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ON A CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS
WITH NEGATIVE COEFFICIENTS

M. K. Aouf & Nak Eun Cho

Abstract

The object of the present paper is to derive several interesting properties of the
class T, (A, @) consisting of analytic and univalent functions with negative coeffi-
cients. Coefficient inequalities, distortion theorems and closure theorems of func-
tions in the class T, (), a) are determined. Also radii of close-to-convexity, starlike-
ness and convexity are determined. Furthermore, integral operators and modified
Hadamard products of several functions belonging to the class Tn(A, ) are studied
here.
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1. Introduction

Let S denote the class of functions of the form

f2) =2+ azh, (1.1)
k=2

which are analytic and univalent in the unit disc U = {z : |z| < 1}. For a function f(z)
in S, we define

D°f(z) = f(=), (1.2
D'f(z) = Df(z) = zf'(2), (1.3

and
D"f(z) = D(D" ' f(2)) (ne€ N=1{1,2,..}). (1.4)

*AMS (1991) Subject Classification. 30C45.
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The differential operator D™ was introduced by Salagean [3]. With the help of the
differential operator D™, we say that a function f(z) belonging to S is in the class

Sp (A, «) if and only if

g
Re I >a (n€ No=NU{0})
D)
for some (0 < a < 1),A(0< A< 1) and for all z € U.

Let T denote the subclass of S consisting of functions of the form

(oo}
flz)=2— Zakzk (ar, > 0).
k=2
Further, we define the class T, (A, ) by

T,(\ a)=S,(A\,a)NT.

(1.5)

(1.6)

(1.7)

We note that by specializing the parameters n, A\, and «, we obtain the following

subclasses studied by various authors:
(i) To(\ a) = T(\ @) and Ty(\, ) = C(\,a) (Altintas and Owa [1]);
(i) To(0, @) = T*(a) and T} (0, @) = C() (Silverman [5]);
(i) T,(0,a) = T(n,a) (Hur and Oh [2]).

2. Coefficient Estimates

Theorem 1. Let the function f(z) be defined by (1.6). Then f(z) €
only if

i EM{k—a[lA(k—1D]}ar <1—a.

k=2

The result is sharp.

Proof. Assume that the inequality (2.1) holds and let |z| = 1. Then we have

Dn+1f(z) o . -
D" f(z) 4| = Y opes bl = NE™(k — L)agz
A 4 (1 - ) 1= 507, L+ Ak — 1)]agzF—1

> ko (1= k" (k — 1)ka
Tl =Y kL4 Ak — D]k, —
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D" tls(z)

This shows that the values of )\m+m lies in a circle centered at w = 1 whose
z + 1_
D7i(z)

radius is 1 — «. Hence f(z) satisfies the condition (1.5).
Conversely, assume that the function f(z) defined by (1.6) is in the calss T, (A, ).
Then

D" f(2)

R D" f(2) R { 1= >0,k lag2h ! } (2.3)
€ n+1 = € _ .
MR (1) 1= 30 kn[1 4+ A(k = 1)]agzk—1
>«
DL f(z)
D™ f(z)

for z € U. Choose values of z on the real axis so that is real.

D
A L (1-0)

Upon clearing the denominator in (2.3) and letting z+ 1~ through real values, we obtain

1—ik"+1ak Za{l—ikz"[l—i—)\(kz—l)]ak} (2.4)

k=2 k=2

which gives (2.1). Finally the result is sharp with the extremal function f(z) given by

l—«

e —amaag—yy° k22 (25)

f(z) ==

|
Corollary 1. Let the function f(z) defined by (1.6) be in the class T,,(\, ). Then we
have

-«
ag < k’"{k’" _ Oé[l i )\(k’ — 1)]} (k? > 2). (26)

The equality in (2.6) is attained for the function f(z) given by (2.5).
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3. Some Properties of the Class T, (), «)

Theorem 2. Let 0<a<1,0< A <Xy and n € Ny. Then

Tn()\la Oé) - Tn()\Qa Oé)

Proof. If follows from Theorem 1 that

SRk — afl 4 Aalk — DJa < 3Kk~ afl + ha(k— D]}ar < 10
k=2 k=2
for f(z) € T,(A\1, ). Hence f(2)|inT, (A2, ). O

Theorem 3. Let 0<a<1,0<A<1 and n € Ny. Then

Thr1(N o) C T, (A ).

The proof follows immediately from Theorem 1.

4. Distortion Theorems

Theorem 4. Let the function f(z) defined by (1.6) be in the class T, (A, «). Then we

have

D) 2 12l - gy (41)
and

D' ()] < Jo] + o (4.2)

2n=12 — a(1+ N)]
for z € U, where 0 < i < n. Then equalities in (4.1) and (4.2) are attained for the
function f(z) given by

i _ -« 2
D'f(z) =z — 31D —a(l +)\)]z . (4.3)

Proof. Note that f(z) € T,,(\, «) if and only if D! f(2) € T;,—i()\, ), where
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Dif(z) =z — i Klaz®. (4.4)
k=2

Using Theorem 1, we know that

272 — a1 4 )\) i kap < i EME—a(l+ Ak —=1))]ar <1-—q, (4.5)
k=2 k=2

that is, that

> 11—«
Klay < . 4.6
kz:; =0 a1+ )] (4.6)
It follows from (4.4) and (4.6) that
D) 2 el ~ |2 b 2 2]~ g (40)
= 2712 — a1+ \)] - 2712 — a(1 + )]
ant
> l-«
D’ < 2N g 2, 4.8
IDE S i+ oS Kos gyl (1)
This completes the proof of Theorem 4. O

Corollary 2. Let the function f(z) defined by (1.6) be in the class T,,(\, ). Then we

have
> 11—« 9 19
|f(Z)|_|Z|—m|Z| (4.9)

and
|f(2)] < 2] +m|z|2 (4.10)

for z € U. Then equalities in (4.9) and (4.10) are attained for the function f(z) given by

-« 9
f(z)zz—mz . (4.11)

Proof. Taking ¢ =0 in Theorem 4, we can easily show (4.9) and (4.10). O
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Corollary 3. Let the function f(z) defined by (1.6) be in the class T,,(\, «). Then we

have
, 1-a
and
O R pe—— (4.13)

9712 — a(1 + N)]

for z € U. The equalities in (4.12) and (4.13) are attained for the function f(z) given by
(4.11).

Proof. Note that D(f(z) = zf'(z)). Hence taking ¢ = 1 in Theorem 4, we have the
corollary. O

Corollary 4. Let the function f(z) defined by (1.6) be in the class T, (A, «). Then the
unit disc U is mapped onto a domain that contains the disc

27[2 — a1+ N)] — (1 — @)

< R Tan ] (4.14)
The result is sharp with the extremal function f(z) given by (4.11).
5. Closure Theorems
Let the functions f;(z) be defined, for j =1,2,...,m, by
oo
fi(z)=2z— Za;w»zk (ak; > 0) (5.1)
k=2

for z € U.
We shall prove the following results for the closure of functions in the class T, (A, ).

Theorem 5. Let the functions f;(z) defined by (5.1) be in the class T, (A, &) for every
j=1,2,....,m. Then the functions h(z) defined by

m
h(z) = ¢;fi(z) (¢ > 0) (5.2)
j=1
is also in the same class T, (A, ) where
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Proof. According to the definition of h(z), we can write

_Z_Z cha;w 2~ (5.4)
=1

Further, since f;(z) are in T,,(\, @) for every j =1,2,...,m we get

o

Sk —all + Ak — Dl}ar; <1—a (5.5)
k=2

for every j =1,2,...,m. Hence we can see that

Zkz"{kz—a[l—i—)\ —1)] cha;m (5.6)
k=2

zm: ¢ (i E™{k—a[l+ Ak — 1)]}%4)

j=1 k=2
ch l-a)=1-a,

which implies that h(z)6inT, (A, ). Thus we have the theorem. O

Corollary 5. The class T, (A, &) is closed under conveq linear combination.

Proof. Let the function f;(z)(j = 1,2) defined by (5.1) be in the class T,,(\, «). It is
sufficient to show that the function h(z) defined by

h(z) = ufi(2) + (1= ) falz) (0<p<) (5.7)

is in the class T, (A, «). But, taking m = 2,¢; = p, and ¢o = 1 — p in Theorem 5, we
have the corollary.

As a consequence of Corollary 5, there exists the extreme points of the class
T, (A ). O
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Theorem 6. Let f1(z) =z and
l—«

for 0<a<1,0<A<1 and n € Ny. Then f(z) is in the class T, (A, &) if and only if
it can be expressed in the form

F(2) = mfil(2) (5.9)
k=2

where pr > 0(k > 1) and Y po o pp = 1.
Proof. Soppose that

z)= 3 z)=z— 3 -« Jk
f(z) I;Mkfk( ) ];an{k_a[lJr)\(k_ o (5.10)
Then it follows that
=k {k — a[l+ Ak —1)]} (1— o)
Z 11—« kn{k —al + Xk —1)]} (5.11)

k=2

(oo}
=Zuk=1—u1§1-
k=2

So by Theorem 1, f(z)|inT,, (A, @).
Conversely, assume that the function f(z) defined by (1.6) belongs to the class
T, (A, «). Then

(1 — o)k
ap < YT e v (k>2). (5.12)
Setting
o — k:"{k:—oz[ll_—l-oi\(k—l)]}ak (k> 2), (5.13)
and
u1=1—ZMka (5.14)
k=2

we can see that f(z) can be expressed in the form (5.9). This completes the proof of
Theorem 6. o
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Corollary 6. The extreme points of the class Ty (\, &) are the functions fi(z)(k > 1)
given by Theorem 6.

6. Radii of Close-to-Convexity, Starlikeness and Convexity

Theorem 7. Let the function f(z) defined by (1.6) be in the class T, (A, ). Then f(2)
is close-to-convex of order 6(0 < § < 1) in |z| <ri(n, \, a,d), where

(1_5)kn—1{k—a[1+)\(k—1)]}]ﬁ (k> 2). (6.1)

rl(n,)\,a,é)znklf[ o

The result is sharp with the extremal function f(z) given by (2.5)

Proof. It is sufficient to show that f'(z) — 1] <1—-4§(0 < < 1)|z| < ri(n, A, «,0). We
have

o0 o0
lf(z) —1] — Zkzakzk_l < Zkzak|z|k_1.
k=2 k=2
Thus |f'(z) =1 <1-94 if
= k k—1
> 5 )kl <L (6.2)
k=2
But Theorem 1 confirms that
N Ek—a[l + Ak -1
3 { O‘[l ARV o (6.3)
-«

k=2

Hence (6.2) will be true if

kll*t _ E{k —all + Ak — D]}
(1-9) — l-—«a

or if

(1= 6)k" 1 {k — a[l + Ak — 1)]}] 7

|2 <
l—«

(k > 2). (6.4)

The theorem follows easily from (6.4). O
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Theorem 8. Let the function f(z) defined by (1.6) be in the class T, (A, «). Then f(2)
is starlike of order 6(0 < § < 1) in |z] < ra(n, A\, o, 8), where

(1= &)™k — a[l + A(k —

DT
) (k> 2). (6.5)

ro(n, A\, a, §) = irklf [

The result is sharp with the extremal function f(z) given by (2.5).

Proof. We must show that

() 1‘ <1-6(0<6<1) for |2] < ra(n) a,6). We

e
have
Thus [2EL — 1) <14 if
e k—1
Z (k= Qarlzl777 (6.6)
1—6
k=2

Hence, by using (6.3), (6.6) will be true if

(k —9)|z|F1 < E{k —a[l+ X(k—1)]}
1-9 - 1—«

or if

ol < (1 — &)k {k — o[l + Ak — 1)]}] =7
- (k—0)(1-a)

Corollary 7. Let the function f(z) defined by (1.6) be in the class T, (A, ). Then f(z)
is convex of order 6(0 < 01) in |z| <rs(n,\ a,d), where

(1= &)™k — a[l + A(k —

DT
I (k> 2). (6.8)

ra(n, A\, a, §) = irklf

The result is sharp with the extremel function f(z) given by (2.5).
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7. Integral Operators

Theorem 9. Let the function f(z) defined by (1.6) be in the class T, (A, «) and let ¢
be a real number such that ¢ > —1. Then the function F(z) defined by

Fz) = &E /O e f(t)dt (7.1)

ZC
also belongs to the class T, (A, a).
Proof. From the representation of F(z), it follows that

F(z) :z—Zbkzk, (7.2)
k=2
where
c+1
bk— (C—i—k’) ag. (7.3)
therefore,
S Rk —all + Ak — D} = >k {k—a[l+ Ak —1)]} ( — k> (7.4)
k=2 k=2 ¢
<SRk =L+ Ak - D}ar <1-a,
k=2
since f(z) € T,,(\, ). Hence, by Theorem 1, F(z) € T,,(\, a). O

Theorem 10. Let ¢ be a real number such that ¢ > —1. If F(z) € T,,(\, @), then the
function f(z) defined by (7.1) is univalent in |z| < R*, where

(c+ Dk Hk—a[l + Xk -1}
(c+k)(1—-a) ] (k> 2). (7.5)

R? = inf
k

The result is sharp.
Proof. Let F(z)=2z—Y 7o, arz"(ax > 0). If follows from (7.1) that

2 TF(2)) _oo c+k wk (e
0= - ,;2(0“) o (o> 1), (7.6)
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In order to obtain the required result, it stuffices to show that |f'(z)—1] < 1 in |z| < R*.

Now

. k(c+k) _
|fl(z)_1|gz c+1 ak|z|k 1'
k=2

Thus |f'(z) — 1] <1 if

Hence, by using (6.3), (7.7) will be satisfied if

k(c+ l<:)|z|’“_1 < E{k —a[l+ X(k—1)]} (k> 2)
c+1 - 11—« -
or if

(c+ D" Hk—a[l+ Xk —1)]}]5T
(c+ k)1 —a)

Therefore f(z) is univalent in |z| < R*. Sharpness follows if we take

2] <

(1—a)(c+k) S ks2)

fz) =2~ kn{k — a[l+ Xk — )]} c+1) -

8. Modified Hadamard Products

(k> 2).

(7.7)

Let the functions f;(z)(j = 1,2) be defined by (5.1). The modified Hadamard

product of fi(z) and fa(z) is defined here by

o0
fix fa(z)=2— Z ak71ak722k.
k=2

(8.1)

Theorem 11. Let the functions f;(z)(j = 1,2) defined by (5.1) be in the class T, (X, ).

Then f1 * f2(z) belongs to theclass T (X, B(n, A, ) where

- (1-N(1 - a)?
2n{2 —a(l+N)}2 - (14+ N1 —a)?’

Bn, A\ a)=1

The result is sharp.
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Proof. Employing the technique used earlier by Schild and Silverman [4], we need to

find the largest 8 = B(n, A\, @) such that

i E{k — B[1+ Xk — 1)]}

ag1ak2 <1
k=2 1-8
Since
= kM {k — a1+ Ak —1)]}
Z ar1 <1
l-« ’
k=2
and
(oo}
E'{k —a[l+ Xk —1
SS A el A,
11—« ’
k=2
by the Cauchy-Schwarz inequality, we have
=k {k = afL + Ak — )]}
Z - a/ag, 1052 < 1.

k=2

Thus it is sufficient to show that

EM{k —B[1+ Ak —1)]}

1-3 Qf 10k,2
E'{k —afl + XNk -1
< { [1 — a( )]}\/ak,lak,Q (k>2),

that is, that

(1 =B){k — o[l + Ak —1)]
VRIS (T a) (k= B+ A= DI

[—;

Not that

11—«

Va1t S g Tk -y 2 2

Consequently, we need only to prove that

e < A=p){k—all + Ak —1)]
k{k —al+ Ak — D]} — (1 —a){k — B+ Ak —1)]

(k> 2),

[N ()

or, equivalently, that

(8.3)

(8.4)

(8.6)

(8.10)
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(k—1)1=N(1-a)?

< -1 k>2). 8.11
R S Y| (R Y Ry et 541
Since
(k—=1)(1=XN(1-a)?
Ak)=1- 8.12
R S T/ ) | R TR [
is an increasing function of k(k > 2), letting k = 2 in (8.12), we obtain
(1= N)(1 = a)?
<A2)=1- 8.13
A< AQ) 27{2 —a(1+N)}2 -1+ A1 —a)? (8.13)
which completes the proofof Theorem 11.
Finally, by taking the functions f;(z) given by
1-a 9 .
(=g — — = = =1,2 14
f](z) < 2n[2 _ a(l _,’_)\)]Z (] ’ )a (8 )
we can see that the result is sharp. O
Corollary 8. For fi(z) and f2(z) as in Theorem 11, the function
(oo}
h(z)=z— Z \ /ak71ak722k (8.15)

k=2

belongs to the class T, (X, ).

This result follows from the Cauchy-Schwarz inequality (8.6). It is sharp for the
same functions as in Theorem 11.

Theorem 12. Let the function fi1(z) defined by (5.1) be in the class T, (A, &) and the

function fa(z) defined by (5.1) be in the class T, (A, «). Then f1 * fa(z) belongs to the
class T,n(n, A, a, 7)), where

1-MN0-a)(1 =)

A a,y)=1-— . (8.16
T DY) I CEETERpY) S (PR [y R
The result is best possible for the functions
-« 9
fi(z) =2~ (8.17)

92 — a(l+ N
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and

R e SRR
fo(z)=2z— 32— +)\)]z . (8.18)

Proof. Proceeding as in the proof of Theorem 11, we get

n<B(k)=1- (8.19)

(k=11 =N -a)(1 =)
kn{k —all+ Ak — DMk =L+ Ak =D} =1+ Ak - D1 —a)(1—7)" =

Since the function B(k) is an increasing function of k(k > 2), setting k = 2 in (8.19),
we get

L (1-=N(1—a)1—7)
n>B(2)=1 202 a1+ MH2 =70+ N -1+ N1 —a)1—7)

(8.20)

This completes the proof of Theorem 12. O

Corollary 9. Let the functions f;j(2)(j = 1,2,3) defined by (5.1) be in the class
To(\ «). Then f1x fax f3(z) belongs to the class T,,(\, ((n, A, @)), where

o, (I—=N(1—-a)3
A 0) =1 = o @ T NP — (LN —a) (8.21)
The result is best possible for the functions
fis) = Y2 (j=1,2,3). (8.22)

92— a(l+N)]

Proof. From Theorem 11, we have fi x f82(z) € T,,(\, B(n, A, @)), where ( is given by
(8.2). By using Theorem 12, we get f1 * fa * f3 x (2) € T,(\, ((n, A, @) ), where

N (1-MNA-a)d-p)
22 = a(l+)H2 -1+ N} -1+ N1 -a)1-p)
(L= A)(1—a)?
12— a(l+ NP — L+ N1 —a)?

C(n) A) a) = 1

This completes the proof of Corollary 9. O
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Theorem 13. Let the functions f;(z)(j = 1,2) defined by (5.1) be in the class T, (X, ).

Then the function

o0
= E ak1+ak2

k=2
belong to the class Ty (¢p(n, A\, «)) where
) (1= N)(1 = a)?
212 — a1+ NP - 1+ N)(1 —a)?
The result is sharp for the functions f;(2)(j =1,2) defined by (8.14).

Proof. By virtue of Theorem 1, we obtain

p(n, A, a) =

> [kzn{kz”{k —a[l+ Ak - D]} — O‘rai 1

=2

l—«

<l 3Rk —oll A = DI} ]§1
k=2

and

> [kn{k —a[l+ Ak — 1)]}]2a2

1—a k,2

l—« -

. l ik — all + Ak — )]}%Q]2 .
k=2

It follows from (8.25) and (8.26) that

2 2
a; 1 +ai, <1.
1—a k,1 k2 >

|su% [kn{k —afl+ Ak — 1)]}]2(

Therefore, we need to find the largest ¢ = ¢(n, A, @) such that

E{k — ¢[1+ Ak —1)]} 1 [k;n{k;—oz[l—i-)\(k:—l)]}r (k >2)
1-¢ -9 l—« -

that is,

30
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2(k—1)(1 - A)(1—a)?

e Y S [V | R By CR R

Since

_ 2k —1)(1 = N1 — w)?
o kfk—a[l+ Ak - D]} =21+ Ak - D](1 - a)?

D(k)
is an increasing function of k(k > 2), we readily have

(1-XN)(1 —a)?

0= D) =l S i s ) o)

and Theorem 13 follows at once.

(k > 2).

(8.29)

(8.30)

(8.31)

Theorem 14. Let the function f1(z) = z — 21212 aszk(akJ > 0) be in the class
T\ @) and fo(2) = 2 — > pey lak 2| 2%, with |aks| <1,k =2,3,... . Then fi* f2(z) €
T.(\ ).

Proof. Since

Z E™{k — a[l + Mk — D]} ag1ak,2] = Z E™{k —a[l + Ak — 1)]}ak,1|ak,2|

k=2 k=2
oS

<> Mk —all + Ak — D}axa

k=2
S 1 -,

by Theorem 1, it follows that f1 x fa(z) € T,,(\, @).
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