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ON DERIVED EQUIVALENCES AND LOCAL

STRUCTURE OF BLOCKS OF FINITE GROUPS

Markus Linckelmann

The types of equivalences between p−blocks of finite groups usually considered -
namely Morita equivalences, derived and stable equivalences, as well as perfect isometries
on the character level - all admit refinements to equivalences which in addition take into
account the local structure of the considered blocks (this is explained in more details
in Broué [4]). In particular, the notion of a derived equivalence refines to what we call
splendid derived equivalence (called “splendid equivalence” in [14] or “Rickard equivalence
with groups” in [4]), developed by Rickard in [14]. The desired compatibility property
of a splendid Rickard equivalence with the local structure of the considered blocks is,
however, essentially proved in [14] for principal blocks only.

Theorem 1.1 below suggests a slight modification of the definition of a splendid
equivalence in [14] in order to get a compatibility for arbitrary blocks. We give our
statements, explain them in a series of remarks and refer to the sections 2 and 3 for a
more detailed description of the notions of Brauer pairs and Brauer homomorphisms that
we use (and the proofs of all statements in this section are given in section 4 ).

Throughout this paper we fix a prime number p and a complete discrete valuation
ring O having a residue field k = O/J (O) of characteristic p . By a block of a finite
group G we mean a primitive idempotent b of the center Z(OG) of the group algebra
OG of G over O and call then OGb the corresponding block algebra of b . Recall that a
defect group of such a block b of G is a minimal subgroup P of G such that the obvious
map OGb ⊗

OP
OGb −→ OGb induced by multiplication in OGb splits as homomorphism

of OGb − OGb−bimodules. The defect groups of b form a unique conjugacy class of
p−subgroups in G .

Theorem 1.1. Let G , H be finite groups, b a block of G , c a block of H , having a
common defect group P . Let i ∈ (OGb )P and j ∈ (OHc)P be primitive idempotents
such that BrGP (i) 6= 0 and BrHP (j) 6= 0 . For any subgroup Q of P denote by eQ and fQ
the unique blocks of kCG(Q) and kCH(Q) , respectively, such that BrGQ(i)eQ 6= 0 and
BrHQ (j)fQ 6= 0 .
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Assume that for any two subgroups Q , R of P we have EG((Q, eQ), (R, eR)) =
EH((Q, fQ), (R, fR)) .

Let X be a Rickard tilting complex of OGb −OHc−bimodules. Assume that all
terms of X are sums of direct summands of the OGb−OHc−bimodules OGi ⊗

OQ
jOH ,

where Q runs over the set of subgroups of P .
Then for any subgroup Q of P the complex eQX(Q)fQ is a Rickard tilting complex

of kCG(Q)eQ − kCH(Q)fQ−bimodules.

In the case of principal blocks, 1.1 is equivalent to Rickard’s theorem [14, 4.1] .
Remember that if b is the principal block of the finite group G then BrQ(b) = eQ for
any subgroup Q of P and eQ is the principal block of kCG(Q) (where the notation is
as in 1.1; see e.g. [16, (40.17)(a)]). We restate this for completeness:

Corollary 1.2. (Rickard [14, 4.1]) With the notation and hypotheses of 1.1, suppose
that BrQ(b) = eQ and BrQ(c) = fQ for any subgroup Q of P .

Let X be a Rickard tilting complex of OGb −OHc−bimodules all of whose terms
are sums of direct summands of the bimodules OGb ⊗

OQ
OHc , where Q runs over the set

of subgroups of P .
Then for any subgroup Q of P the complex X(Q) is a Rickard tilting complex of

kCG(Q)eQ − kCH(Q)fQ− bimodules.

The next theorem connects 1.1 to Broué’s “tentative de définition” of Morita
equivalences compatible with the local structure of the blocks [3, 6.3] via a technique
due to Rickard (in [14] applied to p−nilpotent groups and in [9] extended to p−solvable
groups). See also Puig [13, 7.9] for the stability condition occurring in the theorem below.

Theorem 1.3. Let G , H be finite groups, b a block of G and c a block of H having
a common defect group P . Let i ∈ (OGb)P and j ∈ (OHc )P be primitive idempotents
such that BrGP (i) 6= 0 and BrHP (j) 6= 0 . For any subgroup Q of P denote by eQ and
fQ the unique blocks of kCG(Q) and kCH(Q) , respectively, such that BrGQ(i)eQ 6= 0 and
BrHP (j)fQ 6= 0 .

Let V be an endo-permutation OP −module. Assume that there is a bounded
complex XV of permutation OP − modules such that XV has homology concentrated
in degree zero isomorphic to V and that the complex X∗V ⊗O

XV is split as complex of

OP −modules with respect to the diagonal action of P . Assume finally that ϕXV ∼=
ResPQ(XV ) for any subgroup Q of P and any injective group homomorphism ϕ : Q −→ P
such that ϕ̃ ∈ EG((Q, eQ), (P, eP )) ∪ EH((Q, fQ), (P, fP )) .

If M is a direct summand of the OGb − OHc−bimodule OGi ⊗
OP

IndP×P∆P
(V )

⊗
OP

jOH which induces a Morita equivalence between OGb and OHc then there is a

direct summand X of the complex of OGb − OHc−bimodules OGi ⊗
OP

IndP×P∆P
(XV )
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⊗
OP

jOH such that X is a Rickard tilting complex having homology concentrated in degree

zero isomorphic to M , and in particular, all terms of X are isomorphic to direct sums of
direct summands of the modules OGi ⊗

OQ
jOH , where Q runs over the set of subgroups

of P .
Moreover, for any two subgroups Q , R of P we have EG((R, eR), (Q, eQ)) =

EH((R, fR), (Q, fQ)) .

Remarks.
1.4 With the notation of 1.1, the algebras A = iOGi and B = jOH j are source

algebras of OGb and OHc , a concept due to Puig[10]. They are always considered as
interior P−algebras; that is, together with the group homomorphisms P −→ A× and
P −→ B× mapping u ∈ P to ui and uj , respectively. Recall from [10] that OGb and
A are Morita equivalent via the bimodules OGi and iOG . However, kCG(Q)eQ and
A(Q) need not be Morita equivalent for all subgroups Q of P . A sufficient condition for
kCG(Q)eQ and A(Q) to be Morita equivalent is that CP (Q) is a defect group of eQ ; this
condition can always be fulfilled by replacing Q by a suitable G−conjugate in P (see 3.3
below for details).

1.5 If Q is a subgroup of P , the idempotent i need no longer be primitive in
(OGb)Q , and hence BrGQ(i) need not be a primitive idempotent in kCG(Q), so the fact
that there is a unique block eQ of kCG(Q) satisfying BrGQ(i)eQ 6= 0 is non trivial; this
is due to Broué and Puig [5, 1.8].

1.6 Recall from [3] that for any two symmetric O−algebras A , B , a Rickard tilting
complex T of A−B−bimodules (called split endomorphism tilting complex in [14]) is a
bounded complex of finitely generated A− B−bimodules whose terms are projective as
left and right modules, such that the total complexes T ∗⊗AT and T⊗BT ∗ are homotopy
equivalent to B and A as complexes of B − B−bimodules and A − A−bimodules,
respectively. Note that in 1.1 for any subgroup Q of P the OGb − OHc−bimodule
OGi ⊗

OQ
jOH is projective as left OGb−module and as right OHc−module, so this

condition for the terms of X is redundant.
1.7 With the notation of 1.1 , the indecomposable direct summands of OGi ⊗

OQ
jOH

with Q running over the set of subgroups of P , viewed as O(G×H)−modules, are trivial
source modules with vertex contained in ∆P = {(u, u)}u∈P ; indeed, OGi ⊗

OQ
jOH is a

direct summand of OG ⊗
OQ
OH ∼= IndG×H∆Q (O). Similarly, the bimodule M in 1.3, when

viewed as O(G×H)−module, has vertex ∆P and source V (assuming additionally that
V is indecomposable).

1.8 If Q , R are subgroups of P , the set EG((Q, eQ), (R, eR)) is the set of all
group homomorphisms Q −→ R modulo inner automorphisms of R which are induced
by conjugation u −→ xu = xux−1 with an element x of G satisfying x(Q, eQ) ⊂ (R, eR)
or equivalently, satisfying xQx−1 ⊂ R and xeQx

−1 = exQx−1 . See 3.1 below for more
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details.
1.9 Recall that an endo-permutation OP −module (cf. Dade [6]) is an O−free

OP −module V such that V ∗⊗
O
V is a permutation OP −module (i.e. has a P−stable

O−basis). The notation IndP×P∆P
(V ) means, that we consider first V as O∆P−module

through the obvious isomorphism ∆P = {(u, u)}u∈P ∼= P and second the O(P× P )−module
IndP×P∆P

(V ) as OP −OP −bimodule with u ∈ P acting on the left as (u, 1) and on the
right as (1, u−1). The complex XV in 1.3 is called an endo-split p−permutation reso-
lution of V in [14]. For abelian P , Rickard proved in [14] that any endo-permutation
kP−module “lifts” to an endo-permutation OP −module having an endo-split p−permutation
resolution, using Dade’s classification in [7] of endo-permutation OP −modules for abelian
P .

1.10 A complex X satisfying the hypotheses of 1.1 is going to be called a splendid
tilting complex, analogously to the terminology in [14] (this is compatible with the termi-
nology in [9]). One also might want to call a Morita equivalence induced by a bimodule M
isomorphic to a direct summand of OGi ⊗

OP
jOH a splendid Morita equivalence. It has

first been observed by L. Scott [15] and independently by L. Puig, that splendid Morita
equivalences are precisely those Morita equivalences which arise from an isomorphism of
the corresponding source algebras iOGi ∼= jOH j mapping ui to uj for all u ∈ P .

Notation. If not stated otherwise, an O−algebra is supposed to be associative, unitary,
O−free of finite rank over O , and a module is a finitely generated left module. For any
O−algebra A we denote by J(A) its Jacobson radical, by A× its group of invertible
elements and by A0 its opposite algebra. If u ∈ A× and a is an element or subset of A ,
we write ua = uau−1 and au = u−1au .

For any two O−algebras A , B , an A − B−bimodule is a bimodule whose
left and right O−module structure coincide and which hence can be considered as
A⊗
O
B◦−module. If P , Q are finite groups, ϕ : Q −→ P a group homomorphism and

A an interior P−algebra (i. e. an O−algebra endowed with a group homomorphism
σ : P −→ A× , see [10]) we may consider any A−module U as OQ−module via restric-
tion through σ and ϕ , usually denoted by ϕU (if the structural homomorphism σ is
clear from the context). If H is a subgroup of a finite group G we denote by [G/H] a
system of representatives in G of the set of right transversals of H in G (similarly for
double cosets), assuming implicitely, that in all statements where this notation occurs, it
is verified that the statement does not depend on the choice of this set of representatives.
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2. The Brauer Construction

We recall briefly the definition and some properties of the Brauer construction,
due to Brauer [2] in the case of the group algebra, generalized by Broué and Puig [5] to
arbitrary G−algebras and also to modules in Feit [8,II.3].

2.1 Let P be a finite p−group and X an OP −OP −bimodule. For any subgroup
Q of P we set as usual

XQ = {x ∈ X|ux = xu for all u ∈ Q}

and for any further subgroup R of Q we set

XQ
R = {

∑
u∈[Q/R]

uxu−1|x ∈ XR}.

Clearly, XQ defined above is an Z(OQ )−module and XQ
R is a submodule of XQ .

We set (cf. [5, 1.2])

X(Q) = XQ/(J(O)XQ +
∑
R<Q

XQ
R )

and denote by BrXQ : XQ −→ X(Q) the canonical surjection.
Clearly a homomorphism of OQ −OQ−bimodules X −→ Y induces a homomor-

phism X(Q) −→ Y (Q) which makes this construction functorial in an obvious sense.
2.2 We will have to compute X(Q) only in situations where X has an O−basis ”B

which is stable with respect to the “diagonal” action of Q on X ; that is, which satisfies
uBu−1 = B for all u ∈ Q . In that case, the orbit sums

∑
u∈[Q/CQ(x)] uxu

−1 , where
x ∈ B , form an O−basis of XQ . Non trivial orbit sums lie clearly in ker(BrXQ ), and
hence BrXQ (BQ) is a k−basis of X(Q). In particular we have X(Q) = 0 if B contains
no element of XQ .

The preceding section applies obviously, if X = OG for some finite group G
containing P ; we get then X(Q) ∼= kCG(Q) . In that case we write BrGQ instead of BrOGQ
and even sometimes just BrQ , if no confusion arises. We usually identify (OG)(Q) to
kCG(Q) and BrQ to the surjective algebra homomorphism (OG)Q −→ kCG(Q) induced
by the projection mapping x ∈ CG(Q) to its image in kCG(Q) and x ∈ G − CG(Q) to
0.

2.3 More generally, if A is an interior P−algebra; that is, an O−algebra endowed
with a group homomorphism σ : P −→ A× , we may consider A as OP −OP −bimodule
via σ . Since, for any subgroup Q of P , AQ is a subalgebra of A and AQR an ideal in
AQ for any subgroup R of Q , the quotient A(Q) becomes naturally a k−algebra.

Moreover, if X is an A−OQ−bimodules we may consider X as OQ−OQ−bimo-
dule with the left action induced by resriction through σ to Q , and then X(Q) becomes
naturally an A(Q)−module. Observe that if Y is another A − OQ−bimodule, the
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space HomA⊗1(X, Y ) is an OQ − OQ−bimodule via the right actions of OQ on X
and Y . This gives rise to two bifunctors on the category AModOQ of finitely generated
A−OQ−bimodules, which turn out to be naturally isomorphic on a suitable subcategory;
this is the content of the next proposition (which is crucial for the proof of 1.1 and which
is mainly a straightforward generalization of Rickard’s lemma [14, 4.2]):

Proposition 2.4. Let P be a finite p−group, A an interior P−algebra and Q a
subgroup of P . Suppose that A has a P × P−stable O−basis such that A is projective
as left and right OP −module.

Let M be the full additive subcategory of AModOQ generated by the direct sum-
mands of the A−OQ−bimodules A ⊗

OR
(ϕOQ) , where R runs over the set of subgroups

of P and ϕ runs over the set of injective group homomorphisms from R to Q ,with the
additional condition that R = Q and ϕ = IdQ if ϕ is an isomorphism.

Then, on M , the bifunctors defined by

(X, Y ) −→ (HomA⊗1(X, Y ))(Q)

and

(X, Y ) −→ HomA(Q)(X(Q), Y (Q))

are naturally isomorphic.
Proof. For any two A−OQ−bimodules X , Y we have an obvious natural map

(HomA⊗1(X, Y ))Q = HomA⊗ØQ(X, Y ) −→ HomA(Q)(X(Q), Y (Q))

which induces a natural map

HomA⊗1(X, Y )(Q) −→ HomA(Q)(X(Q), Y (Q)),

and we have to show that this map is an isomorphism, if X and Y belong to the
subcategory M . We clearly may assume that X = A ⊗

OR
(ϕOQ ) and Y = A⊗

OS
(ψOQ),

where R , S are subgroups of P and ϕ : R −→ Q , ψ : S −→ Q are injective group
homomorphisms.

Note that the standard adjunctions give isomorphisms of OQ −OQ−bimodules
HomA⊗1(X, Y ) ∼= HomOR⊗1(ϕ(OQ), Y ) ∼= (OQ )ϕ ⊗

OR
Y ∼= (OQ )ϕ ⊗

OR
A⊗
OS

ψ(OQ).

Using 2.2 above and the hypotheses on A , if R (resp. S ) is not isomorphic to
Q we have X(Q) = 0 (resp. Y (Q) = 0) and also (HomA⊗1(X, Y ))(Q) = 0 , so both
bifunctors map (X, Y ) to zero.

It remains to treat the case X = Y = A ⊗
OQ
OQ ∼= A . Since HomA⊗1(A,A) ∼= A0

we have natural isomorphisms
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(HomA⊗1(A,A))(Q) ∼= A(Q)0 ∼= HomA(Q)(A(Q), A(Q)), and the result follows.

2

The Brauer construction gives rise to different characterizations of defect groups
which we recall without proof (see e.g. [16, 18.5] ):

Proposition 2.5. Let G be a finite group, b a block of G and P a subgroup of G . The
following are equivalent:

(i) P is a defect group of b .
(ii) P is a minimal subgroup of G such that b ∈ (OG)GP .
(iii) P is a maximal p−subgroup of G such that BrGP (b) 6= 0 .
In that case, for any idempotent e ∈ (OGb)P satisfying BrP (e) 6= 0 , the bimodules

OGe and eOG induce a Morita equivalence between the algebras OGb and eOGe .

We finally recall a technical result on relative projectivity (which has various
generalizations, but we state it in the form we need it):

Lemma 2.6. Let P be a finite p−group, A an interior P−algebra, Q a subgroup of P
and j a primitive idempotent in AQ . If BrAQ(j) = 0 there is a proper subgroup R of Q
such that the homomorphism of A −OQ−bimodules

Aj ⊗
OR
OQ −→ Aj

mapping aj ⊗ u to aju = auj , where a ∈ A , u ∈ Q , has a section.

Proof. If BrAQ(j) = 0, by Rosenberg’s lemma [16, 4.9] there is a proper subgroup R of
Q such that j ∈ AQR . Then if c ∈ AR such that j =

∑
u∈[Q/R] ucu

−1 , clearly the map
sending a ∈ Aj to

∑
u∈[Q/R] aucj ⊗ u−1 is a section as required. 2

3. On Fusion in Block Algebras

A systematic treatment of fusion in block algebras and block source algebras can
be found in various works of Alperin-Broué [1], Broué-Puig [5] and Puig [11], for instance.
See also [16, chapter 6 and 7].

We give here a very short ad hoc treatment of this subject strictly limited to what
we need in this paper.

3.1. Let G be a finite group, b a block of G and P a defect group of b . Recall
that for any p−subgroup Q of G the map

BrQ : (OG)Q −→ kCG(Q).
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is a surjective algebra homomorphism. Hence BrQ(b) is either zero or an idempotent
in Z(kCG(Q)), thus a sum of blocks of kCG(Q). Following [1], a b-Brauer pair is a
pair (Q, e) consisting of a p−subgroup Q of G and a block e of kCG(Q) satisfying
BrQ(b)e = e . Note that then in particular BrQ(b) 6= 0, hence Q is contained in some
defect group of b (or, equivalently, some conjugate of Q is contained in P ).

Following [5], there is an inclusion of b-Brauerpairs (Q, e), (R, f) : we define
(R, f) ⊂ (Q, e) and say that (R, f) is contained in (Q, e), if R ⊂ Q and there is a
primitive idempotent j ∈ (OGb)Q such that BrQ(j)e 6= 0 and BrR(j)f 6= 0. In that
case, since j is primitive in (OGb)Q , its image BrQ(j) is primitive in kCG(Q), and
hence BrQ(j)e = BrQ(j). Even though j need no longer be primitive in (OGb)R , it is
still true that BrR(j)f = BrR(j) and that f does not depend on the choice of j . Thus f
is uniquely determined by e (cf. [5, 1.8]). We collect some standard properties of Brauer
pairs we need (see [1] and [5]):

3.1.1. If P is a defect group of b , there is a block eP of kCG(P ) such that BrP (b)eP =
eP .

3.1.2. For any b−Brauer pair (Q, e) there is x ∈ G such that x(Q, e) ⊂ (P, eP ) ; in
particular, all maximal b−Brauer pairs are conjugate to (P, eP ) .

3.1.3. For any subgroup Q of P there is a unique block eQ of kCG(Q) such that
(Q, eQ) ⊂ (P, eP ) .

For any two b−Brauerpairs (Q, e), (R, f), we denote by H̃om(Q,R) the set of
equivalence classes of group homomorphisms from Q to R with respect to the equivalence
relation declaring two group homomorphisms ϕ , ψ from Q to R to be equivalent if there
is an inner automorphism τ of R such that ϕ = τψ . We denote then by ϕ̃ the image of
ϕ in H̃om(Q,R) and by EG((Q, e), (R, f)) the image in H̃om(Q,R) of of the set of all
group homomorphisms ϕ : Q −→ R for which there is x ∈ G satisfying ϕ(u) = xu for
all u ∈ Q and x(Q, e) ⊂ (R, f).

3.2. Following [10], for any subgroup H of G , a point of H on OGb is an
((OGb)H)×−conjugacy class β of primitive idempotents in (OGb)H , and we call then
Hβ a pointed group on OGb .

For any p−subgroup Q of G , a local point of Q on OGb is a point δ of Q on
OGb such that BrQ(δ) 6= 0, and we call then Qδ a local pointed group on OGb . Clearly
G acts by conjugation on the set of (local) pointed groups on OGb .

If Qδ is a local pointed group on OGb then since BrQ is a surjective algebra
homomorphism, BrQ(δ) is a conjugacy class of primitive idempotents in kCG(Q)BrQ(b)
(cf. [16, 3.2]) , hence determines a unique b−Brauer pair (Q, eδ) via the condition
BrQ(δ)eδ 6= 0.

If Qδ , Rε are pointed groups on OGb we write Rε ⊂ Qδ if R ⊂ Q and for some
(and then necessarily any) j ∈ δ there is k ∈ ε such that k = jk = kj .
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Note that an inclusion of local pointed groups Rε ⊂ Qδ induces an inclusion of
the corresponding Brauer pairs (R, eε) ⊂ (Q, eδ). We again recall two basic properties of
local pointed groups (cf. [10]):

3.2.1. If P is a defect group of b , there is a local point γ of P on OGb .

3.2.2. For any local pointed group Qδ on OGb there is x ∈ G such that x(Qδ) ⊂ Pγ .
In particular, the maximal local pointed groups on OGb are all conjugate to Pγ .

We have no longer a uniqueness of the inclusion as in 3.1.3, since for a subgroup
Q of P there may be different local points δ , δ′ of Q on OGb such that Qδ ⊂ Pγ ,
Qδ′ ⊂ Pγ . Yet, statement 3.1.3 implies then eδ = eδ′ .

The next lemmas contain the technical facts about Brauer pairs and local pointed
groups required for the proofs of the statements in section 1 (statement 3.3 (ii) is a
reformulation of [1, 4.5] and statement 3.3 (v) is based on Puig’s idea of relating the
bimodule structure of a block algebra to its fusion ; see for instance the proof of [11, 3.1]):

Lemma 3.3. Let G be a finite group, b a block of G , Pγ a maximal local pointed
group on OGb and choose i ∈ γ . For any subgroup Q of P let eQ be the unique block
of kCQ(Q) such that BrQ(i)eQ = BrQ(i) .

(i) For any subgroup Q of P , CP (Q) is contained in a defect group of eQ .
(ii) For any subgroup Q of P there is x ∈ G such that x(Q, eQ) ⊂ (P, eP ) and

such that CP (xQ) is a defect group of xeQ = exQ .
(iii) Let Q be a subgroup of P such that CP (Q) is a defect group of eQ . Then

kCG(Q)eQ and BrQ(i)kCG(Q)BrQ(i) are Morita equivalent, and for any local point δ
of Q on OGb such that BrQ(δ)eQ 6= 0 we have Qδ ⊂ Pγ .

(iv) Let Q , R be isomorphic subgroups of P and x ∈ G such that x(R, eR) =
(Q, eQ) and such that CP (Q) is a defect group of eQ . Then for any local point ε of R
on OGb satisfying Rε ⊂ Pγ we have x(Rε) ⊂ Pγ .

(v) Let Q , R be isomorphic subgroups of P and ϕ : R −→ Q a group isomorphism.
If ϕ(OQ ) is isomorphic to a direct summand of iOGi as OR −OQ−bimodule, then
ϕ̃ ∈ EG((R, eR), (Q, eQ)) . The converse holds if moreover CP (Q) is a defect group of
eQ .
Proof. (i) Since BrP (i) 6= 0 we have BrCP (Q)(BrQ(i)) = BrQCP (Q)(i) 6= 0, hence
BrCP (Q)(eQ) 6= 0, and so (i) follows from 2.5.

(ii) Let (R, f) be a maximal e−Brauer pair; that is, R is a defect group of e and
f is a block of kCCG(Q)(R) = kCG(QR) such that BrR(eQ)f = f . Clearly (QR, f) is
then a b−Brauer pair such that (Q, eQ) ⊂ (QR, f). By 3.1.2 there is x ∈ G such that
x(Q, eQ) ⊂ x(QR, f) ⊂ (P, eP ). Since xR is a defect group of xeQ contained in CP (xQ),
the statement follows from (i).

(iii) Again, as BrCP (Q)(BrQ(i)) = BrQCP (Q)(i) 6= 0, it follows from the last
statement of 2.5 that the algebras BrQ(i)kCG(Q)BrQ(i) and kCG(Q)eQ are Morita
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equivalent. Thus for every local point δ of Q on OGb satisfying BrQ(δ)eQ = BrQ(δ)
some element of BrQ(δ) lies in BrQ(i)kCG(Q)BrQ(i), which is only possible if Qδ ⊂ Pγ .

(iv) This follows from (iii) applied to to x(Rε).
(v) Since ϕ(OQ) is isomorphic to an indecomposable direct summand of iOGi

as OR − OQ−bimodule, there are primitive idempotents j ∈ (OGb)Q , l ∈ (OGb)R ,
such that ϕ(OQ) is isomorphic to a direct summand of lOGj as OR−OQ−bimodule.
Since iOGi is a direct summand of OG =

⊕
x∈[R\G/Q]O[RxQ] as OR−OQ−bimodule,

there is x ∈ G such that ϕ(OQ) ∼= O[Rx−1] = O[x−1Q] and ϕ(u) = xu for all u ∈ R .
Hence OQ is isomorphic to a direct summand of xlOGj as OQ − OQ−bimodule.
Applying the Brauer construction shows that kZ(Q) is isomorphic to a direct summand
of BrQ(xl)kCG(Q)BrQ(j); in particular, the latter expression is non zero. Thus BrQ(xl),
BrQ(j) are non zero primitive idempotents in kCG(Q) belonging to the same block
eQ . As BrR(l) belongs to eR and xBrR(l) = BrQ(xl) belongs to eQ , it follows that
xeR = eQ , or, equivalently, x(R, eR) = (Q, eQ).

In order to prove the converse, assume now that CP (Q) is a defect group of eQ .
Let x ∈ G such that x(R, eR) = (Q, eQ). Denote by ϕ : R −→ Q the group isomorphism
mapping u ∈ R to xu . Choose any local point ε of R on OGb such that Rε ⊂ Pγ . By
(iii) we have x(Rε) ⊂ Pγ . Thus, if we pick any l ∈ ε , as an OR−OQ−bimodule, lOGxl
is isomorphic to a direct summand of iOGi . Since BrR(l) 6= 0, the OR−OR−bimodule
lOGl has a direct summand isomorphic to OR . Therefore kOGxl has a direct summand
isomorphic to O[Rx−1] = O[x−1Q] ∼= ϕ(OQ ), which concludes the proof.

2

Lemma 3.4. Let G , H be finite groups, b , c be blocks of G , H , respectively, hav-
ing a common defect group P . Let i ∈ (OGb)P , j ∈ (OHc)P be primitive idem-
potents such that BrP (i) 6= 0 , BrP (j) 6= 0 . For any subgroup Q of P denote by
eQ and fQ the unique blocks of kCG(Q) and kCH(Q) satisfying BrQ(i)eQ 6= 0 and
BrQ(j)fQ 6= 0 , respectively. Assume that for any two subgroups Q , R of P we have
EG((Q, eQ), (R, eR)) = EH((Q, fQ), (R, fR)) .

Then for any subgroup Q of P there are elements x ∈ G and y ∈ H such that
x(Q, eQ) ⊂ (P, eP ) , y(Q, fQ) ⊂ (P, fP ) , xu = yu for all u ∈ Q , and CP (xQ) = CP (yQ)
is a defect group of both xeQ , yfQ .
Proof. Let Q be a subgroup of P . By 3.3(ii) there is x ∈ G such that x(Q, eQ) ⊂ (P, eP )
and CP (xQ) is a defect group of xeQ . By the assumptions, there is y ∈ H such that
y(Q, fQ) ⊂ (P, fP ) and yu = xu for all u ∈ Q . It therefore suffices to show that as-
suming that CP (Q) is a defect group of eQ , it is a defect group of fQ , too. For this,
choose a defect group R of fQ in CH(Q) and a block f of kCCH(Q)(R) = kCH(QR)
such that (R, f) is an fQ−Brauer-pair. Then (RQ, f) is a b−Brauer pair such that
(Q, fQ) ⊂ (QR, f). Thus there is y ∈ H satisfying y(Q, fQ) ⊂ y(QR, f) ⊂ (P, fP ) by
3.1.2. Note that then yf = fy(QR) . The assumptions imply that there is x ∈ G such
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that x(Q, eQ) ⊂ (P, eP ) and xu = yu for all u ∈ Q . In particular, we have xQ = yQ
and hence x(Q, eQ) ⊂ (y(QR), ey(QR)). This in turn means that (yR, ey(QR)) is an
xeQ−Brauer pair, or, equivalently, (x

−1
(yR), eQ(x−1 (yR))) is an e-Brauer pair. But then,

again by 3.1.2, R is conjugate to a subgroup of CP (Q). Since R contains CP (Q) by 3.3
(i), we have in fact the equality R = CP (Q), and the lemma follows. 2

4. Proofs

We keep the notation of 1.1.

Proof of 1.1. Set A = iOGi and B = jOH j . Since OGb⊗
O

(OHc)0 and A⊗
O
B0

are Morita equivalent (cf. 1.4) clearly T = iXj is a Rickard tilting complex of A −
B−modules. Let Q be a subgroup of P . We choose first Q in such a way that CP (Q) is
a defect group of both eQ , fQ . Let M be the subcategory of AModOQ as defined in 2.4.
The main step of the proof is to show, that the terms of the complex T , when restricted
to A−OQ , all belong to the category M . By the hypotheses, it suffices to show, that

4.1. for any subgroup R of P , the restriction to A−OQ of the A−B−bimodule
A ⊗
OR
B belongs to the category M .

In order to prove 4.1, it suffices to show, that for any indecomposable direct
summand W of B as OR − OQ−bimodule and any primitive idempotent l ∈ AR

the A − OQ−bimodule Al ⊗OR W belongs to the category M . Since W is a direct
summand of B , hence of OH as OR − OQ−bimodule, there is y ∈ H such that
W ∼= O[RyQ] ∼= OR ⊗

OS
ϕ(OQ ), where S = yQ ∩ R and ϕ(u) = y−1uy for all u ∈ S .

Thus Al ⊗
OR
W ∼= Al⊗

OS
ϕ(OQ ). Therefore, we may assume that R = S . By 2.6, we may

also assume that l belongs to a local point ε of R on OGb such that Rε ⊂ Pγ , where γ is
the local point of P on OGb containing i . If ϕ is not an isomorphism, then Al ⊗

OR
ϕ(OQ)

belongs to M by definition. If ϕ is an isomorphism, we have ϕ̃ ∈ EG((R, eR), (Q, eQ))
by 3.3 (v). Let x ∈ G such that x(R, eR) ⊂ (Q, eQ) and ϕ(u) = xu for all u ∈ R . Then
by 3.3 (iii) we have x(Rε) ⊂ Pγ .

Thus Al ⊗
OR

ϕ(OQ) ∼= (Al)ϕ−1 ∼= iOGxl as A−OQ−bimodules. Since x(Rε) ⊂ Pγ ,

iOGxl is isomorphic to a direct summand of iOGi = A and lies therefore in M . This
shows 4.1.

The proof of 1.1 concludes now as follows: since, by 4.1, all terms of T are in the
category M , we may apply 2.4 and get an isomorphism of complexes

4.2. (HomA⊗1(T, T ))(Q) ∼= HomA(Q)(T (Q), T (Q)).
Since the terms of T are left and right projective and since A is symmetric (i.e.

A ∼= A∗ as A − A−bimodules) we have HomA⊗1(T, T ) ∼= T ∗ ⊗A T , and similarly, we
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have HomA(Q)(T (Q), T (Q)) ∼= T (Q)∗ ⊗A(Q) T (Q) as complexes; thus 4.2 translates to
an isomorphism of complexes

4.3. T (Q)∗ ⊗A(Q) T (Q) ∼= (T ∗ ⊗A T )(Q).
Now T ∗ ⊗A T is homotopic to B , and therefore, (T ∗ ⊗A T )(Q) is homotopic to

B(Q). This shows, still under the assumtion that CP (Q) is a defect group of both eQ ,
fQ , that

4.4. the complex T (Q) is a Rickard tilting complex of A(Q) −B(Q)−bimodules.
From the Morita equivalences in 3.3(iii) follows therefore that
4.5. the complex eQX(Q)fQ is a Rickard tilting complex of kCG(Q)eQ−kCH(Q)fQ -

bimodules.
Clearly the property of eQX(Q)fQ being a Rickard tilting complex is invariant

under “simultaneous conjugation” of Q in P by elements of G and H , thus lemma 3.4
implies immediately, that in fact eQX(Q)fQ is a Rickard tilting complex for all subgroups
Q of P .
2

Proof of 1.2. Since BrP (b) = eP there is a unique local point γ of P on OGb (cf. [16,
(40.13)(b)]). Similarly, there is a unique local point δ of P on OHc . Choose i ∈ γ and
j ∈ δ . Let M be an indecomposable OGb−OHc−bimodule such that M is isomorphic
to OGb ⊗

OQ
OHc for some subgroup Q of P , and choose Q to be minimal with this

property. By the assumptions, in order to apply 1.1, it suffices to show that in fact M is
then isomorphic to a direct summand of OGi ⊗

OR
jOH for some subgroup R of P .

Note first that if x ∈ G , y ∈ H such that xQ ⊂ P , yQ ⊂ P and xu = yu
for all u ∈ Q , there is an isomorphism of OGb − OHc−bimodules OGb ⊗

OQ
OHc ∼=

OGb ⊗
OxQ
OHc mapping a⊗ d to ax−1⊗ yd for any a ∈ OGb , d ∈ OHc . Therefore, by

lemma 3.4, we may assume that CP (Q) is a defect group of eQ and fQ .
Observe next that since M is indecomposable, there are primitive idempotents

m ∈ (OGb)Q and n ∈ (OHc )Q such that M is isomorphic to a direct summand of
OGm ⊗

OQ
nOH . By the minimality of Q , the idempotents m and n belong to local

points µ and ν of Q on OGb and OHc , respectively (cf. 2.6). By 3.3(iii) we have
Qµ ⊂ Pγ and Qν ⊂ Pδ . Consequently, the bimodule OGm ⊗

OQ
nOH and hence M is

isomorphic to a direct summand of OGi ⊗
OQ

jOH .

Thus all terms of X are indeed isomorphic to sums of direct summands of the
bimodules OGi ⊗

OQ
jOH , where Q runs over the set of subgroups of P , hence 1.1 applies

and the proof of 1.2 is complete.
2

Proof of 1.3. Set Y = OGi ⊗
OP

IndP×P∆P
(XV ) ⊗

OP
jOH and
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U = OGi ⊗
OP

IndP×P∆P
(V ) ⊗
OP

jOH . Since OGb is symmetric and all terms of Y

are projective as left OGb−modules, we have an isomorphism of the total complexes of
OHc −OHc−bimodules

4.6. HomOGb⊗1(Y, Y ) ∼= Y ∗ ⊗
OGb

Y

and our first step is to show that

4.7. the complex Y ∗ ⊗
OGb

Y is split.

As Y ∗ ⊗
OGb

Y is isomorphic to the complex

OH j ⊗
OP

IndP×P∆P
(X∗V ) ⊗

OP
iOGi ⊗

OP
IndP×P∆P

(XV ) ⊗
OP

jOH , it suffices to show that

for any direct summand W of iOGi as OP −OP −bimodule

4.8. the complex of OP −OP −bimodules IndP×P∆P
(X∗V ) ⊗

OP
W ⊗
OP

IndP×P∆P
(XV ) is

split.

By 3.3 (v) we have W ∼= OP ⊗
OQ

ϕ(OP ) for some subgroup Q of P and an injective

group homomorphism ϕ : Q −→ P such that ϕ̃ ∈ EG((R, eR), (Q, eQ)). Thus the
complex in 4.8 is isomorphic to

4.9. IndP×P∆P
(X∗V ) ⊗

OQ
ϕIndP×P∆P

(XV ) ∼= IndP×P∆Q (X∗V ⊗Oϕ
XV )

and the latter is split since ϕXV ∼= ResPQ(XV ) and X∗V⊗O
XV is split by the

assumptions.

We use now an argument of Rickard (occurring in the proof of [14, 7.5]) to show
that an isomorphism between the degree zero homology of XV and V induces an algebra
isomorphism

4.10. EndKb(OGb⊗
O

(OHc)0)(Y ) ∼= EndOGb⊗
O

(OHc)0(U).

Indeed, since the complex HomOGb⊗1(Y, Y ) is split by 4.6 and 4.7, taking homology
commutes to taking H−fixpoints. If we take first H−fixpoints, we obtain the complex
HomOGb⊗

O
(OHc)0 (Y, Y ), and its degree zero homology is well-known to be isomorphic to

EndKb(OGb⊗
O

(OHc)0)(Y ). As XV has homology concentrated in degree zero isomorphic to

V , the complex Y has homology concentrated in degree zero isomorphic to U . It follows
that the complex HomOGb⊗1(Y, Y ) has homology concentrated in degree zero isomorphic
to EndOGb⊗1(U). Taking H−fixpoints yields EndOGb⊗

O
(OHc)0 (U), which implies 4.10.

Now M is isomorphic to a direct summand of U , thus corresponds to a primi-
tive idempotent in EndOGb⊗

O
(OHc)0 (U). This corresponds to a primitive idempotent in
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EndKb(OGb⊗
O

(OHc)0)(Y ) through the algebra isomorphism 4.10, and yields hence a direct

summand X of Y . Clearly X has the properties stated in 1.3. The last statement is a
corollary to Puig’s work [12, 5.3], [11, section 3] on fusion.
2

Acknowledgements

The author wishes to thank K.W. Roggenkamp and the members of the Institute
of Mathematics at the University of Stuttgart for the invitation to Stuttgart and their
hospitality, as well as the Deutsche Forschungsgemeinschaft for their support during the
writing of this paper.

References
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