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THE NON UNIFORM BOUNDS OF REMAINDER TERM

IN CLT FOR THE SUM OF FUNCTIONS OF UNIFORM
SPACINGS∗

S. Mirakhmedov & U. Kalandarov

Abstract

The non uniform bound of the remainder in the central limit theorem for the
sums of functions of uniform spacings is established. The bound depend on the
moments of functions of the standard exponential random variables.

1. Introduction

Let U1, U2, . . . be a sequence of independent uniform (0, 1) random variables (r.v.),
0 ≡ U0,n ≤ U1,n ≤ · · · ≤ Un,n−1 ≤ Un,n ≡ 1 denote the ordering of U1, . . . , Un−1 and
Di,n = Ui,n − Ui−1,n, i = 1, . . . , n , be their spacings, D = (D1n, . . . , Dn,n). Let
fmn(y), m = 0, 1, . . . , n , be measurable functions of non-negative argument y .

We consider the statistics that are defined as follows

Rn(D) =
n∑

m=1

fmn(nDm,n). (1)

The statistics of (1.1) types are called a divisible statistic (DS). A DS is said to be
symmetric if the functions fmn are same for all m = 1, 2, . . . , n . Statistics of this form are
used in different statistical tasks, for example, for testing uniformity. Random variables
of type (1.1) are also used in the problem covers. An excellent survey of first order limit
theory for statistics of the form (1.1) were given by Pyke (1965, 1972) according to whom
a study of the rate of convergence for sums of functions of uniform spacings is of interest.

The main idea of the proof of our results is following a well-known characterization
that has been applied by Le Cam (1958) in order to prove first order limit theorems (see
also Pyke (1965), and [3, 4, 5]).
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Let Y1, Y2, . . . be independent exponential r.v.s. with parameter 1 and let

Y = (Y1, . . . , Yn), Sn =
n∑

m=1

(Ym − 1), Rn(Y ) =
n∑

m=1

fmn(Ym).

Then
L(Rn(D)) = L(Rn(Y )/Sn = 0), (2)

i.e., Rn(D) has the same distribution as a sum of independent a special r.v.s. given
another sum of independent r.v.s.

The asymptotically normality and Berry-Esseen bounds for statistics of type (1.1)
have been studied by several authors. But the optimal condition Ef2(Y1) < ∞ for
asymptotical normality of symmetric DS was obtained of Beirlant, Janssen and Ver-
averbeke in 1991 year. The proof in this paper based on another well-known property
of uniform spacings: the joint distribution of D is the same as the joint distribution of
(S0·S

−1

n , . . . , Sn−1·S̄−1
n 1), where Sn = Sn+n and on a Taylor expansion idea for statistics

of type (1.1). Using the representation (1.2) Does and Klaassen (1984) obtained estimates
for the rate of convergence in CLT of type O(n−1/2). The Lindeberg type condition and
uniformly bounds (by n and a argument of distribution function) of remainder in the CLT
(Mirakhmedov (1996)), Edgwort type asymptotical expansion (Does, Helmers, Klaassen
(1985)) and probability of large deviations (Mirakhmedov (1996)) for statistics of type
(1.1) were obtained by using equation (1.2). In this article we will obtain the non uniform
bound of the remainder in the CLT. We remark that the functions fmn(y), m = 1, . . . , n
may be randomly. In this case we suppose that the fln(x1), . . . , fnn(xn) are indepen-
dent r.v.s. not depending on the Y and D for arbitrary set of non negative numbers
x1, . . . , xn .

In what follows C,Ci are a positive universal constants not depending on the n
and distributions of the r.v. fmn(Ym), m = 1, . . . , n, ε is a sufficiently small positive
value.

2. Results

We suppose that the moments which we use below exists. Let

ρn = corr(Rn(Y ), Sn);

Xm(u) = fmn(u) −Efmn(Ym) − ρn
√
DRn(Y )/n(u− 1);

Tn(D) =
n∑

m=1

Xm(nDmn), . . . , Tn(Y ) =
n∑

m=1

Xm(Ym).

Note that σ2
n ≡ DTn(Y ) = (1 − ρ2

n)DRn(Y ) and

ETn(Y ) = 0, . . . , cov(Tn(Y ), Sn) = 0. (3)
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Obviously that Tn(D) = Rn(D) − ERn(Y ). Therefore without loss generality we can
consider the statistic Tn(D) instead of Rn(D). From definition of σ2

n it follows that
σ2
n = 0 if and only if fmn(y) = Cy + am , where constants am are arbitrary and C

does not depend on m for all m = 1, . . . , n . In what follows we suppose σ2
n > 0 for all

n = 1, 2, . . ..
Let

Xn = Xm(Ym)/σn · · ·Y n = (Ym − 1)/
√
n, βkn =

n∑
m=1

E|Xm|k,

Φ(x) be the standard normal distribution function and Pn(x) = P {Tn(D) < xσn} .

Theorem. There is a constant C > 0 such that for arbitrary integer s > 2 and n > s+1

∆n(x) = |Pn(x)− Φ(x)| ≤ C(s)
1 + |x|s−2

(
β3n + βsn +

1√
n

)
.

In Section 3 of Pyke (1965) some examples of DS are given. In particular, several
functions for symmetrical DS are related to g(x) = xr, r > 0, r 6= 1, . . . g2(x) =
(x − 1)2, . . . g3(x) = |x − 1|, g4(x) = log x and are all included in theorem. For these
functions from the theorem it follows the estimate: for arbitrary fixed s there exist constant
C(s) such that

∆n(x) ≤ C(s)√
n(1 + |x|s) .

But for another examples g5(x) = x−1 (Pyke (1965)) our theorem is useless.

3. Proof

Let ϕn(t) be the characteristic function of the random variables (r.v.) Tn(D)/σn .
By Corollary 11.5 and Lemma 11.6 of Bhattacharya, Rao (1976) one has for arbitrary
T > 0

(1 + |x|s−2)∆n(x) ≤ C0 max
0≤k≤s

∫
|t|≤T

∣∣∣∣Dk
t (ϕn(t)− exp

{
− t

2

2

}
)
∣∣∣∣ dt+

C1

T
(4)

where Dk
t denote k -th derivation. It is well known (see, for example, Pyke (1965))

that we can choose a regular version of the conditional distribution of Tn(Y ) given
Sn ≡ n−1/2Sn = x such that

ϕn(t) = E(exp{itσ−1
n Tn(Y )}/Sn = 0). (5)

Let pn(x) be a density of the r.v. Sn , and

Ψmn(t, τ ) = E exp{itXm + iτY m}, Ψn(t, τ ) =
n∏

m=1

Ψmn(t, τ ).

55



MIRAKHMEDOV, KALANDAROV

Lemma 1. We have
ϕn(t) =

1
2πpn(0)∞

∫ ∞
−∞

Ψn(t, τ )dτ.

Proof. With the aim of Plancherel’s identity (cf. Theorem 4.1 of Bhattacharya and R.
Ranga Rao (1976)) we check that for all t (see also, Does and Klaassen (1984))∫ ∞

−∞
|Ψin(t, τ )|2 dτ = 2π

√
n

∫ ∞
0

exp(−2u)du = π
√
n.

From this and Holder’s inequality it follows that∫ ∞
−∞
|Ψim(t, τ )Ψkm(t, τ )|dτ ≤ π

√
n, 1 ≤ i, k ≤ n (6)

and hence ∫ ∞
−∞
|Ψn(t, τ )|dτ ≤ π

√
n. (7)

In view of (3.3) and (3.5), Fourier inversion of

Ψn(t, τ ) =
∫ ∞
−∞

exp{iτx}pn(x)E(exp{itσ−1
n Tn(Y )}/Sn = x)dx

yields Lemma 1. Put Kn = C2 min(
√
n, β−1

3n ), . . .C2 = 1− 6/
√

37,

A(t, τ ) = {(t, τ ) : |t| ≤ Kn, τ ∈ (−∞,∞)}
A1(t, τ ) = {(t, τ ) : |t| ≤ C4β

−1/s
sn , |τ ≤ C4n

(s−2)/2}

A2(t, τ ) =
{

(t, τ ) : |t| ≤ Kn, |τ | ≤
1
6
√
n

}
A3(t, τ ) =

{
(t, τ ) : |t| ≤ Kn, |τ | >

1
6
√
n

}
,

where 0 < C4 < 1/6. From Lemma 1 we have

Jk ≡
∫
|t|≤Kn(ε)

|Dk
t (ϕn(t)− exp{−t2/2})|dt

≤ 1
2πpn(0)

[∫ ∫
A1(t,τ)

|Dk
t (Ψn(t, τ )− exp{−(t2 + τ2)/2})|dtdτ

+
∫ ∫

A2(t,τ)−A1(t,τ)

|Dk
t Ψn(t, τ )|dtdτ +

∫ ∫
A3(t,τ)

|Dk
t Ψn(t, τ )|dtdτ

+
∫ ∫

A(t,τ)−A1(t,τ)

|t|k exp{−(t2 + τ2)/2}dtdτ
]

+
1√
2π

∣∣∣∣ 1√
2πpn(0)

− 1
∣∣∣∣ ∫ ∫

A(t,τ)

|t|k exp{−(t2 + τ2)/2}dtdτ. (8)
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Let the symbols J1k, J2k, J3k, J4k be summands in the brackets, correspondingly, and J5k

be the outside of the summand bracket on the right hand side of (3.5). 2

Lemma 2. 1. If (t, τ ) ∈ A1(t, τ ) then for each k : 0 ≤ k ≤ s there is a constant
C5(s, k) such that

|Dk
t (Ψn(t, τ )− exp{−(t2 + τ2)/2})| ≤ C5(s, k)

(
β3n + βsn +

1√
n

)
(

1 + |t|3(s−2)+k + |t|3(s−2)4k
)

exp{−(t2 + τ2)/4}.

2. If (t, τ ) ∈ A2(t, τ ) , then for k = 0, 1

|Dk
t Ψn(t, τ )| ≤ (t2 + τ2)k exp{−(t2 + τ2)/4}.

Proof. Let Pm(t, τ ), r = 1, 2, . . . be a well-known polinomials on the theory of
asymptotical expansion of a characteristic functions of a sum of independent r.v.s. (see,
Bhattachareya, Rao (1976), the functions P̃r(iBt, {χν}), p.52, 82).

From Theorem 9.11 (Bhattachareya, Rao (1976)) and properties (2.1) it follows
that there is constant C6(s, k) such that for each k : 0 ≤ k ≤ s, . . . and (t, τ ) ∈ A1(t, τ )
the inequality ∣∣∣∣∣Dk

t (Ψn(t, τ )− exp
{
−t2 + τ2/2

}(
1 +

s−3∑
r=1

Pr(t, τ )
nr/2

)∣∣∣∣∣
≤ C6(s, k)

(
βsn + n−(s−2)/2

)(
1 + (t2 + τ2)3(s−2)+k)

)
exp{−(t2 + τ2)/4} (9)

is hold true. A same reasoning as in proof Lemma 9.5 (Bhattachareya, Rao (1976, p.71)
give us that

|n−r/2Pm(t, τ )| ≤ C7(r)(βr+2,n + n−r/2)(1 + (t2 + τ2)3r−k) (10)

The inequalities (3.5) and (3.6) and βkn ≤ β3n + βsn, 3 ≤ k ≤ s , implies part 1 of
Lemma 2.

Put Jr = (j1, . . . , jr) is an r subset of the set N = (1, . . . , n), r ≥ 0, J0 = ∅ ,
and (Jr) is collection of all Jr . It is easy to see that

|Dk
t Ψn(t, τ )| ≤

k∑
r=0

C(r, k)
∑
(Jr)

∏
i∈N−Jf

|Ψin(t, τ )|
∏
j∈Jf

|Dγj
t Ψjn(t, τ )|, (11)
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where γj1 , . . . , γjr are non negative integers such that γj1 + · · ·+ γjf = k . We have

|Ψmn(t, τ )|2 ≤ 1− E(tXm + τY m)2 +
2
3
E|tXm + τY m|3

≤ exp{−E(tXm + τY m)2 +
2
3
E |tXm + τY m|3}.

Thereto, using inequality between moments of r.v.s, we get

exp
{
E(tXm + τY m)2 − 2

3
E |tXm + τY m|3

}
≤ e1/3

since maxy≥0(y2 − 2
3y

3) ≤ 1
3 . Hence, recollecting (2.2) and that |a+ b|3 ≤ 4(|a|3 + |b|3),

we obtain ∏
i∈N−Jf

|Ψin(t, τ )| ≤ er/3 exp{−(t2 + τ2)/4}. (12)

Obviously
|DtΨmn(t, τ )| ≤ (|t|+ |τ |)EX2

m + |τ |EY 2
m, (13)

and
|Dk

t Ψmn(t, τ )| ≤ E|Xm|k ≤ EX
2

m + E|Xm|s.

Putting dm = max{(|t|+ |τ |)EX2

m + |τ |EY 2

m, . . .EX
2

m + E|Xm|s} we get

∑
(Jr)

∏
j∈Jf

|Dγj
t Ψjn(t, τ )| ≤

(
n∑

m=1

dm

)r
≤ C(s) max(1, |t|+ |τ |)r. (14)

The second part of Lemma 2 follows from (3.8), (3.9), (3.11).
Using Lemma 2 we find that

|J1k + J2k| ≤ C(s)(βsn + n−(s−2)/2). (15)

With the aid of the inequality x < exp(x − 1) we have for any m = 1, . . . , n and
(t, τ ) ∈ A3(t, τ )

|Ψmn(t, τ )| = |E exp{iτY m}(exp{itXm} − 1)| ≤ |E exp{itY m}|
+|t|E|Xm| ≤ exp{−(1− |E exp{iτY m}|) + |t|E|Xm|}

≤ exp{−(1− (1 + τ2/n)−1/2) + |t|E|Xm|} (16)
≤ exp{−2C0 + |t|E|Xm|} (17)

because |E exp{iτY m}| = (1 + τ2/
√
n)−1/2 and |τ | >

√
n/6.

Using (3.10), and that |DtΨmn(t, τ )| ≤ E|Xm| we get

∑
(Jr)

∏
j∈Jf

|Dβj
t Ψjn(t, τ )|

 ≤ ( n∑
m=1

(
E|Xm|+ EX

2

m + E|Xm|s
))r

≤ C(r)nr/2. (18)
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From (3.8), (3.13), (3.14) and (3.3) we have

J3k ≤ C(k)n(r+1)/2 exp{−C0n} (19)

because n > s+ 1, and |t| ≤ Kn ≤ C0
√
n .

For J4k the obviously estimate

|J4k| ≤ C(βsn + n(s−2)/2) (20)

is true.
Since pn(0) = nn−

1
2 (n!)−1 exp(−n) then with the aid Stirlings formula we obtain∣∣∣∣ 1√

2πpn(0)
− 1
∣∣∣∣ ≤ C

n
. (21)

Hence the bound
|J5k| ≤

C

n
(22)

is true.
In the (3.4) we replace summands by its bounds from (3.7), (3.12), (3.15), (3.16),

(3.18) and for factor pn(0) using the (3.17). Then we find

|Jk| ≤ C
(
β3n + βsn +

1√
n

)
. (23)

Putting in (3.1) T = Kn and using (3.19) we complete the proof of the theorem. 2
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