ON A CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

M. K. Aouf 8 Nak Eun Cho

Abstract

The object of the present paper is to derive several interesting properties of the class $T_{n}(\lambda, \alpha)$ consisting of analytic and univalent functions with negative coefficients. Coefficient inequalities, distortion theorems and closure theorems of functions in the class $T_{n}(\lambda, \alpha)$ are determined. Also radii of close-to-convexity, starlikeness and convexity are determined. Furthermore, integral operators and modified Hadamard products of several functions belonging to the class $\operatorname{Tn}(\lambda, \alpha)$ are studied here.

Key words and phrases. Analytic, univalent, modified Hadamard product.

1. Introduction

Let S denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the unit disc $U=\{z:|z|<1\}$. For a function $f(z)$ in S, we define

$$
\begin{align*}
& D^{0} f(z)=f(z) \tag{1.2}\\
& D^{1} f(z)=D f(z)=z f^{\prime}(z) \tag{1.3}
\end{align*}
$$

and

$$
\begin{equation*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad(n \in N=\{1,2, \ldots\}) \tag{1.4}
\end{equation*}
$$

[^0]
AOUF \& CHO

The differential operator D^{n} was introduced by Salagean [3]. With the help of the differential operator D^{n}, we say that a function $f(z)$ belonging to S is in the class $S_{n}(\lambda, \alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\frac{D^{n+1} f(z)}{D^{n} f(z)}}{\lambda \frac{D^{n+1} f(z)}{D^{n} f(z)}+(1-\lambda)}\right\}>\alpha \quad\left(n \in N_{0}=N \cup\{0\}\right) \tag{1.5}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1), \lambda(0 \leq \lambda<1)$ and for all $z \in U$.
Let T denote the subclass of S consisting of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0\right) \tag{1.6}
\end{equation*}
$$

Further, we define the class $T_{n}(\lambda, \alpha)$ by

$$
\begin{equation*}
T_{n}(\lambda, \alpha)=S_{n}(\lambda, \alpha) \cap T \tag{1.7}
\end{equation*}
$$

We note that by specializing the parameters n, λ, and α, we obtain the following subclasses studied by various authors:
(i) $T_{0}(\lambda, \alpha)=T(\lambda, \alpha)$ and $T_{1}(\lambda, \alpha)=C(\lambda, \alpha)$ (Altintas and Owa [1]);
(ii) $T_{0}(0, \alpha)=T^{*}(\alpha)$ and $T_{1}(0, \alpha)=C(\alpha)$ (Silverman [5]);
(iii) $T_{n}(0, \alpha)=T(n, \alpha)$ (Hur and Oh [2]).

2. Coefficient Estimates

Theorem 1. Let the function $f(z)$ be defined by (1.6). Then $f(z) \in T_{n}(\lambda, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}\{k-\alpha[1 \lambda(k-1)]\} a_{k} \leq 1-\alpha . \tag{2.1}
\end{equation*}
$$

The result is sharp.
Proof. Assume that the inequality (2.1) holds and let $|z|=1$. Then we have

$$
\begin{align*}
\left|\frac{\frac{D^{n+1} f(z)}{D^{n} f(z)}}{\lambda \frac{D^{n+1} f(z)}{D^{n} f(z)}+(1-\lambda)}-1\right| & =\left|\frac{\left.\sum_{k=2}^{\infty} 51-\lambda\right) k^{n}(k-1) a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} k^{n}[1+\lambda(k-1)] a_{k} z^{k-1}}\right| \tag{2.2}\\
& \leq \frac{\sum_{k=2}^{\infty}(1-\lambda) k^{n}(k-1) k_{a}}{1-\sum_{k=2}^{\infty} k^{n}[1+\lambda(k-1)] k_{k}} \leq 1-\alpha
\end{align*}
$$

AOUF \& CHO

This shows that the values of $\frac{\frac{D^{n+1} f(z)}{D^{D^{f} f(z)}}}{\lambda \frac{D^{n+1} f(z)}{D^{n} f(z)}+(1-\lambda)}$ lies in a circle centered at $w=1$ whose radius is $1-\alpha$. Hence $f(z)$ satisfies the condition (1.5).

Conversely, assume that the function $f(z)$ defined by (1.6) is in the calss $T_{n}(\lambda, \alpha)$. Then

$$
\begin{align*}
\operatorname{Re}\left\{\frac{\frac{D^{n+1} f(z)}{D^{n} f(z)}}{\lambda \frac{D^{n+1} f(z)}{D^{n} f(z)}+(1-\lambda)}\right\} & =\operatorname{Re}\left\{\frac{1-\sum_{k=2}^{\infty} k^{n+1} a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} k^{n}[1+\lambda(k-1)] a_{k} z^{k-1}}\right\} \tag{2.3}\\
& >\alpha
\end{align*}
$$

for $z \in U$. Choose values of z on the real axis so that $\frac{\frac{D^{n+1} f(z)}{D^{n^{f} f(z)}}}{\lambda \frac{D^{n+1} f(z)}{D^{n} f(z)}+(1-\lambda)}$ is real. Upon clearing the denominator in (2.3) and letting $z+1^{-}$through real values, we obtain

$$
\begin{equation*}
1-\sum_{k=2}^{\infty} k^{n+1} a_{k} \geq \alpha\left\{1-\sum_{k=2}^{\infty} k^{n}[1+\lambda(k-1)] a_{k}\right\} \tag{2.4}
\end{equation*}
$$

which gives (2.1). Finally the result is sharp with the extremal function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{k^{n}\left\{k^{n}-\alpha[1+\lambda(k-1)]\right\}} z^{k} \quad(k \geq 2) \tag{2.5}
\end{equation*}
$$

Corollary 1. Let the function $f(z)$ defined by (1.6) be in the class $T_{n}(\lambda, \alpha)$. Then we have

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{k^{n}\left\{k^{n}-\alpha[1+\lambda(k-1)]\right\}} \quad(k \geq 2) . \tag{2.6}
\end{equation*}
$$

The equality in (2.6) is attained for the function $f(z)$ given by (2.5).

3. Some Properties of the Class $T_{n}(\lambda, \alpha)$

Theorem 2. Let $0 \leq \alpha<1,0 \leq \lambda_{1} \leq \lambda_{2}$ and $n \in N_{0}$. Then

$$
T_{n}\left(\lambda_{1}, \alpha\right) \subseteq T_{n}\left(\lambda_{2}, \alpha\right)
$$

Proof. If follows from Theorem 1 that

$$
\sum_{k=2}^{\infty} k^{n}\left\{k-\alpha\left[1+\lambda_{2}(k-1)\right]\right\} a_{k} \leq \sum_{k=2}^{\infty} k^{n}\left\{k-\alpha\left[1+\lambda_{1}(k-1)\right]\right\} a_{k} \leq 1-\alpha
$$

for $f(z) \in T_{n}\left(\lambda_{1}, \alpha\right)$. Hence $f(z) \mid i n T_{n}\left(\lambda_{2}, \alpha\right)$.

Theorem 3. Let $0 \leq \alpha<1,0 \leq \lambda<1$ and $n \in N_{0}$. Then

$$
T_{n+1}(\lambda, \alpha) \subset T_{n}(\lambda, \alpha) .
$$

The proof follows immediately from Theorem 1.

4. Distortion Theorems

Theorem 4. Let the function $f(z)$ defined by (1.6) be in the class $T_{n}(\lambda, \alpha)$. Then we have

$$
\begin{equation*}
\left|D^{i} f(z)\right| \geq|z|-\frac{1-\alpha}{2^{n-1}[2-\alpha(1+\lambda)]}|z|^{2} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D^{i} f(z)\right| \leq|z|+\frac{1-\alpha}{2^{n-1}[2-\alpha(1+\lambda)]}|z|^{2} \tag{4.2}
\end{equation*}
$$

for $z \in U$, where $0 \leq i \leq n$. Then equalities in (4.1) and (4.2) are attained for the function $f(z)$ given by

$$
\begin{equation*}
D^{i} f(z)=z-\frac{1-\alpha}{2^{n-1}[2-\alpha(1+\lambda)]} z^{2} \tag{4.3}
\end{equation*}
$$

Proof. Note that $f(z) \in T_{n}(\lambda, \alpha)$ if and only if $D^{i} f(z) \in T_{n-i}(\lambda, \alpha)$, where

AOUF \& CHO

$$
\begin{equation*}
D^{i} f(z)=z-\sum_{k=2}^{\infty} k^{i} a_{k} z^{k} \tag{4.4}
\end{equation*}
$$

Using Theorem 1, we know that

$$
\begin{equation*}
z^{n-1}[2-\alpha(1+\lambda)] \sum_{k=2}^{\infty} k a_{k} \leq \sum_{k=2}^{\infty} k^{n}[k-\alpha(1+\lambda(k-1))] a_{k} \leq 1-\alpha, \tag{4.5}
\end{equation*}
$$

that is, that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{i} a_{k} \leq \frac{1-\alpha}{2^{n-1}[2-\alpha(1+\lambda)]} \tag{4.6}
\end{equation*}
$$

It follows from (4.4) and (4.6) that

$$
\begin{equation*}
\left|D^{i} f(z)\right| \geq|z|-|z|^{2} \frac{1-\alpha}{2^{n-1}[2-\alpha(1+\lambda)]} k^{i} a_{k} \geq|z|-\frac{1-\alpha}{2^{n-1}[2-\alpha(1+\lambda)]}|z|^{2} \tag{4.7}
\end{equation*}
$$

ant

$$
\begin{equation*}
\left|D^{i} f(z)\right| \leq|z|+|z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k} \frac{1-\alpha}{2^{n-1}[2-\alpha(1+\lambda)]}|z|^{2} \tag{4.8}
\end{equation*}
$$

This completes the proof of Theorem 4.

Corollary 2. Let the function $f(z)$ defined by (1.6) be in the class $T_{n}(\lambda, \alpha)$. Then we have

$$
\begin{equation*}
|f(z)| \geq|z|-\frac{1-\alpha}{2^{n}[2-\alpha(1+\lambda)]}|z|^{2} \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq|z|+\frac{1-\alpha}{2^{n}[2-\alpha(1+\lambda)]}|z|^{2} \tag{4.10}
\end{equation*}
$$

for $z \in U$. Then equalities in (4.9) and (4.10) are attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{2^{n}[2-\alpha(1+\lambda)]} z^{2} \tag{4.11}
\end{equation*}
$$

Proof. Taking $i=0$ in Theorem 4, we can easily show (4.9) and (4.10).

AOUF \& CHO

Corollary 3. Let the function $f(z)$ defined by (1.6) be in the class $T_{n}(\lambda, \alpha)$. Then we have

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq 1-\frac{1-\alpha}{2^{n-1}[2-\alpha(1+\lambda)]}|z| \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+\frac{1-\alpha}{2^{n-1}[2-\alpha(1+\lambda)]}|z| \tag{4.13}
\end{equation*}
$$

for $z \in U$. The equalities in (4.12) and (4.13) are attained for the function $f(z)$ given by (4.11).

Proof. Note that $D\left(f(z)=z f^{\prime}(z)\right)$. Hence taking $i=1$ in Theorem 4, we have the corollary.

Corollary 4. Let the function $f(z)$ defined by (1.6) be in the class $T_{n}(\lambda, \alpha)$. Then the unit disc U is mapped onto a domain that contains the disc

$$
\begin{equation*}
|w|<\frac{2^{n}[2-\alpha(1+\lambda)]-(1-\alpha)}{2^{n}[2-\alpha(1+\lambda)]} \tag{4.14}
\end{equation*}
$$

The result is sharp with the extremal function $f(z)$ given by (4.11).

5. Closure Theorems

Let the functions $f_{i}(z)$ be defined, for $j=1,2, \ldots, m$, by

$$
\begin{equation*}
f_{j}(z)=z-\sum_{k=2}^{\infty} a_{k, j} z^{k} \quad\left(a_{k, j} \geq 0\right) \tag{5.1}
\end{equation*}
$$

for $z \in U$.
We shall prove the following results for the closure of functions in the class $T_{n}(\lambda, \alpha)$.
Theorem 5. Let the functions $f_{j}(z)$ defined by (5.1) be in the class $T_{n}(\lambda, \alpha)$ for every $j=1,2, \ldots, m$. Then the functions $h(z)$ defined by

$$
\begin{equation*}
h(z)=\sum_{j=1}^{m} c_{j} f_{j}(z) \quad\left(c_{j} \geq 0\right) \tag{5.2}
\end{equation*}
$$

is also in the same class $T_{n}(\lambda, \alpha)$ where

AOUF \& CHO

$$
\begin{equation*}
\sum_{j=1}^{m} c_{j}=1 \tag{5.3}
\end{equation*}
$$

Proof. According to the definition of $h(z)$, we can write

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left(\sum_{j=1}^{m} c_{j} a_{k, j}\right) z^{k} . \tag{5.4}
\end{equation*}
$$

Further, since $f_{j}(z)$ are in $T_{n}(\lambda, \alpha)$ for every $j=1,2, \ldots, m$ we get

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\} a_{k, j} \leq 1-\alpha \tag{5.5}
\end{equation*}
$$

for every $j=1,2, \ldots, m$. Hence we can see that

$$
\begin{align*}
& \sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\}\left(\sum_{j=1}^{m} c_{j} a_{k, j}\right) \tag{5.6}\\
& \sum_{j=1}^{m} c_{j}\left(\sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\} a_{k, j}\right) \\
& \leq\left(\sum_{j=1}^{m} c_{j}\right)(1-\alpha)=1-\alpha
\end{align*}
$$

which implies that $h(z) 6 i n T_{n}(\lambda, \alpha)$. Thus we have the theorem.

Corollary 5. The class $T_{n}(\lambda, \alpha)$ is closed under conveq linear combination.
Proof. Let the function $f_{j}(z)(j=1,2)$ defined by (5.1) be in the class $T_{n}(\lambda, \alpha)$. It is sufficient to show that the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\mu f_{1}(z)+(1-\mu) f_{2}(z) \quad(0 \leq \mu \leq 1) \tag{5.7}
\end{equation*}
$$

is in the class $T_{n}(\lambda, \alpha)$. But, taking $m=2, c_{1}=\mu$, and $c_{2}=1-\mu$ in Theorem 5 , we have the corollary.

As a consequence of Corollary 5, there exists the extreme points of the class $T_{n}(\lambda, \alpha)$.

AOUF \& CHO

Theorem 6. Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{k}(z)=z-\frac{1-\alpha}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}} z^{k} \quad(k \geq 2) \tag{5.8}
\end{equation*}
$$

for $0 \leq \alpha<1,0 \leq \lambda<1$ and $n \in N_{0}$. Then $f(z)$ is in the class $T_{n}(\lambda, \alpha)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=2}^{\infty} \mu_{k} f_{k}(z) \tag{5.9}
\end{equation*}
$$

where $\mu_{k} \geq 0(k \geq 1)$ and $\sum_{k=2}^{\infty} \mu_{k}=1$.
Proof. Soppose that

$$
\begin{equation*}
f(z)=\sum_{k=2}^{\infty} \mu_{k} f_{k}(z)=z-\sum_{k=2}^{\infty} \frac{1-\alpha}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}} \mu_{k} z^{k} . \tag{5.10}
\end{equation*}
$$

Then it follows that

$$
\begin{align*}
& \sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha} \frac{(1-\alpha) \mu_{k}}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}} \tag{5.11}\\
& =\sum_{k=2}^{\infty} \mu_{k}=1-\mu_{1} \leq 1
\end{align*}
$$

So by Theorem $1, f(z) \mid i n T_{n}(\lambda, \alpha)$.
Conversely, assume that the function $f(z)$ defined by (1.6) belongs to the class $T_{n}(\lambda, \alpha)$. Then

$$
\begin{equation*}
a_{k} \leq \frac{(1-\alpha) \mu_{k}}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}(k \geq 2) \tag{5.12}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\mu_{k}=\frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha} a_{k}(k \geq 2) \tag{5.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{1}=1-\sum_{k=2}^{\infty} \mu_{k} \tag{5.14}
\end{equation*}
$$

we can see that $f(z)$ can be expressed in the form (5.9). This completes the proof of Theorem 6.

AOUF \& CHO

Corollary 6. The extreme points of the class $T_{n}(\lambda, \alpha)$ are the functions $f_{k}(z)(k \geq 1)$ given by Theorem 6.

6. Radii of Close-to-Convexity, Starlikeness and Convexity

Theorem 7. Let the function $f(z)$ defined by (1.6) be in the class $T_{n}(\lambda, \alpha)$. Then $f(z)$ is close-to-convex of order $\delta(0 \leq \delta<1)$ in $|z|<r_{1}(n, \lambda, \alpha, \delta)$, where

$$
\begin{equation*}
r_{1}(n, \lambda, \alpha, \delta)=\inf _{k}\left[\frac{(1-\delta) k^{n-1}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha}\right]^{\frac{1}{k-1}}(k \geq 2) \tag{6.1}
\end{equation*}
$$

The result is sharp with the extremal function $f(z)$ given by (2.5)
Proof. It is sufficient to show that $f^{\prime}(z)-1|\leq 1-\delta(0 \leq \delta<1)| z \mid<r_{1}(n, \lambda, \alpha, \delta)$. We have

$$
\left|f^{\prime}(z)-1\right|-\left|\sum_{k=2}^{\infty} k a_{k} z^{k-1}\right| \leq \sum_{k=2}^{\infty} k a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right| \leq 1-\delta$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k}{1-\delta}\right) a_{k}|z|^{k-1} \leq 1 \tag{6.2}
\end{equation*}
$$

But Theorem 1 confirms that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha} a_{k} \leq 1 \tag{6.3}
\end{equation*}
$$

Hence (6.2) will be true if

$$
\frac{k|z|^{k-1}}{(1-\delta)} \leq \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha}
$$

or if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\delta) k^{n-1}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{6.4}
\end{equation*}
$$

The theorem follows easily from (6.4).

AOUF \& CHO

Theorem 8. Let the function $f(z)$ defined by (1.6) be in the class $T_{n}(\lambda, \alpha)$. Then $f(z)$ is starlike of order $\delta(0 \leq \delta<1)$ in $|z|<r_{2}(n, \lambda, \alpha, \delta)$, where

$$
\begin{equation*}
r_{2}(n, \lambda, \alpha, \delta)=\inf _{k}\left[\frac{(1-\delta) k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{(k-\delta)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{6.5}
\end{equation*}
$$

The result is sharp with the extremal function $f(z)$ given by (2.5).
Proof. We must show that $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\delta(0 \leq \delta<1)$ for $|z|<r_{n}(n \lambda, \alpha, \delta)$. We have
Thus $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\delta$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\delta) a_{k}|z|^{k-1}}{1-\delta} \leq 1 \tag{6.6}
\end{equation*}
$$

Hence, by using (6.3), (6.6) will be true if

$$
\frac{(k-\delta)|z|^{k-1}}{1-\delta} \leq \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha}
$$

or if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\delta) k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{(k-\delta)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{6.7}
\end{equation*}
$$

Corollary 7. Let the function $f(z)$ defined by (1.6) be in the class $T_{n}(\lambda, \alpha)$. Then $f(z)$ is convex of order $\delta(0 \leq \delta 1)$ in $|z|<r_{3}(n, \lambda, \alpha, \delta)$, where

$$
\begin{equation*}
r_{3}(n, \lambda, \alpha, \delta)=\inf _{k}\left[\frac{(1-\delta) k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{(k-\delta)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) . \tag{6.8}
\end{equation*}
$$

The result is sharp with the extremel function $f(z)$ given by (2.5).

AOUF \& CHO

7. Integral Operators

Theorem 9. Let the function $f(z)$ defined by (1.6) be in the class $T_{n}(\lambda, \alpha)$ and let c be a real number such that $c>-1$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{7.1}
\end{equation*}
$$

also belongs to the class $T_{n}(\lambda, \alpha)$.
Proof. From the representation of $F(z)$, it follows that

$$
\begin{equation*}
F(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k} \tag{7.2}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k}=\left(\frac{c+1}{c+k}\right) a_{k} \tag{7.3}
\end{equation*}
$$

therefore,

$$
\begin{align*}
& \sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\} b_{k}=\sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\}\left(\frac{c+1}{c+k}\right) \tag{7.4}\\
& \leq \sum_{k=2}^{\infty} k^{n}\{k-[1+\lambda(k-1)]\} a_{k} \leq 1-a
\end{align*}
$$

since $f(z) \in T_{n}(\lambda, \alpha)$. Hence, by Theorem 1, $F(z) \in T_{n}(\lambda, \alpha)$.

Theorem 10. Let c be a real number such that $c>-1$. If $F(z) \in T_{n}(\lambda, \alpha)$, then the function $f(z)$ defined by (7.1) is univalent in $|z|<R^{*}$, where

$$
\begin{equation*}
R^{2}=\inf _{k}\left[\frac{(c+1) k^{n-1}\{k-\alpha[1+\lambda(k-1)]\}}{(c+k)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) . \tag{7.5}
\end{equation*}
$$

The result is sharp.
Proof. Let $F(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0\right)$. If follows from (7.1) that

$$
\begin{equation*}
f(z)=\frac{z^{1-c}\left[z^{c} F(z)\right]^{\prime}}{(c+1)}=z-\sum_{k=2}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k} z^{k}(c>-1) . \tag{7.6}
\end{equation*}
$$

AOUF \& CHO

In order to obtain the required result, it stuffices to show that $\left|f^{\prime}(z)-1\right|<1$ in $|z|<R^{*}$. Now

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} \frac{k(c+k)}{c+1} a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right|<1$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k(c+k)}{c+1} a_{k}|z|^{k-1}<1 \tag{7.7}
\end{equation*}
$$

Hence, by using (6.3), (7.7) will be satisfied if

$$
\frac{k(c+k)|z|^{k-1}}{c+1} \leq \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha}(k \geq 2)
$$

or if

$$
\begin{equation*}
|z| \leq\left[\frac{(c+1) k^{n-1}\{k-\alpha[1+\lambda(k-1)]\}}{(c+k)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{7.8}
\end{equation*}
$$

Therefore $f(z)$ is univalent in $|z|<R^{*}$. Sharpness follows if we take

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)(c+k)}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}(c+1)} z^{k} \quad(k \geq 2) \tag{7.9}
\end{equation*}
$$

8. Modified Hadamard Products

Let the functions $f_{j}(z)(j=1,2)$ be defined by (5.1). The modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is defined here by

$$
\begin{equation*}
f_{1} * f_{2}(z)=z-\sum_{k=2}^{\infty} a_{k, 1} a_{k, 2} z^{k} \tag{8.1}
\end{equation*}
$$

Theorem 11. Let the functions $f_{j}(z)(j=1,2)$ defined by (5.1) be in the class $T_{n}(\lambda, \alpha)$. Then $f_{1} * f_{2}(z)$ belongs to theclass $T_{n}(\lambda, \beta(n, \lambda, \alpha))$ where

$$
\begin{equation*}
\beta(n, \lambda, \alpha)=1-\frac{(1-\lambda)(1-\alpha)^{2}}{2^{n}\{2-\alpha(1+\lambda)\}^{2}-(1+\lambda)(1-\alpha)^{2}} . \tag{8.2}
\end{equation*}
$$

The result is sharp.

AOUF \& CHO

Proof. Employing the technique used earlier by Schild and Silverman [4], we need to find the largest $\beta=\beta(n, \lambda, \alpha)$ such that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}\{k-\beta[1+\lambda(k-1)]\}}{1-\beta} a_{k, 1} a_{k, 2} \leq 1 \tag{8.3}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha} a_{k, 1} \leq 1 \tag{8.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha} a_{k, 2} \leq 1 \tag{8.5}
\end{equation*}
$$

by the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha} a \sqrt{a_{k, 1} a_{k, 2}} \leq 1 \tag{8.6}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{align*}
& \frac{k^{n}\{k-\beta[1+\lambda(k-1)]\}}{1-\beta} a_{k, 1} a_{k, 2} \tag{8.7}\\
& \leq \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha} \sqrt{a_{k, 1} a_{k, 2}}(k \geq 2)
\end{align*}
$$

that is, that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{(1-\beta)\{k-\alpha[1+\lambda(k-1)]\}}{(1-\alpha)\{k-\beta[1+\lambda(k-1)]\}} \tag{8.8}
\end{equation*}
$$

Not that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{1-\alpha}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}(k \geq 2) \tag{8.9}
\end{equation*}
$$

Consequently, we need only to prove that

$$
\begin{equation*}
\frac{1-\alpha}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}} \leq \frac{(1-\beta)\{k-\alpha[1+\lambda(k-1)]\}}{(1-\alpha)\{k-\beta[1+\lambda(k-1)]\}}(k \geq 2) \tag{8.10}
\end{equation*}
$$

or, equivalently, that

AOUF \& CHO

$$
\begin{equation*}
\beta \leq-1 \frac{(k-1)(1-\lambda)(1-\alpha)^{2}}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}^{2}-[1+\lambda(k-1)](1-\alpha)^{2}}(k \geq 2) \tag{8.11}
\end{equation*}
$$

Since

$$
\begin{equation*}
A(k)=1-\frac{(k-1)(1-\lambda)(1-\alpha)^{2}}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}^{2}-[1+\lambda(k-1)](1-\alpha)^{2}} \tag{8.12}
\end{equation*}
$$

is an increasing function of $k(k \geq 2)$, letting $k=2$ in (8.12), we obtain

$$
\begin{equation*}
\beta \leq A(2)=1-\frac{(1-\lambda)(1-\alpha)^{2}}{2^{n}\{2-\alpha(1+\lambda)\}^{2}-(1+\lambda)(1-\alpha)^{2}} \tag{8.13}
\end{equation*}
$$

which completes the proofof Theorem 11.
Finally, by taking the functions $f_{j}(z)$ given by

$$
\begin{equation*}
f_{j}(z)=z-\frac{1-\alpha}{2^{n}[2-\alpha(1+\lambda)]} z^{2} \quad(j=1,2) \tag{8.14}
\end{equation*}
$$

we can see that the result is sharp.

Corollary 8. For $f_{1}(z)$ and $f_{2}(z)$ as in Theorem 11, the function

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty} \sqrt{a_{k, 1} a_{k, 2}} z^{k} \tag{8.15}
\end{equation*}
$$

belongs to the class $T_{n}(\lambda, \alpha)$.
This result follows from the Cauchy-Schwarz inequality (8.6). It is sharp for the same functions as in Theorem 11.

Theorem 12. Let the function $f_{1}(z)$ defined by (5.1) be in the class $T_{n}(\lambda, \alpha)$ and the function $f_{2}(z)$ defined by (5.1) be in the class $T_{n}(\lambda, \alpha)$. Then $f_{1} * f_{2}(z)$ belongs to the class $\left.T_{n} \eta(n, \lambda, \alpha, \gamma)\right)$, where

$$
\begin{equation*}
\eta(n, \lambda, \alpha, \gamma)=1-\frac{(1-\lambda)(1-\alpha)(1-\gamma)}{2^{n}\{2-\alpha(1+\lambda)\}\{2-\gamma(1+\lambda)\}-(1+\lambda)(1-\alpha)(1-\gamma)} \tag{8.16}
\end{equation*}
$$

The result is best possible for the functions

$$
\begin{equation*}
f_{1}(z)=z-\frac{1-\alpha}{2^{n}[2-\alpha(1+\lambda)]} z^{2} \tag{8.17}
\end{equation*}
$$

AOUF \& CHO

and

$$
\begin{equation*}
f_{g}(z)=z-\frac{1-\gamma}{2^{n}[2-\gamma(1+\lambda)]} z^{2} . \tag{8.18}
\end{equation*}
$$

Proof. Proceeding as in the proof of Theorem 11, we get

$$
\begin{align*}
& \eta \leq B(k)=1- \tag{8.19}\\
& \frac{(k-1)(1-\lambda)(1-\alpha)(1-\gamma)}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}\{k-\gamma[1+\lambda(k-1)]\}-[1+\lambda(k-1)](1-\alpha)(1-\gamma)}(k \geq 2)
\end{align*}
$$

Since the function $B(k)$ is an increasing function of $k(k \geq 2)$, setting $k=2$ in (8.19), we get

$$
\begin{equation*}
\eta \geq B(2)=1-\frac{(1-\lambda)(1-\alpha)(1-\gamma)}{2^{n}\{2-\alpha(1+\lambda)\}\{2-\gamma(1+\lambda)\}-(1+\lambda)(1-\alpha)(1-\gamma)} \tag{8.20}
\end{equation*}
$$

This completes the proof of Theorem 12.

Corollary 9. Let the functions $f_{j}(z)(j=1,2,3)$ defined by (5.1) be in the class $T_{n}(\lambda, \alpha)$. Then $f_{1} * f_{2} * f_{3}(z)$ belongs to the class $T_{n}(\lambda, \zeta(n, \lambda, \alpha))$, where

$$
\begin{equation*}
\zeta(n, \lambda, \alpha)=1-\frac{(l-\lambda)(1-\alpha)^{3}}{4^{n}\{2-\alpha(1+\lambda)\}^{3}-(1+\lambda)(1-\alpha)^{3}} . \tag{8.21}
\end{equation*}
$$

The result is best possible for the functions

$$
\begin{equation*}
f_{j}(z)=z-\frac{1-\alpha}{2^{n}[2-\alpha(1+\lambda)]} z^{2} \quad(j=1,2,3) . \tag{8.22}
\end{equation*}
$$

Proof. From Theorem 11, we have $f_{1} * f 82(z) \in T_{n}(\lambda, \beta(n, \lambda, \alpha))$, where β is given by (8.2). By using Theorem 12, we get $f_{1} * f_{2} * f_{3} *(z) \in T_{n}(\lambda, \zeta(n, \lambda, \alpha))$, where

$$
\begin{aligned}
\zeta(n, \lambda, \alpha) & =1-\frac{(1-\lambda)(1-\alpha)(1-\beta)}{2^{n}\{2-\alpha(1+\lambda)\}\{2-\beta(1+\lambda)\}-(1+\lambda)(1-\alpha)(1-\beta)} \\
& =\frac{(1-\lambda)(1-\alpha)^{3}}{4^{n}\{2-\alpha(1+\lambda)\}^{3}-(1+\lambda)(1-\alpha)^{3}}
\end{aligned}
$$

This completes the proof of Corollary 9.

AOUF \& CHO

Theorem 13. Let the functions $f_{j}(z)(j=1,2)$ defined by (5.1) be in the class $T_{n}(\lambda, \alpha)$. Then the function

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k} \tag{8.23}
\end{equation*}
$$

belong to the class $T_{n}(\phi(n, \lambda, \alpha))$ where

$$
\begin{equation*}
\phi(n, \lambda, \alpha)=1-\frac{(1-\lambda)(1-\alpha)^{2}}{2^{n-1}\{2-\alpha(1+\lambda)\}^{2}-(1+\lambda)(1-\alpha)^{2}} . \tag{8.24}
\end{equation*}
$$

The result is sharp for the functions $f_{j}(z)(j=1,2)$ defined by (8.14).
Proof. By virtue of Theorem 1, we obtain

$$
\begin{align*}
& \sum_{k=2}^{\infty}\left[\frac{k^{n}\left\{k^{n}\{k-\alpha[1+\lambda(k-1)]\}\right\} 1-\alpha}{]^{2}} a_{k, 1}^{2}\right. \tag{8.25}\\
& \leq\left[\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha} a_{k, 1}^{2}\right] \leq 1
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=2}^{\infty}\left[\frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha}\right]^{2} a_{k, 2}^{2} \tag{8.26}\\
& \leq\left[\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha} a_{k, 2}\right]^{2} \leq 1
\end{align*}
$$

It follows from (8.25) and (8.26) that

$$
\begin{equation*}
\left\lvert\, s u \frac{1}{2}\left[\frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha}\right]^{2}\left(a_{k, 1}^{2}+a_{k, 2}^{2} \leq 1\right.\right. \tag{8.27}
\end{equation*}
$$

Therefore, we need to find the largest $\phi=\phi(n, \lambda, \alpha)$ such that

$$
\begin{equation*}
\frac{k^{n}\{k-\phi[1+\lambda(k-1)]\}}{1-\phi} \leq \frac{1}{2}\left[\frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{1-\alpha}\right]^{2} \quad(k \geq 2) \tag{8.28}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\phi \leq 1-\frac{2(k-1)(1-\lambda)(1-\alpha)^{2}}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}^{2}-2[1+\lambda(k-1)](1-\alpha)^{2}}(k \geq 2) \tag{8.29}
\end{equation*}
$$

Since

$$
\begin{equation*}
D(k)=1 \frac{2(k-1)(1-\lambda)(1-\alpha)^{2}}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}^{2}-2[1+\lambda(k-1)](1-\alpha)^{2}} \tag{8.30}
\end{equation*}
$$

is an increasing function of $k(k \geq 2)$, we readily have

$$
\begin{equation*}
\phi \leq D(2)=1-\frac{(1-\lambda)(1-\alpha)^{2}}{2^{n-1}\{2-\alpha(1+\lambda)\}^{2}-(1+\lambda)(1-\alpha)^{2}}, \tag{8.31}
\end{equation*}
$$

and Theorem 13 follows at once.

Theorem 14. Let the function $f_{1}(z)=z-\sum_{k=2}^{\infty} a_{k, 1} z^{k}\left(a_{k, 1} \geq 0\right)$ be in the class $T_{n}(\lambda, \alpha)$ and $f_{2}(z)=z-\sum_{k=2}^{\infty}\left|a_{k, 2}\right| z^{k}$, with $\left|a_{k, 2}\right| \leq 1, k=2,3, \ldots$. Then $f_{1} * f_{2}(z) \in$ $T_{n}(\lambda, \alpha)$.
Proof. Since

$$
\begin{aligned}
\sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\}\left|a_{k, 1} a_{k, 2}\right| & =\sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\} a_{k, 1}\left|a_{k, 2}\right| \\
& \leq \sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\} a_{k, 1} \\
& \leq 1-\alpha,
\end{aligned}
$$

by Theorem 1 , it follows that $f_{1} * f_{2}(z) \in T_{n}(\lambda, \alpha)$.

Acknowledgement

The authors would like to express their gratitude to the referee for hisvaluable comments.

References

[1] O. Altıntaş, and S. Owa, On subclasses of univalent functions with negative coefficients, Pusan Kyongnam Math. J. 4 (1988), no.4, 41-46.
[2] M.D. Hur, and G.H. Oh, On certain class of analytic functions with negative coefficients, Pusan Kyongnam Math. J. 5 (1989), 69-80.
[3] G.S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013 (1983), 362-372.
[4] A. Schild and H. Silverman, Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 29 (1975), 99-107.
[5] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
M. K. AOUF

Department of Mathematics,
Faculty of Science,
University of Mansoura,
Mansoura-EGYPT
Nak Eun CHO
Department of Applied Mathematics,
National Fisheries University of Pusan
Puson 608-737-KOREA

[^0]: *AMS (1991) Subject Classification. 30C45.

