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WEIGHTED ERGODIC AVERAGES

M.D. Ha

Abstract

Let (X,F,)\) be the unit circle S' = {z € C : |z| = 1} with the usual o-
algebra F of Lebesgue measurable subsets and the normalized Lebesgue measure
A. Consider a sequence v, : N = R, v, (k) >0, 332 v,(k) = 1. For any measure-
preserving 7 : X — X | this sequence induces a sequence (7,)T° of bounded, linear
operators on LP(X), 1< p < oo, by defining

Tuf =Y wvalk) for*, n=1,2,....
k=1

We shall prove that under suitable conditions imposed on 7 and (v,,){°, there exists a
large collection of measurable characteristic functions f for which limsup,,_, . Tnf—
liminf,,—oo Tnf =1 a.eon X.
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1. Introduction

The classical ergodic theorem of Birkhoff states that if 7 is an ergodic transforma-
tion on a probability space (X, F, i), then for each f € L'(X), we have

almost everywhere (on X ). So, the sequence

1Nk h
Lxeerf

of averages of f under iterates of 7 converges a.e. for all f in L'(X).

*AMS (MOS) subject classification (1985 revision): Primary: 28D99, Secondary: 60F99

61



HA

A natural question that arises from the above is that instead of considering the
sequence of usual average of f under iterates of 7 as above, what would happen if we
consider sequence of weighted averages, i.e., averages of the form

o0
Z Vn(k)f o Tka
k=1

where v, (k) > 0 for all n, k and

o0
k) =1, n=12,...,
k=1

and investigate its behaviour with respect to convergence. This question has been con-
sidered by several authors, including those given in [1] and [4] of the references. For our
present purpose, we shall refer to any sequence

(o)
v:N—->R, v(k)>0, Zy(kz)zl
k=1

as weights.
Now, let (v,,)$° be a sequence of weights. For any probability space (X, F, u) and
any ergodic 7: X — X, this sequence of weights induces a sequence of operators

(T,)° : LNX, F,p) — LY(X, F, ),

where each T, is defined by the following formula:
(o)
Tnfzzyn(k:) fork n=1,2,....
k=1

If we assume that the measure algebra of the space X under consideration is normalized,
non-atomic, and separable, it is a standard result in ergodic theory that in the study of
such averages, it is enough to consider the special case where (X, F,\) is the unit circle
St = {z € C: |z| = 1} with the usual o-algebra F of Lebesgue measurable subsets and
the normalized Lebesgue measure A, and where 7 is an ergodic rotation 7(z) = z.z on
S! for some fixed z, in S!.

The purpose of this note is to give an elementary proof of the following result. For
many other related results, the readers should consult [1].

Theorem. Let (v,)° and (T},)5° be as above. Assume that z. € S*, which defines T,

has the following properties:
Given any arc J on the unit circle S', there exists A(J) C N such that
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Then, given € >0, N €N, there exists a set B € F, AB) < € such that
A (sup Toxs >1 —e> =1.
n>N

Consequently, there exists a dense subset R of F such that if A € R,

lim sup Tpxa =1 a.eand lim inf T,xa=0 a.e
n—00 n—00

(Recall that if (X, F, p) is a probability space and if we define p(4, B) = u(AAB)
for A, B in F, then this p induces a metric on F if we identify sets that differ from each
other by a set of measure zero.)

2. Some Lemmas

The proof of our theorem follows from the following two simple lemmas. To simplify
notation, let us define for n; € N, £=1,2,...,00, w €S,

4

S’flj = Z vn,;(k) and Sflj (w) = Z Un, (k)w".

k=1 k=1

We also let {t} denote the fractional part of a real number ¢, and ¥ is the complex
conjugate of v € C.

Lemma 1. Assume i) and ii) of the previous theorem hold. Let 0 < ¢, and N € N
be given. There exists an integer K > N and K points zi,...,2x € S', integers
ni,n2,...,Nk, each n; > K, and an integer m € N such that

(1) [Sp(e") — 2zl <mforall j=1,2,..., K
(ii) Any arc of length e contains at least 3 points among z1,. .., 2Kk .

Proof. (i) Let 0 < ¢, n and N € N be given. Choose K > N, K € N such that

8
= < €. Fix some 77 > 0 with ﬁ<min(77, ﬁ)

K
Let I; = {e*™@ : 2 € (—7,7)} and for j =2,3,... K, let
. j-1 . -1
I = 271'11: c — 7,
femee (e )

63



HA

be K arcs on S' of equal arc lengths. By hypothesis, there exists m; € N and large
integers nq, h1 > K and some z; € I; such that

Sh() —zl <4 and Sh>1-1 (1)
Again, by assumption, there exists a dense set Dy C S! such that lim, ., S°(2) exists
and belongs to Iy for each z € Dy, and moreover, each element of Dy is of the form 2
for some n € N. Choose 2" € Dy with |22 — ml| so small (so that |z72F — zmak| s
very small for each k = 1,2,---hy) so that |SP (27"2) — 21| < L. Since lim, o0 S5°(27"2)
exists and belongs to I3, there exists hy,no > K and z3 € I With

[\Cl Bt

|Sh2( m2 —22| <

N |

and SP2>1- 2. (2)

Again, there exists a dense set D3 C S! such that lim,, ., S2°(2) exists and belong to
I3 and each element z of D3 is of the form 2z for some n € N. Choose 21”3 € D3 with
|zms — 2| very small for j = 1,2, so that |SP1(2") — 21| < 2 and |Sh2(2Ms) — 20| < 1.
Also, because lim,, oo S°(sT3) exists and belong to I3, there exists z3 € I3 and mtegers
hs,n3 > K such that |Shs(27"*) — 23] < Z and 2 > 1 — 1. Continuing this process
to the K'" stage, we obtain an integer m = mg and 21, .. 2K, #zj € Ij, integers
hj, nj > K for j =1,2,..., K such that

] n

) n ) .
|Sﬁ;—zj|<§ and Sﬁ;>1—2 forall j=1,2,..., K.

Hence, it follows that for each j=1,2,... K,
(oo}

S8 (2) = 2| < ISh () = 2+ | D v, (k)21 <
k=hji1

+—=n<n.

N |
N |

This completes the proof of (i).
(ii) Each arc I; has arc-length 27(27) = 477 and the gap between 2 adjacent arcs
is 27(+& — 27). So any arc of length

1 2 6 8T
4(47n 21 | —= — 27 =4+ ===
(7r77)+3[7r(K 77>]<7T(K+K> o <¢
must contain 3 points among those of 21, 2o, ..., 2k - O

We shall need the following lemma

Lemma 2. ([1]) Let €, p > 0 be given. Then there exists 0 < n = (e, p) satisfying the
following.
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For any probability measure p on R,

(1) =1 <n = u(Ge) < p.

Here, G, = U2

oo (e+k, 1—e+k)and o : R — C is the Fourier transform of y defined
by

a(t) :/ eFm du(z), tER.
R
Using the above, we will show the following:

Lemma 3. Let §,p > 0 be given. Then there exists 0 < n =n(d, p) such that

Zy(kz)zk—l <n= Z

k=1 |zk—1]>6

whenever v(k) >0, 22, v(k) =1 and (2;)5 C S*.

Proof. Let §,p > 0 be given. Choose € > 0 such that whenever t € R, {t} €
(6,1 —¢) & [e*™ — 1| > §. Let 0 < n = n(e,p) be as in Lemma 2. Note that € = ()
so that n = (4, p). Suppose v(k) > 0, X2 ,v(k) =1 and (z)7° C S'. Write 25, as
2 = e¥™ . € R, k=1,2,.... Define a probability measure p on R by pu(ty) = v(k),
so that p has support contained in {t1,t2,...}. We then have

LS LS
ﬂ(l) _ / 27rmdu Z eQT(’Ltk tk _ Z v
R k=1

=1

By Lemma 2. above, we get

(1) = 1] <n = w(Ge) < p,

and this completes the proof, because

:ZM(E—l—kz,l—e-i-k’): Z plte) = Z v(k).
k=1

{tr}€(e,1—¢) |z —1]>6

Lemma 4. Given ¢y > 0, there exists 79 > 0 such that

> k) — 7
k=1

<Ny = Z l/n(k’)>1—€0

[ —7[<eo
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for all sequences (v,,)$° of weights, and all (y,)> C St, v € St.

Proof. Given ¢y >0, let § = p=%. Choose n=17(d,p) as in Lemma 3. Now, suppose
(v,)$° is any sequence of weights and let (7%)$° € S, « € S! be arbitrary. Then, by
Lemma 3, for every n,

Zyn ’Yk_

Thus, if we let 19 = 1, we then have, for every n,

D vk — 7
k=1

Yl <nNo = Z 1—0p.

[ —7|<6

<mo= Z vn(k) > 1 — €.

[k —7[<eo

3. Proof of the Theorem

Let € >0, N €N be given. Let ¢ = {5. Choose 19 > 0 as in Lemma 4. Then
by Lemma 1, there exists K > N and integers ni,...,ng, each n; > K > N and points
21,..., 2K in St and an integer m satisfying (i) and (ii) with €g, 79 in place of €, there.
Let J be any arc on S! of length €. Let B = P,,}(J), where P,,(z) = 2™ for all z in
S!. Suppose z € S'. Let J, =2™J so that J, has arc length = ¢. Let p be the middle
point of J. and let .J. be the arc centered at p with length ¢g. By Lemma 1, J. must
contain at least three adjacent points among those of z1,...,2K. Let 2z, be the middle
point of these three. Then [S2°(2]") — z4| < 7o, hence, by Lemma 4

Z Un,(k) > 1 — €.
|zmk —z4|<eo

Now, [2mF — 2| < € = 2™ € J, (since J, contains J. in the middle and J, has
arc-length very small compare to that of J,).

Thus we have
Z Un, (k) >1—¢ = Z Un, (k) > 1 — €.

|ziF —z4]|<eo zmkel,

Now, 2% € J, & (22F)™ € J & 22F € B, hence,

sup Tnxp(z) = sup ZV" )xB(22F) = sup Z v (k
n>N n>N n>N 22kEB
> Y k)= > vm(k)>1->1—¢c
zzkeB zmkeJ,
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Since, z € S! was arbitrary, this clearly implies

A ({sup Toxp >1— e}) =1,
n>N

Finally to see the other conclusions of the theorem, we let

as to be shown.

G A=Tyxa, n=12...; AeM.

Then if A and B are disjoint

(oo}
Gn(AUB) = Toxavsp = Z vn(k)xavp o "
k=1

3] 3]

= Z Vn(k)xa o T+ Z vn(k)xp © *
k=1 k=1

= TnXA + TnXB =G, A+ G,B.

Also, (Gp)*° is a sequence of monotone linear maps which are continuous in measure
with

Gn(Sl) = Zyn(k)XSl otk = Zl/n(k) =1
k=1 k=1

and such that given € > 0, N € N, there exists B € F, A(B) < € with

A({sup G.B >1—6}> z)\({suanXB > 1—6}) =1
n>N n>N

Hence, by Theorem 1.3 of [3], the conclusion of our theorem follows.
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