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Abstract

The main purpose of this paper is to investigate, using the Tachibana operator,
transfer of the complete lifts of affinor structures along the cross-sections of the
tangent and cotangent bundles.

1. Introduction

Let Am be an associative commutative unital algebra of finite dimension m over
the field IR of real numbers and z = xαeα, α = 1, . . . , m , a variable in the algebra
Am , where eα and xα denote the basic units of Am and real variables, respectively.
Then, w = fα(x1, . . . , xm)eα is an algebraic function of z , where fα(x1, . . . , xm) are real
functions of all xα . We now define the differentials in Am by

dw = dfαeα = (∂βfα)dxβeα, dz = dxαeα.

If, for A-functions w = w(z), the differential dw can be represented in the form dw =
w′(z)dz , then f is said to be A-holomorphic ([1] p.85, [2]), and the A-function w′(z) is
called the derivative.

The necessary and sufficient condition for an A-function w = w(z) to be A-
holomorphic is that

SαD = DSα, (1.1)

where Sα = (Cγαβ), D =
(
∂fα

∂xβ

)
and Cγαβ are the structure constants of the algebra Am .

The conditions (1.1) will be called the Scheffers conditions [3]. In particular, in case of
the algebra of complex numbers A2 = C(i), i2 = −1, the Scheffers conditions coincide
with the Cauchy-Riemann conditions.

On a differentiable manifold Mn of class C∞ we consider a polyaffinor structure
Π = {ϕ

α

i
j} -a collection of tensor fields of type (1, 1) that represents the algebra Am

isomorphically, that is
ϕ
α

m
i
ϕ
β

j
m = Cγαβϕ

γ

j
i
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where we indicate by ϕ
α

i
j (α = 1, . . . , m) the affinors of Π-structure corresponded elements

eα (α = 1, . . . , m) of the base of Am under the isomorphism. If Mn admits a smooth
atlas of local charts such that all the affinors of the Π-structure have constant components
in any chart of this atlas, then the Π-structure is said to be integrable. Let Π-structure
defined with the Frobenius algebra Am be a r -regular structure ϕ

α

j
i = δuvC

γ
αβ, i, j =

1, . . . , n; α, β = 1, . . . , m; u, v = 1, . . . , r ; and δuv as the Kronecker symbol (for example,
almost complex structure) [3]. If the structure is integrable, then it can be shown that the
manifold Mn is transformed to the holomorphic manifold Xr(Am) over the algebra Am ,
where the atlas determined the holomorphic manifold Xr(Am) is one for which every pair
of charts is A-holomorphic related. In particular, if Am = C(i), i2 = −1 (m = 2) then
Xr(C) is an analytic complex manifold [3, 6, 7].

We define the Tachibana operators Φϕ
α
g,Φϕ

α
t,Φϕ

α
w ([4], see also [5]) associated

with an algebraic structure Π = {ϕ
α
} and an arbitrary X ∈ T 1

0 (Mn), and we apply to

the arbitrary tensor fields g ∈ T 0
2 (Mn), t ∈ T 1

0 (Mn), w ∈ T 0
1 (Mn) as follows:

(Φϕ
α
g)(X,Z1, Z2) = Lϕ

α
X g − LX(goϕ

α
))(Z1 , Z2) + g(Z1, ϕ

α
(LXZ2))

−g(ϕ
α
Z1, LXZ2) (1.2)

(Φϕ
α
t)(X) = −(Ltϕ

α
t)(X), (1.3)

(Φϕ
α
w)(X, Y ) = (Lϕx

α

w − LX(w ◦ ϕ
α

)(Y ), (1.4)

where LX denotes the operator of Lie derivation with respect to X and

(goϕ
α

)(Z1, Z2) = g(ϕ
α
Z1, Z2),

(woϕ
α

)(Y ) = w(ϕ
α
Y ).

The expression (2) define the tensor fields Φϕ
α
g ∈ T 0

3 (Mn), if and only if g a pure
tensor field [5], that is,

g(ϕ
α
Z1, Z2) = g(Z1, ϕ

α
Z2), (∗)

for all Z1, Z2 ∈ T 1
0 (Mn), ϕ

α
∈ Π. The expressions (3) and (4) always defines the tensor

fields Φϕ
α
t ∈ T 1

1 (Mn) and Φϕ
α
w ∈ T 0

2 (Mn), respectively. The equality (*) is

gmjϕ
α

m
i = gimϕ

α

m
j , ∀

ϕ
α
i

j∈ Π

with respect to a natural coordinate system in Mn . A tensor field ti1···mj1···jq is said to be
pure with respect to the Π-structure if

t
i1···ip
mj2···jq

ϕ
α

m
j1 = · · · = t

i1···ip
j1j2···m

ϕ
α

m
jq = t

mi1···ip
j1···jq

ϕ
α

i1
m = · · · = ti1···mj1···jq

ϕ
α

ip
m, ∀ ti1···ipmj2···jq

ϕ
α

i
j ∈ Π.
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We consider for convenience the tensor fields of type (1, 0) and (0, 1) as pure tensor fields
[12].

The tensors Φϕ
α

gΦϕ
α

t and Φϕ
α

w have, respectively, components

Φ
α
kgij = ϕ

α

m
k ∂mgij − ∂k(gmjϕ

α

m
i ) + gim∂jϕ

α

m
k + gmj∂iϕ

α

m
k , (1.5)

Φ
α
kt
i = −Ltϕ

α

i
k = −tm∂mϕ

α

i
k + ϕ

α

m
k ∂mt

i − ϕ
α

i
m∂kt

m, (1.6)

Φ
α
kwi = ϕ

α

m
k ∂mwi − ϕ

α

m
i ∂kwm −wm(∂kϕ

α

m
i − ∂iϕ

α

m
k ) (1.7)

with respect to a natural coordinate system in Mn .
When

(Φϕ
α
g)(X,Z1, Z2) = 0 (1.8)

for a pure tensor g and X,Z1, Z2 ∈ T 1
0 (Mn),Mn being a manifold with integrable

algebraic Frobenius r -regular Π-structure, g is said to be A-holomorphic. Actually,
in case of the tensor g∗uv = guvσe

σ in Xr(Am) corresponding the pure tensor g satisfies
the A-holomorphic condition

Cµαγ∂wµguvσ = Cµασ∂wγguvµ

(see [3]). If Π-structure is non-integrable, then the pure tensor g satisfying the equality
(1.8) is called almost A-holomorphic [3] [4].

2. Complete Lifts on the Cross-Section

Let us consider the tensor bundle of T pq (Mn) with a natural projection π :
T pq (Mn) → Mn . If a differentiable mapping σ : Mn → T pq (Mn) which satisfies πoσ =
idMn , then σ is called a cross-section of T pq (Mn), where idMn is the identity mapping on
Mn . It is obvious that the cross-section of T pq (Mn) on Mn defines a tensor field t

i1···ip
j1···jq of

type (p, q). Since the rank of the differential of the mapping σ is n and σ injective, the
cross-section of T pq (Mn) is a submanifold of T pq (Mn) with respect to induced topology,
which is diffeomorphic to Mn . We will investigate the complete lift of a tensor ϕij along
a pure submanifold defined by the pure cross-section (i.e., the pure tensor field t

i1···ip
j1···jq of

type (p, q)).
The complete lift of a vector field V = (vi) ∈ T 1

0 (Mn) to the tensor bundle T pq (Mn)
with respect to the coordinate neighborhood π−1(U) ⊂ T pq (Mn) was defined in [6] as

cV = ( cV i, cV ī) = (vi, LV α), (2.9)

∀ α ∈ T qp (U); i = 1, . . . , n; i = n + 1, . . . , n + np+q , where α can be considered as a
differentiable function on the space T pq (Mn) in the usual way by contraction α = α(t).
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In particularly, if we get α = −ti1···ipj1···jq , then the complete lift of V to T pq (Mn) in the

coordinate neighborhood π−1(U) with respect to the natural frame {∂j , ∂j}, xj = t
i1···ip
j1···jq

is of the form

cV = ( cV j , cV j̄) =

(
vj ,

p∑
λ=1

t
i1···m···ip
(j) ∂mv

iλ −
q∑

µ=1

t
(i)
j1···m···jq∂jµv

m

)
. (2.10)

Let us consider the cross-section of T pq (Mn) defined by the tensor field t
i1···ip
j1···jq (x

i).
This cross-section equation is written as

xJ = xJ (xj), J = 1, . . . , n+ np+q

or
xj = xj

xj = t
i1···ip
j1···jq(x

j).

}
It is obvious that the system

Bi = {∂ixA} = {Bhi , Bhi } = {δhi , ∂it
i1···ip
j1···jq} = δhi ∂h + ∂it

i1···ip
j1···jq∂h

Ci = {∂īxA} = (Ch
i
, Chi ) = (0, δ`1j1 · · ·δ

`q
jq
δi1h1
· · ·δiphp) = δ`1j1 · · ·δ

`q
jq
δi1h1
· · ·δiphp∂h

}

defined a frame along the cross-section. Bi and Ci, i = 1, . . . , n; i = n+1, . . . , n+np+q

span the tangent plane of T pq (Mn) and are tangent to the cross-section and the fibre,
respectively.

Using (2.10) and cV A = Ṽ iBAi + Ṽ iCA
i

, we have

vi∂ix
h +

(∑p
λ=1 t

i1···m···ip
(j) ∂mv

iλ −
∑q

µ=1 t
(i)
j1···m···jq∂jµv

m
)
∂īx

h̄ = Ṽ iBhi + Ṽ iCh
i

vi∂ix
h +

(∑p
λ=1 t

i1···m···ip
(j) ∂mv

iλ −
∑q

µ=1 t
(i)
j1···m···jq∂jµv

m
)
∂īx

h̄ = Ṽ iBhi + Ṽ iCh
i

 .

Therefore, we obtain

Ṽ i = vi

Ṽ i = −LV ti1···ipj1···jq ,

that is, the complete lift cV of V with respect to the frame (B,C) along the cross-section
t
i1···ip
j1···jq , is written as

cV = ( cV j, cV j) = (vj ,−LV ti1···ipj1···jq ). (2.11)
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2.1. Complete Lifts of the Affinor to T 1
0 (Mn) Along a Pure Cross-Section

We will find a formula for a complete lift of affinor field ϕij along the pure cross-
section t ∈ T 1

0 (Mn) of tangent bundle T 1
0 (Mn).

We define the complete lift cϕ of a tensor field ϕ ∈ T 1
1 (Mn) along the pure

cross-section t ∈ T 1
0 (Mn) of T 1

0 (Mn) by

c(ϕ(V )) = cϕ( cV ), ∀ V ∈ T 1
0 (Mn), (2.12)

where cV is in the form (2.11). The equality (2.12) can be written as

c(ϕ(V ))K = cϕKL
cV L, (2.13)

by using coordinates. If we take K = k in (2.13), we have

ϕk` v
` = (ϕ(V ))k = cϕkL

cV L = cϕk`
cV ` + cϕk

`
cV `.

Then, we obtain
cϕk` = ϕk` ,

cϕk
`

= 0. (2.14)

If we take K = k in the equality (2.13), we have

c(ϕ(V ))k = cϕkL
cV L = cϕk`

cV ` + cϕk
`
cV `. (2.15)

Now, let us find solutions which are cϕk` and cϕk
`

in equation (2.15). For this purpose,
taking account of (1.6), we have

LϕV t
k = v`Φ`tk + ϕk`LV t

`. (2.16)

From (2.11) and (2.16), we get

− c(ϕ(V ))k = cV `Φ`tk − ϕk` cV `. (2.17)

Then from (2.15) and (2.17) we obtain

cϕk` = −Φ`tk, cϕk
`

= ϕki , (xk = tk). (2.18)

Thus (2.14) and (2.18) are the complete lift of the tensor structure ϕ ∈ T 1
1 (Mn) along

the pure cross-section of T 1
0 (Mn). As a special case, this lift was obtained with respect

to the natural frame {∂i, ∂i} in [7] (see also [8]).
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2.2. Complete Lifts of the Affinor to T 0
1 (Mn) Along a Pure Cross-Section

We will find a formula for complete lift of affinor field ϕij along the pure cross-
section w ∈ T 0

1 (Mn) of cotangent bundle T 0
1 (Mn).

If the Tachibana operator Φ is applied to the pure tensor field w ∈ T 0
1 (Mn), then

from (1.7) we have
vjΦjwi = LϕV wi − ϕjiLV wj −wjLV ϕ

j
i . (2.19)

We define a complete lift cϕ of the tensor ϕ ∈ T 1
1 (Mn) along the pure cross-section w

of T 0
1 (Mn) by

c(ϕ(V )) + v(LV ϕ) = cϕ( cV )

or
c(ϕ(V ))I + v(LV ϕ)I = cϕIJ

cV J (2.20)

by using the coordinates, where v(LV ϕ) denotes the vertical lift of Lie derivative.
In the equality (2.20), let I = i . Then we have v(LV ϕ)i = 0 by the definition of

the vertical lift. In this case, the equality (2.20) can be written

c(ϕ(V ))i = cϕij
cV j + cϕi

j
cV j. (2.21)

Thus, from (2.21), we see that

cϕij = ϕij,
cϕi

j
= 0. (2.22)

Now, let I = i . From the definition of the vertical lift, we have v(LV ϕ)i =
wjLV ϕ

j
i . Taking account of (2.20), we have

c(ϕ(V ))i = cϕij
cV j + cϕi

j
cV j −wjLV ϕji . (2.23)

From (2.11) and (2.19), we see that

LϕVwi = vjΦjwi + ϕjiLV wj + wjLV ϕ
j
i ,

− c(ϕ(V ))i = cV jΦjwi − ϕji cV j + wjLV ϕ
j
i . (2.24)

From (2.23) and (2.24), we have

cϕij = −Φjwi, cϕi
j

= ϕji , (xi = wi).
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3. Transfer of the Complete Lift of the Affinor Structure

Let Mn be a paracompact manifold with a Riemannian metric. We shall mean
by the Riemannian metric a symmetric covariant tensor field g of degree 2 which is
nondegenerate. If g is a pure tensor, then a manifold Mn with an algebraic Π-structure
is called an almost B -manifold [1, p.31] and this will be denoted Vn .

Suppose that T 1
0 (Vn) and T 0

1 (Vn) are the tensor bundle of type (1, 0) and (0, 1)
over Vn , respectively. Clearly dimT 1

0 (Vn) = dimT 0
1 (Vn) = 2n .

Let the diffeomorphism f : T 1
0 (Vn) → T 0

1 (Vn), yI = yI(xJ ), I, J = 1, . . . , 2n be
defined by a local expression such that

yi = xi

yi = wi = gimt
m. (3.25)

Since

xk = tk,

∂yi

∂xk
=

∂

∂xk
(wi) =

∂

∂xk
(gimtm) =

∂

∂xk
(giktk) = gik,

0 =
∂yi

∂xk
=
∂wi
∂xk

=
∂

∂xk
(gimtm) = (∂kgim)tm,

we have

A =
(
∂yI

∂xK

)
=

 ∂yi

∂xk
∂yi

∂xk

∂yi

∂xk
∂yi

∂xk

 =
(
δik 0
0 gik

)
.

The inverse of the mapping f is written as

x` = y`, x` = t` = g`mwm.

Suppose that yj = wj , we have

A−1 =
(
∂xL

∂yJ

)
=
(
δ`j 0
0 g`j

)
,

which is the Jacobian matrix of inverse mapping f−1 .

Theorem 3.1. Suppose that c
1
ϕ and c

2
ϕ denote the complete lift of the affinor ϕ of the

Π-structure to T 1
0 (Vn) and T 0

1 (Vn) along the pure cross-sections ti and wi , respectively.

If Φϕ(g) = 0 , then c
2
ϕ is transferred from c

1
ϕ by means of the diffeomorphism f ,

where Φϕ denotes the Tachibana operator.
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Proof. Suppose that Φϕ(g) = 0. Then, if we write c
2
ϕ along the pure cross-section

wi(y), we obtain

c
2
ϕ =

(
c2ϕIJ

)
=

(
ϕij 0

−Φ
ϕ
jwi ϕji

)

=
(

ϕij 0
−gimΦjtm − (Φjgim)tm ϕji

)
=

(
ϕij 0

−gimΦjtm ϕji

)
=

(
δik 0
0 gik

)(
ϕk` 0
−Φ`tk ϕk`

)(
δ`j 0
0 g`j

)
= A c 1

ϕ A−1. (3.26)

To show (3.26), we have taken account of

gikϕ
k
` g
`j = gk`ϕ

k
i g
`j = ϕki δ

j
k = ϕji

and used that gij is the pure tensor field. 2

We introduce in some coordinate neighborhood U ⊂ Mn a connection in which
all the affinors of the Π-structure are covariantly constant. Such connections are called
Π-connection. A Π-structure will be said to be almost integrable [3] if in a coordinate
neighborhood of each point x ∈ Mn there exists at least one Π-connection without
torsion. The Π-structure is almost integrable on the Riemann connection if and only
if Φ ϕ

α
(g) = 0, for all ϕ

α
∈ Π [9] (see also [10]). Further, it has been shown that if the

algebraic Π-structure is almost integrable, then the structure cΠ = { cϕ
α
} determines

the algebraic structure along the pure subbundle of the tensor bundle T pq (Mn) [11]. Using
these facts, we have the following result:

Theorem 3.2. If the metric g of the B -manifold is almost A-holomorphic, then the
algebraic

Π2 = {
2

cϕ
α
} -structure is transferred from the algebraic Π1 = {

1
cϕ
α
} -structure by

means of the diffeomorphism f .
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