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WEIGHTED ERGODIC AVERAGES

M.D. Ha

Abstract

Let (X,F , λ) be the unit circle S1 = {z ∈ C : |z| = 1} with the usual σ -
algebra F of Lebesgue measurable subsets and the normalized Lebesgue measure
λ . Consider a sequence νn : N→ R, νn(k) ≥ 0, Σ∞k=1νn(k) = 1. For any measure-
preserving τ : X → X , this sequence induces a sequence (Tn)∞1 of bounded, linear
operators on Lp(X), 1 ≤ p ≤∞ , by defining

Tnf =

∞∑
k=1

νn(k) f ◦ τk , n = 1, 2, . . . .

We shall prove that under suitable conditions imposed on τ and (νn)∞1 , there exists a
large collection of measurable characteristic functions f for which lim supn→∞ Tnf−
lim infn→∞ Tnf = 1 a.e on X .

Keywords: Weights, weighted averages, Fourier transforms.

1. Introduction

The classical ergodic theorem of Birkhoff states that if τ is an ergodic transforma-
tion on a probability space (X,F , µ), then for each f ∈ L1(X), we have

lim
n→∞

1
n

∞∑
k=1

f ◦ τk =
∫
X

f dµ

almost everywhere (on X ). So, the sequence{
1
n

n∑
k=1

f ◦ τk
}∞
n=1

of averages of f under iterates of τ converges a.e. for all f in L1(X).
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A natural question that arises from the above is that instead of considering the
sequence of usual average of f under iterates of τ as above, what would happen if we
consider sequence of weighted averages, i.e., averages of the form

∞∑
k=1

νn(k)f ◦ τk,

where νn(k) ≥ 0 for all n, k and

∞∑
k=1

νn(k) = 1, n = 1, 2, . . . ,

and investigate its behaviour with respect to convergence. This question has been con-
sidered by several authors, including those given in [1] and [4] of the references. For our
present purpose, we shall refer to any sequence

ν : N→ R, ν(k) ≥ 0,
∞∑
k=1

ν(k) = 1

as weights.
Now, let (νn)∞1 be a sequence of weights. For any probability space (X,F , µ) and

any ergodic τ : X → X , this sequence of weights induces a sequence of operators

(Tn)∞1 : L1(X,F , µ)→ L1(X,F , µ),

where each Tn is defined by the following formula:

Tnf =
∞∑
k=1

νn(k) f ◦ τk, n = 1, 2, . . . .

If we assume that the measure algebra of the space X under consideration is normalized,
non-atomic, and separable, it is a standard result in ergodic theory that in the study of
such averages, it is enough to consider the special case where (X,F , λ) is the unit circle
S1 = {z ∈ C : |z| = 1} with the usual σ -algebra F of Lebesgue measurable subsets and
the normalized Lebesgue measure λ , and where τ is an ergodic rotation τ (z) = z∗z on
S1 for some fixed z∗ in S1 .

The purpose of this note is to give an elementary proof of the following result. For
many other related results, the readers should consult [1].

Theorem. Let (νn)∞1 and (Tn)∞1 be as above. Assume that z∗ ∈ S1 , which defines τ ,
has the following properties:
Given any arc J on the unit circle S1 , there exists Λ(J) ⊆ N such that
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i) D = {zm∗ : m ∈ Λ(J)} is dense in S1

ii) lim
n→∞

∞∑
k=1

νn(k)zk exists and belong to J for all z in D .

Then, given ε > 0, N ∈ N , there exists a set B ∈ F , λ(B) < ε such that

λ

(
sup
n≥N

TnχB > 1− ε
)

= 1.

Consequently, there exists a dense subset R of F such that if A ∈ R,

lim sup
n→∞

TnχA = 1 a.e and lim inf
n→∞

TnχA = 0 a.e

(Recall that if (X,F , µ) is a probability space and if we define ρ(A,B) = µ(A∆B)
for A,B in F , then this ρ induces a metric on F if we identify sets that differ from each
other by a set of measure zero.)

2. Some Lemmas

The proof of our theorem follows from the following two simple lemmas. To simplify
notation, let us define for nj ∈ N, ` = 1, 2, . . . ,∞, ω ∈ S1 ,

S`nj =
∑̀
k=1

νnj(k) and S`nj (w) =
∑̀
k=1

νnj(k)wk.

We also let {t} denote the fractional part of a real number t , and γ is the complex
conjugate of γ ∈ C .

Lemma 1. Assume i) and ii) of the previous theorem hold. Let 0 < ε, η and N ∈ N
be given. There exists an integer K > N and K points z1, . . . , zK ∈ S1 , integers
n1, n2, . . . , nK , each nj > K , and an integer m ∈ N such that

(i) |S∞nj(zm∗ )− zj | ≤ η for all j = 1, 2, . . . , K

(ii) Any arc of length ε contains at least 3 points among z1, . . . , zK .

Proof. (i) Let 0 < ε, η and N ∈ N be given. Choose K > N, K ∈ N such that
8π
K

< ε . Fix some η̃ > 0 with η̃ < min
(
η, 1

2K

)
.

Let I1 = {e2πix : x ∈ (−η̃, η̃)} and for j = 2, 3, . . .K , let

Ij =
{
e2πix : x ∈

(
j − 1
K
− η̃, j − 1

K
+ η̃

)}
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be K arcs on S1 of equal arc lengths. By hypothesis, there exists m1 ∈ N and large
integers n1, h1 > K and some z1 ∈ I1 such that

|Sh1
n1

(zm1
∗ )− z1| <

η̃

2
and Sh1

n1
> 1− η̃

2
. (1)

Again, by assumption, there exists a dense set D2 ⊆ S1 such that limn→∞ S
∞
n (z) exists

and belongs to I2 for each z ∈ D2 , and moreover, each element of D2 is of the form zn∗
for some n ∈ N . Choose zm2

∗ ∈ D2 with |zm2
∗ − zm1

∗ | so small (so that |zm2k
∗ − zm1k

∗ | is
very small for each k = 1, 2, · · ·h1 ) so that |Sh1

n1
(zm2
∗ )− z1| < η̃

2 . Since limn→∞ S
∞
n (zm2

∗ )
exists and belongs to I2 , there exists h2, n2 > K and z2 ∈ I2 with

|Sh2
n2

(zm2
∗ )− z2| <

η̃

2
and Sh2

n2
> 1− η̃

2
. (2)

Again, there exists a dense set D3 ⊆ S1 such that limn→∞ S
∞
n (z) exists and belong to

I3 and each element z of D3 is of the form zn∗ for some n ∈ N . Choose zm3
∗ ∈ D3 with

|zm3
∗ −z

mj
∗ | very small for j = 1, 2, so that |Sh1

n1
(zm3
∗ )−z1 | < η̃

2 and |Sh2
n2

(zm3
∗ )−z2 | < η̃

2 .
Also, because limn→∞ S

∞
n (sm3

∗ ) exists and belong to I3 , there exists z3 ∈ I3 and integers
h3, n3 > K such that |Sh3

n3
(zm3
∗ ) − z3| < η̃

2
and Sh3

n3
> 1 − η̃

2
. Continuing this process

to the Kth stage, we obtain an integer m = mK and z1, . . . , zK , zj ∈ Ij , integers
hj, nj > K for j = 1, 2, . . . , K such that

|Shjnj − zj | <
η̃

2
and Shjnj > 1− η̃

2
for all j = 1, 2, . . . , K.

Hence, it follows that for each j = 1, 2, . . . , K ,

|S∞nj (z
m
∗ ) − zj | ≤ |Shjnj (z

m
∗ )− zj |+

∣∣∣∣∣∣
∞∑

k=hj+1

νnj(k)zmk∗

∣∣∣∣∣∣ < η̃

2
+
η̃

2
= η̃ < η.

This completes the proof of (i).
(ii) Each arc Ij has arc-length 2π(2η̃) = 4πη̃ and the gap between 2 adjacent arcs

is 2π( 1
K
− 2η̃). So any arc of length

4(4πη̃) + 3
[
2π
(

1
K
− 2η̃

)]
< π

(
2
K

+
6
K

)
=

8π
K

< ε

must contain 3 points among those of z1, z2, . . . , zK . 2

We shall need the following lemma

Lemma 2. ([1]) Let ε, ρ > 0 be given. Then there exists 0 < η = η(ε, ρ) satisfying the
following.
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For any probability measure µ on R ,

|µ̂(1) − 1| < η⇒ µ(Gε) < ρ.

Here, Gε = ∪∞k=−∞ (ε+k, 1−ε+k) and µ̂ : R→ C is the Fourier transform of µ defined
by

µ̂(t) =
∫
R

e2πixtdµ(x), t ∈ R.

Using the above, we will show the following:

Lemma 3. Let δ, ρ > 0 be given. Then there exists 0 < η = η(δ, ρ) such that∣∣∣∣∣
∞∑
k=1

ν(k)zk − 1

∣∣∣∣∣ < η⇒
∑

|zk−1|>δ
ν(k) < ρ

whenever ν(k) ≥ 0, Σ∞k=1ν(k) = 1 and (zk)∞1 ⊆ S1 .
Proof. Let δ, ρ > 0 be given. Choose ε > 0 such that whenever t ∈ R, {t} ∈
(ε, 1− ε) ⇔ |e2πit − 1| > δ . Let 0 < η = η(ε, ρ) be as in Lemma 2. Note that ε = ε(δ)
so that η = η(δ, ρ). Suppose ν(k) ≥ 0, Σ∞k=1ν(k) = 1 and (zk)∞1 ⊆ S1 . Write zk as
zk = e2πitk , tk ∈ R, k = 1, 2, . . .. Define a probability measure µ on R by µ(tk) = ν(k),
so that µ has support contained in {t1, t2, . . .} . We then have

µ̂(1) =
∫
R

e2πixdµ(x) =
∞∑
k=1

e2πitkµ(tk) =
∞∑
k=1

ν(k)zk.

By Lemma 2. above, we get

|µ̂(1) − 1| < η⇒ µ(Gε) < ρ,

and this completes the proof, because

µ(Gε) =
∞∑
k=1

µ(ε + k, 1− ε+ k) =
∑

{tk}∈(ε,1−ε)
µ(tk) =

∑
|zk−1|>δ

ν(k).

2

Lemma 4. Given ε0 > 0, there exists η0 > 0 such that∣∣∣∣∣
∞∑
k=1

νn(k)γk − γ
∣∣∣∣∣ < η0 ⇒

∑
|γk−γ|<ε0

νn(k) > 1− ε0
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for all sequences (νn)∞1 of weights, and all (γk)∞ ⊆ S1, γ ∈ S1 .
Proof. Given ε0 > 0, let δ = ρ = ε0

2 . Choose η = η(δ, ρ) as in Lemma 3. Now, suppose
(νn)∞1 is any sequence of weights and let (γk)∞1 ⊆ S1, γ ∈ S1 be arbitrary. Then, by
Lemma 3, for every n ,∣∣∣∣∣

∞∑
k=1

νn(k)γk − γ
∣∣∣∣∣ < η0 ⇒

∑
|γk−γ|≤δ

νn(k) ≥ 1− ρ.

Thus, if we let η0 = η , we then have, for every n ,∣∣∣∣∣
∞∑
k=1

νn(k)γk − γ
∣∣∣∣∣ < η0 ⇒

∑
|γk−γ|<ε0

νn(k) > 1− ε0.

2

3. Proof of the Theorem

Let ε > 0, N ∈ N be given. Let ε0 = ε
10 . Choose η0 > 0 as in Lemma 4. Then

by Lemma 1, there exists K > N and integers n1, . . . , nK , each nj > K > N and points
z1, . . . , zK in S1 and an integer m satisfying (i) and (ii) with ε0, η0 in place of ε, η there.
Let J be any arc on S1 of length ε . Let B = P−1

m (J), where Pm(z) = zm for all z in
S1 . Suppose z ∈ S1 . Let Jz = zmJ so that Jz has arc length = ε . Let p be the middle
point of Jz and let J̃z be the arc centered at p with length ε0 . By Lemma 1, J̃z must
contain at least three adjacent points among those of z1, . . . , zK . Let zq be the middle
point of these three. Then |S∞nq(z

m
∗ )− zq| < η0 , hence, by Lemma 4∑

|zmk∗ −zq|<ε0

νnq(k) ≥ 1− ε0.

Now, |zmk∗ − zq| < ε ⇒ zmk∗ ∈ Jz (since Jz contains J̃z in the middle and J̃z has
arc-length very small compare to that of Jz ).

Thus we have ∑
|zmk∗ −zq|<ε0

νnq(k) > 1− ε0 ⇒
∑

zmk∗ ∈Jz

νnq(k) > 1− ε0.

Now, zmk∗ ∈ Jz ⇔ (zzk∗ )m ∈ J ⇔ zzk∗ ∈ B , hence,

sup
n≥N

TnχB(z) = sup
n≥N

∞∑
k=1

νn(k)χB(zzk∗ ) = sup
n≥N

∑
zzk∗∈B

νn(k)

≥
∑
zzk∗∈B

νnq(k) =
∑

zmk∗ ∈Jz

νnq(k) > 1− ε0 > 1− ε.
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Since, z ∈ S1 was arbitrary, this clearly implies

λ

({
sup
n≥N

TnχB > 1− ε
})

= 1,

as to be shown.
Finally to see the other conclusions of the theorem, we let

GnA = TnχA, n = 1, 2, . . . ; A ∈M.

Then if A and B are disjoint

Gn(AUB) = TnχAUB =
∞∑
k=1

νn(k)χAUB ◦ τk

=
∞∑
k=1

νn(k)χA ◦ τk +
∞∑
k=1

νn(k)χB ◦ τk

= TnχA + TnχB = GnA+ GnB.

Also, (Gn)∞ is a sequence of monotone linear maps which are continuous in measure
with

Gn(S1) =
∞∑
k=1

νn(k)χS1 ◦ τk =
∞∑
k=1

νn(k) = 1

and such that given ε > 0, N ∈ N , there exists B ∈ F , λ(B) < ε with

λ

({
sup
n≥N

GnB > 1− ε
})

= λ

({
sup
n≥N

TnχB > 1− ε
})

= 1.

Hence, by Theorem 1.3 of [3], the conclusion of our theorem follows.
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