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ON A CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS

WITH NEGATIVE COEFFICIENTS

M. K. Aouf & Nak Eun Cho

Abstract

The object of the present paper is to derive several interesting properties of the
class Tn(λ, α) consisting of analytic and univalent functions with negative coeffi-
cients. Coefficient inequalities, distortion theorems and closure theorems of func-
tions in the class Tn(λ, α) are determined. Also radii of close-to-convexity, starlike-
ness and convexity are determined. Furthermore, integral operators and modified
Hadamard products of several functions belonging to the class Tn(λ, α) are studied
here.
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1. Introduction

Let S denote the class of functions of the form

f(z) = z +
∞∑
k=2

akz
k, (1.1)

which are analytic and univalent in the unit disc U = {z : |z| < 1} . For a function f(z)
in S , we define

D0f(z) = f(z), (1.2)
D1f(z) = Df(z) = zf ′(z), (1.3)

and

Dnf(z) = D(Dn−1f(z)) (n ∈ N = {1, 2, ...}). (1.4)

*AMS (1991) Subject Classification. 30C45.

15



AOUF & CHO

The differential operator Dn was introduced by Salagean [3]. With the help of the
differential operator Dn , we say that a function f(z) belonging to S is in the class
Sn(λ, α) if and only if

Re


Dn+1f(z)
Dnf(z)

λD
n+1f(z)
Dnf(z)

+ (1− λ)

 > α (n ∈ N0 = N ∪ {0}) (1.5)

for some α(0 ≤ α < 1), λ(0 ≤ λ < 1) and for all z ∈ U.
Let T denote the subclass of S consisting of functions of the form

f(z) = z −
∞∑
k=2

akz
k (ak ≥ 0). (1.6)

Further, we define the class Tn(λ, α) by

Tn(λ, α) = Sn(λ, α)∩ T. (1.7)

We note that by specializing the parameters n, λ, and α, we obtain the following
subclasses studied by various authors:

(i) T0(λ, α) = T (λ, α) and T1(λ, α) = C(λ, α) (Altintas and Owa [1]);

(ii) T0(0, α) = T ∗(α) and T1(0, α) = C(α) (Silverman [5]);

(iii) Tn(0, α) = T (n, α) (Hur and Oh [2]).

2. Coefficient Estimates

Theorem 1. Let the function f(z) be defined by (1.6). Then f(z) ∈ Tn(λ, α) if and
only if

∞∑
k=2

kn{k− α[1λ(k− 1)]}ak ≤ 1− α. (2.1)

The result is sharp.
Proof. Assume that the inequality (2.1) holds and let |z| = 1. Then we have

∣∣∣∣∣∣
Dn+1f(z)
Dnf(z)

λD
n+1f(z)
Dnf(z) + (1 − λ)

− 1

∣∣∣∣∣∣ =
∣∣∣∣ ∑∞k=2 51− λ)kn(k − 1)akzk−1

1−
∑∞

k=2 k
n[1 + λ(k − 1)]akzk−1

∣∣∣∣ (2.2)

≤
∑∞

k=2(1− λ)kn(k − 1)ka
1−

∑∞
k=2 k

n[1 + λ(k − 1)]kk
≤ 1− α
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This shows that the values of
Dn+1f(z)
Dnf(z)

λ
Dn+1f(z)
Dnf(z) +(1−λ)

lies in a circle centered at w = 1 whose

radius is 1− α. Hence f(z) satisfies the condition (1.5).
Conversely, assume that the function f(z) defined by (1.6) is in the calss Tn(λ, α).

Then

Re


Dn+1f(z)
Dnf(z)

λD
n+1f(z)
Dnf(z) + (1− λ)

 = Re

{
1−

∑∞
k=2 k

n+1akz
k−1

1−
∑∞

k=2 k
n[1 + λ(k − 1)]akzk−1

}
(2.3)

> α

for z ∈ U. Choose values of z on the real axis so that
Dn+1f(z)
Dnf(z)

λ
Dn+1f(z)
Dnf(z) +(1−λ)

is real.

Upon clearing the denominator in (2.3) and letting z+1− through real values, we obtain

1−
∞∑
k=2

kn+1ak ≥ α
{

1−
∞∑
k=2

kn[1 + λ(k − 1)]ak

}
(2.4)

which gives (2.1). Finally the result is sharp with the extremal function f(z) given by

f(z) = z − 1− α
kn{kn − α[1 + λ(k − 1)]}z

k (k ≥ 2). (2.5)

2

Corollary 1. Let the function f(z) defined by (1.6) be in the class Tn(λ, α) . Then we
have

ak ≤
1− α

kn{kn − α[1 + λ(k − 1)]} (k ≥ 2). (2.6)

The equality in (2.6) is attained for the function f(z) given by (2.5).
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3. Some Properties of the Class Tn(λ, α)

Theorem 2. Let 0 ≤ α < 1, 0 ≤ λ1 ≤ λ2 and n ∈ N0. Then

Tn(λ1, α) ⊆ Tn(λ2, α)

Proof. If follows from Theorem 1 that

∞∑
k=2

kn{k − α[1 + λ2(k − 1)]}ak ≤
∞∑
k=2

kn{k − α[1 + λ1(k − 1)]}ak ≤ 1− α

for f(z) ∈ Tn(λ1, α). Hence f(z)|inTn(λ2, α). 2

Theorem 3. Let 0 ≤ α < 1, 0 ≤ λ < 1 and n ∈ N0. Then

Tn+1(λ, α) ⊂ Tn(λ, α).

The proof follows immediately from Theorem 1.

4. Distortion Theorems

Theorem 4. Let the function f(z) defined by (1.6) be in the class Tn(λ, α) . Then we
have

|Dif(z)| ≥ |z| − 1− α
2n−1[2− α(1 + λ)]

|z|2 (4.1)

and

|Dif(z)| ≤ |z|+ 1− α
2n−1[2− α(1 + λ)]

|z|2 (4.2)

for z ∈ U, where 0 ≤ i ≤ n. Then equalities in (4.1) and (4.2) are attained for the
function f(z) given by

Dif(z) = z − 1− α
2n−1[2− α(1 + λ)]

z2. (4.3)

Proof. Note that f(z) ∈ Tn(λ, α) if and only if Dif(z) ∈ Tn−i(λ, α), where
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Dif(z) = z −
∞∑
k=2

kiakz
k. (4.4)

Using Theorem 1, we know that

zn−1[2− α(1 + λ)]
∞∑
k=2

kak ≤
∞∑
k=2

kn[k − α(1 + λ(k − 1))]ak ≤ 1− α, (4.5)

that is, that

∞∑
k=2

kiak ≤
1− α

2n−1[2− α(1 + λ)]
. (4.6)

It follows from (4.4) and (4.6) that

|Dif(z)| ≥ |z| − |z|2 1− α
2n−1[2− α(1 + λ)]

kiak ≥ |z| −
1− α

2n−1[2− α(1 + λ)]
|z|2 (4.7)

ant

|Dif(z)| ≤ |z|+ |z|2
∞∑
k=2

kiak
1− α

2n−1[2− α(1 + λ)]
|z|2. (4.8)

This completes the proof of Theorem 4. 2

Corollary 2. Let the function f(z) defined by (1.6) be in the class Tn(λ, α) . Then we
have

|f(z)| ≥ |z| − 1− α
2n[2− α(1 + λ)]

|z|2 (4.9)

and

|f(z)| ≤ |z|+ 1− α
2n[2− α(1 + λ)]

|z|2 (4.10)

for z ∈ U. Then equalities in (4.9) and (4.10) are attained for the function f(z) given by

f(z) = z − 1− α
2n[2− α(1 + λ)]

z2. (4.11)

Proof. Taking i = 0 in Theorem 4, we can easily show (4.9) and (4.10). 2

19



AOUF & CHO

Corollary 3. Let the function f(z) defined by (1.6) be in the class Tn(λ, α) . Then we
have

|f ′(z)| ≥ 1− 1− α
2n−1[2− α(1 + λ)]

|z| (4.12)

and

|f ′(z)| ≤ 1 +
1− α

2n−1[2− α(1 + λ)]
|z| (4.13)

for z ∈ U. The equalities in (4.12) and (4.13) are attained for the function f(z) given by
(4.11).
Proof. Note that D(f(z) = zf ′(z)). Hence taking i = 1 in Theorem 4, we have the
corollary. 2

Corollary 4. Let the function f(z) defined by (1.6) be in the class Tn(λ, α) . Then the
unit disc U is mapped onto a domain that contains the disc

|w| < 2n[2− α(1 + λ)]− (1 − α)
2n[2− α(1 + λ)]

. (4.14)

The result is sharp with the extremal function f(z) given by (4.11).

5. Closure Theorems

Let the functions fi(z) be defined, for j = 1, 2, ..., m, by

fj(z) = z −
∞∑
k=2

ak,jz
k (ak,j ≥ 0) (5.1)

for z ∈ U.
We shall prove the following results for the closure of functions in the class Tn(λ, α).

Theorem 5. Let the functions fj(z) defined by (5.1) be in the class Tn(λ, α) for every
j = 1, 2, ...,m. Then the functions h(z) defined by

h(z) =
m∑
j=1

cjfj(z) (cj ≥ 0) (5.2)

is also in the same class Tn(λ, α) where
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m∑
j=1

cj = 1. (5.3)

Proof. According to the definition of h(z), we can write

h(z) = z −
∞∑
k=2

 m∑
j=1

cjak,j

 zk. (5.4)

Further, since fj(z) are in Tn(λ, α) for every j = 1, 2, ...,m we get

∞∑
k=2

kn{k − α[1 + λ(k − 1)]}ak,j ≤ 1− α (5.5)

for every j = 1, 2, ..., m. Hence we can see that

∞∑
k=2

kn{k − α[1 + λ(k − 1)]}

 m∑
j=1

cjak,j

 (5.6)

m∑
j=1

cj

( ∞∑
k=2

kn{k − α[1 + λ(k − 1)]}ak,j

)

≤

 m∑
j=1

cj

 (1− α) = 1− α,

which implies that h(z)6inTn(λ, α). Thus we have the theorem. 2

Corollary 5. The class Tn(λ, α) is closed under conveq linear combination.
Proof. Let the function fj(z)(j = 1, 2) defined by (5.1) be in the class Tn(λ, α). It is
sufficient to show that the function h(z) defined by

h(z) = µf1(z) + (1− µ)f2(z) (0 ≤ µ ≤ 1) (5.7)

is in the class Tn(λ, α). But, taking m = 2, c1 = µ, and c2 = 1 − µ in Theorem 5, we
have the corollary.

As a consequence of Corollary 5, there exists the extreme points of the class
Tn(λ, α). 2
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Theorem 6. Let f1(z) = z and

fk(z) = z − 1− α
kn{k − α[1 + λ(k − 1)]}z

k (k ≥ 2) (5.8)

for 0 ≤ α < 1, 0 ≤ λ < 1 and n ∈ N0. Then f(z) is in the class Tn(λ, α) if and only if
it can be expressed in the form

f(z) =
∞∑
k=2

µkfk(z) (5.9)

where µk ≥ 0(k ≥ 1) and
∑∞

k=2 µk = 1.
Proof. Soppose that

f(z) =
∞∑
k=2

µkfk(z) = z −
∞∑
k=2

1− α
kn{k − α[1 + λ(k − 1)]}µkz

k. (5.10)

Then it follows that

∞∑
k=2

kn{k − α[1 + λ(k − 1)]}
1− α

(1− α)µk
kn{k − α[1 + λ(k − 1)]} (5.11)

=
∞∑
k=2

µk = 1− µ1 ≤ 1.

So by Theorem 1, f(z)|inTn(λ, α).
Conversely, assume that the function f(z) defined by (1.6) belongs to the class

Tn(λ, α). Then

ak ≤
(1− α)µk

kn{k − α[1 + λ(k − 1)]} (k ≥ 2). (5.12)

Setting

µk =
kn{k − α[1 + λ(k − 1)]}

1− α ak (k ≥ 2), (5.13)

and

µ1 = 1−
∞∑
k=2

µk, (5.14)

we can see that f(z) can be expressed in the form (5.9). This completes the proof of
Theorem 6. 2
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Corollary 6. The extreme points of the class Tn(λ, α) are the functions fk(z)(k ≥ 1)
given by Theorem 6.

6. Radii of Close-to-Convexity, Starlikeness and Convexity

Theorem 7. Let the function f(z) defined by (1.6) be in the class Tn(λ, α) . Then f(z)
is close-to-convex of order δ(0 ≤ δ < 1) in |z| < r1(n, λ, α, δ), where

r1(n, λ, α, δ) = inf
k

[
(1− δ)kn−1{k − α[1 + λ(k − 1)]}

1− α

] 1
k−1

(k ≥ 2). (6.1)

The result is sharp with the extremal function f(z) given by (2.5)
Proof. It is sufficient to show that f ′(z)− 1| ≤ 1− δ(0 ≤ δ < 1)|z| < r1(n, λ, α, δ). We
have

|f ′(z) − 1| −
∣∣∣∣∣
∞∑
k=2

kakz
k−1

∣∣∣∣∣ ≤
∞∑
k=2

kak|z|k−1.

Thus |f ′(z) − 1| ≤ 1− δ if

∞∑
k=2

(
k

1− δ

)
ak|z|k−1 ≤ 1. (6.2)

But Theorem 1 confirms that

∞∑
k=2

kn{k − α[1 + λ(k − 1)]}
1− α ak ≤ 1. (6.3)

Hence (6.2) will be true if

k|z|k−1

(1− δ) ≤
kn{k − α[1 + λ(k − 1)]}

1− α
or if

|z| ≤
[

(1− δ)kn−1{k− α[1 + λ(k − 1)]}
1− α

] 1
k−1

(k ≥ 2). (6.4)

The theorem follows easily from (6.4). 2
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Theorem 8. Let the function f(z) defined by (1.6) be in the class Tn(λ, α). Then f(z)
is starlike of order δ(0 ≤ δ < 1) in |z| < r2(n, λ, α, δ), where

r2(n, λ, α, δ) = inf
k

[
(1− δ)kn{k − α[1 + λ(k − 1)]}

(k − δ)(1− α)

] 1
k−1

(k ≥ 2). (6.5)

The result is sharp with the extremal function f(z) given by (2.5).

Proof. We must show that
∣∣∣ zf ′(z)f(z) − 1

∣∣∣ ≤ 1 − δ(0 ≤ δ < 1) for |z| < rn(nλ, α, δ ). We
have
Thus | zf

′(z)
f(z) − 1| ≤ 1− δ if

∞∑
k=2

(k − δ)ak|z|k−1

1− δ ≤ 1. (6.6)

Hence, by using (6.3), (6.6) will be true if

(k − δ)|z|k−1

1− δ ≤ kn{k − α[1 + λ(k − 1)]}
1− α

or if

|z| ≤
[

(1− δ)kn{k − α[1 + λ(k − 1)]}
(k − δ)(1− α)

] 1
k−1

(k ≥ 2). (6.7)

2

Corollary 7. Let the function f(z) defined by (1.6) be in the class Tn(λ, α) . Then f(z)
is convex of order δ(0 ≤ δ1) in |z| < r3(n, λ, α, δ), where

r3(n, λ, α, δ) = inf
k

[
(1− δ)kn{k − α[1 + λ(k − 1)]}

(k − δ)(1− α)

] 1
k−1

(k ≥ 2). (6.8)

The result is sharp with the extremel function f(z) given by (2.5).
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7. Integral Operators

Theorem 9. Let the function f(z) defined by (1.6) be in the class Tn(λ, α) and let c
be a real number such that c > −1. Then the function F (z) defined by

F (z) =
c+ 1
zc

∫ z

0

tc−1f(t)dt (7.1)

also belongs to the class Tn(λ, α).
Proof. From the representation of F (z), it follows that

F (z) = z −
∞∑
k=2

bkz
k, (7.2)

where

bk =
(
c+ 1
c+ k

)
ak. (7.3)

therefore,

∞∑
k=2

kn{k − α[1 + λ(k − 1)]}bk =
∞∑
k=2

kn{k − α[1 + λ(k − 1)]}
(
c+ 1
c+ k

)
(7.4)

≤
∞∑
k=2

kn{k − [1 + λ(k − 1)]}ak ≤ 1− a,

since f(z) ∈ Tn(λ, α). Hence, by Theorem 1, F (z) ∈ Tn(λ, α). 2

Theorem 10. Let c be a real number such that c > −1. If F (z) ∈ Tn(λ, α), then the
function f(z) defined by (7.1) is univalent in |z| < R∗ , where

R2 = inf
k

[
(c+ 1)kn−1{k − α[1 + λ(k − 1)]}

(c+ k)(1− α)

] 1
k−1

(k ≥ 2). (7.5)

The result is sharp.
Proof. Let F (z) = z −

∑∞
k=2 akz

k(ak ≥ 0). If follows from (7.1) that

f(z) =
z1−c[zcF (z)]′

(c+ 1)
= z −

∞∑
k=2

(
c+ k

c+ 1

)
akz

k (c > −1). (7.6)
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In order to obtain the required result, it stuffices to show that |f ′(z)−1| < 1 in |z| < R∗ .
Now

|f ′(z)− 1| ≤
∞∑
k=2

k(c+ k)
c + 1

ak|z|k−1.

Thus |f ′(z) − 1| < 1 if

∞∑
k=2

k(c+ k)
c+ 1

ak|z|k−1 < 1. (7.7)

Hence, by using (6.3), (7.7) will be satisfied if

k(c+ k)|z|k−1

c + 1
≤ kn{k − α[1 + λ(k − 1)]}

1− α (k ≥ 2)

or if

|z| ≤
[

(c+ 1)kn−1{k− α[1 + λ(k − 1)]}
(c+ k)(1− α)

] 1
k−1

(k ≥ 2). (7.8)

Therefore f(z) is univalent in |z| < R∗ . Sharpness follows if we take

f(z) = z − (1− α)(c+ k)
kn{k− α[1 + λ(k − 1)]}(c+ 1)

zk (k ≥ 2). (7.9)

2

8. Modified Hadamard Products

Let the functions fj(z)(j = 1, 2) be defined by (5.1). The modified Hadamard
product of f1(z) and f2(z) is defined here by

f1 ∗ f2(z) = z −
∞∑
k=2

ak,1ak,2z
k. (8.1)

Theorem 11. Let the functions fj(z)(j = 1, 2) defined by (5.1) be in the class Tn(λ, α) .
Then f1 ∗ f2(z) belongs to theclass Tn(λ, β(n, λ, α)) where

β(n, λ, α) = 1− (1− λ)(1 − α)2

2n{2− α(1 + λ)}2 − (1 + λ)(1 − α)2
. (8.2)

The result is sharp.
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Proof. Employing the technique used earlier by Schild and Silverman [4], we need to
find the largest β = β(n, λ, α) such that

∞∑
k=2

kn{k− β[1 + λ(k − 1)]}
1− β ak,1ak,2 ≤ 1 (8.3)

Since

∞∑
k=2

kn{k − α[1 + λ(k − 1)]}
1− α ak,1 ≤ 1 (8.4)

and

∞∑
k=2

kn{k − α[1 + λ(k − 1)]}
1− α ak,2 ≤ 1, (8.5)

by the Cauchy-Schwarz inequality, we have

∞∑
k=2

kn{k − α[1 + λ(k − 1)]}
1− α a

√
ak,1ak,2 ≤ 1. (8.6)

Thus it is sufficient to show that

kn{k − β[1 + λ(k − 1)]}
1− β ak,1ak,2 (8.7)

≤ kn{k− α[1 + λ(k − 1)]}
1− α

√
ak,1ak,2 (k ≥ 2),

that is, that

√
ak,1ak,2 ≤

(1− β){k − α[1 + λ(k − 1)]}
(1− α){k − β[1 + λ(k − 1)]} · (8.8)

Not that

√
ak,1ak,2 ≤

1− α
kn{k − α[1 + λ(k − 1)]} (k ≥ 2). (8.9)

Consequently, we need only to prove that

1− α
kn{k − α[1 + λ(k − 1)]} ≤

(1 − β){k − α[1 + λ(k − 1)]}
(1 − α){k − β[1 + λ(k − 1)]}(k ≥ 2), (8.10)

or, equivalently, that
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β ≤ −1
(k − 1)(1− λ)(1 − α)2

kn{k − α[1 + λ(k − 1)]}2 − [1 + λ(k − 1)](1− α)2
(k ≥ 2). (8.11)

Since

A(k) = 1− (k − 1)(1− λ)(1 − α)2

kn{k − α[1 + λ(k − 1)]}2 − [1 + λ(k − 1)](1− α)2
(8.12)

is an increasing function of k(k ≥ 2), letting k = 2 in (8.12), we obtain

β ≤ A(2) = 1− (1− λ)(1 − α)2

2n{2− α(1 + λ)}2 − (1 + λ)(1− α)2
, (8.13)

which completes the proofof Theorem 11.
Finally, by taking the functions fj(z) given by

fj(z) = z − 1− α
2n[2− α(1 + λ)]

z2 (j = 1, 2), (8.14)

we can see that the result is sharp. 2

Corollary 8. For f1(z) and f2(z) as in Theorem 11, the function

h(z) = z −
∞∑
k=2

√
ak,1ak,2z

k (8.15)

belongs to the class Tn(λ, α) .
This result follows from the Cauchy-Schwarz inequality (8.6). It is sharp for the

same functions as in Theorem 11.

Theorem 12. Let the function f1(z) defined by (5.1) be in the class Tn(λ, α) and the
function f2(z) defined by (5.1) be in the class Tn(λ, α). Then f1 ∗ f2(z) belongs to the
class Tnη(n, λ, α, γ)) , where

η(n, λ, α, γ) = 1− (1 − λ)(1 − α)(1− γ)
2n{2− α(1 + λ)}{2− γ(1 + λ)} − (1 + λ)(1 − α)(1− γ)

. (8.16)

The result is best possible for the functions

f1(z) = z − 1− α
2n[2− α(1 + λ)]

z2 (8.17)
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and

fg(z) = z − 1− γ
2n[2− γ(1 + λ)]

z2. (8.18)

Proof. Proceeding as in the proof of Theorem 11, we get

η ≤ B(k) = 1− (8.19)

(k − 1)(1− λ)(1− α)(1− γ)

kn{k − α[1 + λ(k − 1)]}{k − γ[1 + λ(k − 1)]} − [1 + λ(k − 1)](1− α)(1− γ)
(k ≥ 2)

Since the function B(k) is an increasing function of k(k ≥ 2), setting k = 2 in (8.19),
we get

η ≥ B(2) = 1− (1− λ)(1 − α)(1− γ)
2n{2− α(1 + λ)}{2− γ(1 + λ)} − (1 + λ)(1− α)(1− γ)

. (8.20)

This completes the proof of Theorem 12. 2

Corollary 9. Let the functions fj(z)(j = 1, 2, 3) defined by (5.1) be in the class
Tn(λ, α) . Then f1 ∗ f2 ∗ f3(z) belongs to the class Tn(λ, ζ(n, λ, α)), where

ζ(n, λ, α) = 1− (l − λ)(1 − α)3

4n{2− α(1 + λ)}3 − (1 + λ)(1 − α)3
. (8.21)

The result is best possible for the functions

fj(z) = z − 1− α
2n[2− α(1 + λ)]

z2 (j = 1, 2, 3). (8.22)

Proof. From Theorem 11, we have f1 ∗ f82(z) ∈ Tn(λ, β(n, λ, α)), where β is given by
(8.2). By using Theorem 12, we get f1 ∗ f2 ∗ f3 ∗ (z) ∈ Tn(λ, ζ(n, λ, α)), where

ζ(n, λ, α) = 1− (1− λ)(1− α)(1− β)
2n{2− α(1 + λ)}{2− β(1 + λ)} − (1 + λ)(1− α)(1− β)

=
(1− λ)(1 − α)3

4n{2− α(1 + λ)}3 − (1 + λ)(1 − α)3

This completes the proof of Corollary 9. 2
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Theorem 13. Let the functions fj(z)(j = 1, 2) defined by (5.1) be in the class Tn(λ, α) .
Then the function

h(z) = z −
∞∑
k=2

(a2
k,1 + a2

k,2)zk (8.23)

belong to the class Tn(φ(n, λ, α)) where

φ(n, λ, α) = 1− (1− λ)(1− α)2

2n−1{2− α(1 + λ)}2 − (1 + λ)(1 − α)2
. (8.24)

The result is sharp for the functions fj(z)(j = 1, 2) defined by (8.14).

Proof. By virtue of Theorem 1, we obtain

∞∑
k=2

[
kn{kn{k − α[1 + λ(k − 1)]}}1− α

]2

a2
k,1 (8.25)

≤
[ ∞∑
k=2

kn{k− α[1 + λ(k − 1)]}
1− α a2

k,1

]
≤ 1

and

∞∑
k=2

[
kn{k − α[1 + λ(k − 1)]}

1− α

]2

a2
k,2 (8.26)

≤
[ ∞∑
k=2

kn{k− α[1 + λ(k − 1)]}
1− α ak,2

]2

≤ 1.

It follows from (8.25) and (8.26) that

|su1
2

[
kn{k − α[1 + λ(k − 1)]}

1− α

]2

(a2
k,1 + a2

k,2 ≤ 1. (8.27)

Therefore, we need to find the largest φ = φ(n, λ, α) such that

kn{k − φ[1 + λ(k − 1)]}
1− φ ≤ 1

2

[
kn{k− α[1 + λ(k − 1)]}

1− α

]2

(k ≥ 2), (8.28)

that is,
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φ ≤ 1− 2(k − 1)(1− λ)(1− α)2

kn{k − α[1 + λ(k − 1)]}2 − 2[1 + λ(k − 1)](1− α)2
(k ≥ 2). (8.29)

Since

D(k) = 1
2(k − 1)(1− λ)(1 − α)2

kn{k − α[1 + λ(k − 1)]}2 − 2[1 + λ(k − 1)](1− α)2
(8.30)

is an increasing function of k(k ≥ 2), we readily have

φ ≤ D(2) = 1− (1− λ)(1 − α)2

2n−1{2− α(1 + λ)}2 − (1 + λ)(1− α)2
, (8.31)

and Theorem 13 follows at once. 2

Theorem 14. Let the function f1(z) = z −
∑∞

k=2 ak,1z
k(ak,1 ≥ 0) be in the class

Tn(λ, α) and f2(z) = z −
∑∞

k=2 |ak,2|zk, with |ak,2| ≤ 1, k = 2, 3, ... . Then f1 ∗ f2(z) ∈
Tn(λ, α) .

Proof. Since

∞∑
k=2

kn{k − α[1 + λ(k − 1)]}|ak,1ak,2| =
∞∑
k=2

kn{k − α[1 + λ(k − 1)]}ak,1|ak,2|

≤
∞∑
k=2

kn{k − α[1 + λ(k − 1)]}ak,1

≤ 1− α,

by Theorem 1, it follows that f1 ∗ f2(z) ∈ Tn(λ, α). 2
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