as a base of
open sets around the zero. Since each N(a) is a k-subspace of Ak, the topology thus
defined is a linear topology, and each N(a) is open and closed. “Linear compactness”
and “linear local compactness” are defined in analogous ways to the usual compactness
and local compactness. It turns out that A is a linear locally compact space over k.
On the other hand, Pontrjagin’s duality holds for any linear locally compact space X
over k, where the dual X of X is the space of all k-linear continuous maps from X
in k, belng considered as a discrete space. As is the usual Pontrjagin duality for locally
compact abelian groups, X is topologically isomorphic to X ; if X is discrete, X is linear
compact. For any subspace Y of X, the annihilator Y1 is defined, and Yl (X/)Y).

Now returning to A, it can be shown that K is a discrete subspace and Ag /K linear
compact. Furthermore A isself-dual, i.e. A k = Ak . Choosing a fixed element &g € A K
such that dp(K) = 0, one can give an isomorphism between Ay and Ag by means of this
pairing, we get K = K. On the other hand, for each prime divisor P one defines deg P
as the degree of extension of the residue class field at P over k; further if a = I1p*»@

P
is a divisor, dega is defined by linearity. It can be shown that N(a) N K is a finite
dimensional subspace (i.e. a discrete and linear compact space!), and its dimension is
defined to be dima. One can find a divisor D such that N(a)* = N(a"'D) for all a.
Now simple computations show the invariance of the number dima — deg a — dim(a~'D)
which is usually denoted by 1 — g (g is the genus of K):

dima — dega — dim(a™'D) =1 — g (%).

This is the Riemann-Roch theorem in Weil’s version. The basic property of N(a) used
in the computation above is the finite dimensionality of

N(a)/N(a)NN(a)" and N(a)"/N(a) N N(a)*

The basic idea in Cahit Arf’s [6] consists in looking at (*) as a relation satisfied
by certain closed subspaces of adele ring having the property above. Hence to obtain an
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analogue of Riemann-Roch theorem for algebraic number fields, one first looks at such
closed subspaces satisfying the corresponding property of finiteness, and, defining the
functions deg and dim in a suitable way, one proves invariance of a relation including
these functions. Cahit Arf considers first the case of Q. The topological part of the
discussion is easily settled. Compared with function field case, the topology here is the
usual topology; Ag is a locally compact abelian group, by choosing a suitable pairing,
Agq is identified with its dual fl@ so that Q+ = Q discrete and Ag/Q is compact. Then
we restrict ourselves only to such closed subgroups F that F/FNF*+ and F+/FnFt
are both finite. Such F' is said to be almost isotropic. Now the main difficulty in this
work lies in the definition of the numerical functions dim F' and deg F'. To do this, Cahit
Arf looks at almost isotropic subgroups more closely. By an integral subgroup G, he
understands a closed subgroup of Ag such that Gt O G and [G* : G] finite. It is
then shown that for any almost isotropic subgroup F there is an integral subgroup G
satisfying G+ D F O @, that is to say that F is approximated by an integral group
up to finite factor group. By using these facts almost isotropic subgroups are explicitly
described in terms of certain subgroups which are neighbourhoods of zero. Then the
function dim is defined from the explicit description of almost isotropic subgroups. Now
almost isotropic subgroups are divided into families by the following relations: F and F’
are said to be related it F/F N F’ and F'/F N F’ are both finite. Then each family is
subdivided into orbits with respect to the automorphisms of Ag. Then the function deg
is defined by choosing a fixed almost isotropic Fy. Then the invariance of the expression
dim F —deg F —dim F* is proved. Because of the dependence of deg on the choice of Fy,
this constant denoted by log gy depends on Fj. But it can be shown that g, depends
only on the orbit F\ containing Fy. That is why the constant is denoted by gy. Then
turning to general case, a similar formula is obtained.

This work may be considered as a detailed study of almost isotropic subgroups of
the adele group over an algebraic number field. The question naturally arises is this: Has
the constant g, any significant meaning in connection with the structure of the field. As
is known, the genus of an algebraic function field governs the structure of the field very
strongly. But this kind of analogy may be meaningless.

In 1950’s there were two works done by K. Iwasawa and J. Tate on adele rings
of algebraic number fields. The work by Tate can be found as appendix of Cassels-
Frohlich’s book. The topological part of these works are almost the same as that in this
work. But after that, these works depart from this work significantly. This is because
of the difference of aims. Still you can find an Riemann-Roch theorem in Tate’s work. I
do not know whether this has something to do with the Riemann-Roch theorem in this
work.
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5. Quadratic Forms

Because quadratic forms appear as fundamental forms of metric in Geometry, they
are of fundamental importance in studying local isometries. Hence it occupies one of
the main research fields in Mathematics. On the other hand, since Gauss formulated
his theory of quadratic fields in terms of binary quadratic forms, many algebraic number
theorists are still interested in quadratic forms over algebraic number fields, while the
later development of Algebraic Number Theory departed from the theory of quadratic
forms rather significantly.

The main problem in the theory of quadratic forms over a field k (or a ring R)
consists in finding out the complete system of invariants in the sense that if these invariants
of two quadratic forms coincide then these forms are equivalent (i.e. they go over via linear
transformations with coefficients in k& or R) and vice versa. Now the nature of the theory
is strongly influenced by the structure of the ground field or the ground ring. The theory
of quadratic forms over an arbitrary field was rather recently established. The first step
in this line was taken by E. Witt [10]. Because the characteristic two case adds some
complications, one usually assumes that the characteristic of the ground field is different
from 2. Witt showed that, under this assumption on the ground field, every quadratic
form F' can be diagonalized, and, for

n
_ 2
F= g a;xy,
i=1

the number of variables n, the Clifford algebra Hi§ j (ai,a;j) and the class [];_; a; mod
(k*)? form a complete system of invariants.

Although there is a series of works on quadratic forms over the ring of (algebraic)
integers by Gauss, Minkowski and Hasse, there is still no general treatment of quadratic
forms over an arbitrary (commutative) ring which can be compared with Witt’s work.
This is because the structure of rings is much more complicated than that of fields.

Now the work [2] by Cahit Arf was done to fill up the gap in Witt’s paper [10].
That is, the aim of [2] is to give a complete system of invariants of quadratic forms over
a field of characteristic 2. Because of the parity business in Geometry, the Arf invariants
obtained in [2] are of importance in recent researches in Geometry.

The work [3] deals with the quadratic forms over the ring of formal pover series
(in one variable) over a perfect field of characteristic 2. (a) In the paper [2] done in 1940,
Cahit Arf considers quadratic forms over an arbitrary field k of characteristic 2. Now if a
quadratic form F(x) =Y a;jz;x; is given, it defines a metric (without triangle relation)
on V = k", the n-dimensional space over k : |z|2 = F(x). V together with F is called a
quadratic space. The equivalence between two quadratic forms can be interpreted as an
isometry. By |x+y|? = |z|?+|y|? +2 -y the inner product z-y is defined on V. As usual,
orthogonality is defined; the radical V* of V is defined to be the subspace consisting of
all vectors orthogonal to V. If V* = {0}, V is said to be completely regular. Then it

10
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can be shown that V is an orthogonal sum of 2-dimensional completely regular subspaces
and its radical. This implies that every quadratic form can be transformed into

m 14

Z(aix% + by + ciyl) + Z d; =}

i=1 i=1

with b; # 0. The latter form is said to be quasi-diagonal; this is the counter-part of
diagonal forms in Witt [10]. The subspace of V* consisting of all vectors of length 0 is
denoted by Vj'; if Vj* = {0}, V is said to be regular. Regular spaces are the counter-part
of non-degenerate forms in [10]. Because of the assumption on the characteristic, k? is a
subfield of k. Now if V is regular, F' can be transformed into a quasi-diagonal form

n 14

> (@i + biwys +cyl) + > diz}

i=1 i=1

with d; # 0, further {d;} forms a k2-basis of the space Zle d;k?. Then, as in [10], the
Clifford algebra C(F) of F = Xa;jz;x; is introduced:

C(F)=Xkui‘& -+ ~uém with uf =a;; and wiuj +uju; = aq; (8 < j).

m

Now if
n
Sger
i=1

is a quasi-diagonal decomposition of F', where f; stands for binary forms and F* for the
radical part, then C(F) can be decomposed into C(f;) and C(F*):

n

cF)=[]c) - cEF).

i=1
Each C(f;) is a central simple algebra, and C(F*) is the centre of C(F). Ignoring the
radical of C(F™*), we then get an algebra

n

Co(F) = Hc(fi) - K,

i=1

where K is a purely inseparable extension of k of degree 2¢=1. After the discussion on
the equivalence of binary forms, it is shown that if F' is completely regular, the number
of variables 2n (in f; ’s), the Clifford algebra C(F) and the class

n
a;C;
AF) =) 62
i=1 ?

mod pk

11
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form a complete system of invariants, where p stands for the Artin-Schreier operation:
pr = 22+ 2. To obtain further invariants for regular forms, more detailed discussions are
needed. For later applications in [3], invariants for binary, ternary and quarternary forms
are obtained. At the end of the paper there are some remarks about invariants under
some additional assumption on k.

(b) Cahit Arf has already given systems of invariants for quadratic forms over
the field of characteristic 2. The main problem in [3] is to give a complete system of
invariants for quadratic forms over the ring of formal power series k{t} over a perfect
field k of characteristic 2. Clearly the invariants for quadratic forms over the field of
fractions of k{t}, i.e. the field of formal Laurent series, are invariants in the sense of this
work. But they are not complete; some additional invariants are needed. The invariants
obtained (in the paper) are of complicated nature even for binary forms. Because of
these circumstances Cahit Arf restricted his consideration only to the cases of binary and
ternary forms. They are (besides invariants already obtained in [2]) either integers chosen
among orders of the coefficients of the form, or certain residue classes represented by the
coefficients.

6. Multiplicity Sequences of Algebraic Branches

The work [4] was done upon a question raised by P. Du Val [8] on the multiplicity
sequence of an algebraic branch.

An algebraic branch may roughly be thought as a point on an algebraic hypersurface
with coordinates belonging to a ring of formal power series in one variable. Let « = (Y;(t))
be an algebraic branch, then the point (¥;(0)) is called the centre of «. If « is an algebraic
branch, and D an algebraic hypersurface defined by G = 0. Then the order of the element
G(Yi(t)) in k{t} the ring of formal power series containing Y;(t), is called the order (or
intersection number) of D on «. This number is important, because the intersection
multiplicity of algebraic hypersurfaces C' and D at a point P can be determined by the
order of C' on 3 and the orders of D on a, where o and (3 range respectively over the
algebraic branches of C' and that of D with the centre at P. In this way, the set of
orders of elements in k[Y1(¢),...,Y,(¢)] is nothing but the set of all possible orders taken
by hypersurfaces on « = (Y;(¢)). This set forms an additive semi-group of non-negative
integers, and is called the characteristic semi-group of the branch «, or the multiplicity
sequence of a. Now Du Val showed that if « is canonical (see below), the set of minimal
generators of the characteristic module can be determined by means of an algorithm. The
aim of [4] is to give an algebraic interpretation of Du Val’s result.

The paper begins with an interesting lemma: For any semi-group {i,} of non-
negative integers there is an index r such that {i,,4,41,...} is an arithmetic progression
with the common difference equal to the greatest common divisor of 4, ’s. Then an
arbitrary subring H of the ring k{t} of formal power series over an arbitrary field k is
considered. As usual H is assumed to contain the identity of k{t}. The set of orders
of elements in H is shown by W (H). Further let {S;,} be any set of elements such
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that S;, is of order 45, and Ij be the ideal of elements whose order is not smaller than
h. Then the concept of canonical rings is introduced: H is said to be canonical if the
ring generated by I, coincides with I /Sy, for every h € W(H). This is the algebraic
interpretation of canonical branches. It can then be shown that for any subring H of
k{t} there is the smallest canonical ring containing H. This is the canonical closure of
H, and is denoted by H*. On the other hand, a semi-group {i,} of non-negative integers
is said to be canonical if iy, —ip =0, @541 = th41 —Ih, th'42 = tht2 —ih, ... form a semi-
group for every h. For any semi-group g of non-negative integers, there is the smallest
canonical semi-group of non-negative integers. This is the canonical closure of g, and is
denoted by g*. Note that if H = H*, i.e., if H is canonical, then W(H) = W(H)*, i.e.
W(H) is canonical. But the converse is not always true. Now for any semi-group ¢ of
non-negative integers there is the smallest sub semi-group g, such that g; = ¢g*. It is

shown that g, is of the form
n
(Z Oéi)\i | Q; Z 0)
i=1

with non-negative integers A\; < Ay < --- < A,. Hence any canonical semi-group of
non-negative integers is the canonical closure of finitely generated semi-group. Further it
is shown that for a finitely generated semi-group g of the form

(i Oéi)\i | Q; Z 0)
i=1

g* isequal to {0, v1,v1+ve,...,v1+- - -+vn_1+vZ} with suitable integers vy, ..., Un_1
and v which can be determined from Ay, ..., A\, by the algorithm of Du Val. This is the
algebraic interpretation of Du Val’s result. Further the methods determining generators
of canonical rings are discussed with many numerical examples.

It should be noted that some twenty years after [4] appeared O. Zariski and J.
Lipman [9] have defined Arf rings and studied their structure. The definition of Arf rings
is highly technical, but it is an abstraction of canonical rings cited above by means of
language of Commutative Algebra, and the Arf closure is that of the canonical closure.

7. Conclusion

Though the survey above is utterly incomplete and may be full of mistakes, I have
tried to summarize the works of Cahit Arf in Algebraic Number Theory and related
fields. During the preparation of this note, I have reexamined his papers, and realized
once more his greatness. He is a man of ideas and he is full of energy. To every problem
he has his own idea of approach. The characteristic of his approach is “thoroughness”;
he always seeks invariants, and prefers explicit constructions rather than combinations of
existing theories. Once he determines his approach to a problem, he energetically tackles
the problem, and never gives up until he achieves his aim. If one studies Cahit Arf’s
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works, which are full of originality and full of painstaking computations, one will surely
wonder where Cahit Arf gets his inspirations, and how he gets insight to most complicated
computations. As one sees from the survey above, each work of Cahit Arf is fundamental
and deep; it is often referred to in later researches. This means that Cahit Arf’s works
are full of suggestions and full of ideas. To my regret, however, Cahit Arf never had
pupils (in true sense) in Turkey; it might be because he is too great, or because his works
are too hard for common mathematicians. In any case, it is a pity not for Cahit Arf
but for Turkish Mathematics. I really do not see why Arf rings are studied by American
mathematicians but not by Turkish mathematicians, and why his wonderful thesis is
intensively re-examined by German mathematicians but not by Turkish mathematicians.
I am sure that the growth of Mathematics in a country is, as history shows, only possible if
the mathematicians in that country mathematically understand and stimulate each other.
So I should like to emphasize again that it is the task of young Turkish mathematicians
working in these fields first to learn by heart what Cahit Arf did, and then to continue
further study along the lines indicated by him.

Istanbul
June 10, 1998
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