Tr. J. of Mathematics
22 (1998), $61-68$.
(c) TÜBITTAK

WEIGHTED ERGODIC AVERAGES

M.D. Ha

Abstract

Let $(X, \mathcal{F}, \lambda)$ be the unit circle $\mathbb{S}^{1}=\{z \in \mathbb{C}:|z|=1\}$ with the usual σ algebra \mathcal{F} of Lebesgue measurable subsets and the normalized Lebesgue measure λ. Consider a sequence $\nu_{n}: \mathbb{N} \rightarrow \mathbb{R}, \quad \nu_{n}(k) \geq 0, \quad \sum_{k=1}^{\infty} \nu_{n}(k)=1$. For any measurepreserving $\tau: X \rightarrow X$, this sequence induces a sequence $\left(T_{n}\right)_{1}^{\infty}$ of bounded, linear operators on $L^{p}(X), 1 \leq p \leq \infty$, by defining $$
T_{n} f=\sum_{k=1}^{\infty} \nu_{n}(k) f \circ \tau^{k}, \quad n=1,2, \ldots
$$

We shall prove that under suitable conditions imposed on τ and $\left(\nu_{n}\right)_{1}^{\infty}$, there exists a large collection of measurable characteristic functions f for which $\limsup _{n \rightarrow \infty} T_{n} f-$ $\liminf _{n \rightarrow \infty} T_{n} f=1$ a.e on X.

Keywords: Weights, weighted averages, Fourier transforms.

1. Introduction

The classical ergodic theorem of Birkhoff states that if τ is an ergodic transformation on a probability space (X, \mathcal{F}, μ), then for each $f \in L^{1}(X)$, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{\infty} f \circ \tau^{k}=\int_{X} f d \mu
$$

almost everywhere (on X). So, the sequence

$$
\left\{\frac{1}{n} \sum_{k=1}^{n} f \circ \tau^{k}\right\}_{n=1}^{\infty}
$$

of averages of f under iterates of τ converges a.e. for all f in $L^{1}(X)$.

[^0]A natural question that arises from the above is that instead of considering the sequence of usual average of f under iterates of τ as above, what would happen if we consider sequence of weighted averages, i.e., averages of the form

$$
\sum_{k=1}^{\infty} \nu_{n}(k) f \circ \tau^{k}
$$

where $\nu_{n}(k) \geq 0$ for all n, k and

$$
\sum_{k=1}^{\infty} \nu_{n}(k)=1, \quad n=1,2, \ldots
$$

and investigate its behaviour with respect to convergence. This question has been considered by several authors, including those given in [1] and [4] of the references. For our present purpose, we shall refer to any sequence

$$
\nu: \mathbb{N} \rightarrow \mathbb{R}, \quad \nu(k) \geq 0, \quad \sum_{k=1}^{\infty} \nu(k)=1
$$

as weights.
Now, let $\left(\nu_{n}\right)_{1}^{\infty}$ be a sequence of weights. For any probability space (X, \mathcal{F}, μ) and any ergodic $\tau: X \rightarrow X$, this sequence of weights induces a sequence of operators

$$
\left(T_{n}\right)_{1}^{\infty}: L^{1}(X, \mathcal{F}, \mu) \rightarrow L^{1}(X, \mathcal{F}, \mu)
$$

where each T_{n} is defined by the following formula:

$$
T_{n} f=\sum_{k=1}^{\infty} \nu_{n}(k) f \circ \tau^{k}, \quad n=1,2, \ldots
$$

If we assume that the measure algebra of the space X under consideration is normalized, non-atomic, and separable, it is a standard result in ergodic theory that in the study of such averages, it is enough to consider the special case where $(X, \mathcal{F}, \lambda)$ is the unit circle $\mathbb{S}^{1}=\{z \in \mathbb{C}:|z|=1\}$ with the usual σ-algebra \mathcal{F} of Lebesgue measurable subsets and the normalized Lebesgue measure λ, and where τ is an ergodic rotation $\tau(z)=z_{*} z$ on \mathbb{S}^{1} for some fixed z_{*} in \mathbb{S}^{1}.

The purpose of this note is to give an elementary proof of the following result. For many other related results, the readers should consult [1].

Theorem. Let $\left(\nu_{n}\right)_{1}^{\infty}$ and $\left(T_{n}\right)_{1}^{\infty}$ be as above. Assume that $z_{*} \in \mathbb{S}^{1}$, which defines τ, has the following properties:
Given any arc J on the unit circle \mathbb{S}^{1}, there exists $\Lambda(J) \subseteq \mathbb{N}$ such that

HA

i) $D=\left\{z_{*}^{m}: m \in \Lambda(J)\right\}$ is dense in \mathbb{S}^{1}
ii) $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \nu_{n}(k) z^{k}$ exists and belong to J for all z in D.

Then, given $\epsilon>0, N \in \mathbb{N}$, there exists a set $B \in \mathcal{F}, \lambda(B)<\epsilon$ such that

$$
\lambda\left(\sup _{n \geq N} T_{n} \chi_{B}>1-\epsilon\right)=1
$$

Consequently, there exists a dense subset \mathcal{R} of \mathcal{F} such that if $A \in \mathcal{R}$,

$$
\lim \sup _{n \rightarrow \infty} T_{n} \chi_{A}=1 \quad \text { a.e and } \quad \lim \inf _{n \rightarrow \infty} T_{n} \chi_{A}=0 \quad \text { a.e }
$$

(Recall that if (X, \mathcal{F}, μ) is a probability space and if we define $\rho(A, B)=\mu(A \Delta B)$ for A, B in \mathcal{F}, then this ρ induces a metric on \mathcal{F} if we identify sets that differ from each other by a set of measure zero.)

2. Some Lemmas

The proof of our theorem follows from the following two simple lemmas. To simplify notation, let us define for $n_{j} \in \mathbb{N}, \quad \ell=1,2, \ldots, \infty, \quad \omega \in \mathbb{S}^{1}$,

$$
S_{n_{j}}^{\ell}=\sum_{k=1}^{\ell} \nu_{n_{j}}(k) \quad \text { and } \quad S_{n_{j}}^{\ell}(w)=\sum_{k=1}^{\ell} \nu_{n_{j}}(k) w^{k} .
$$

We also let $\{t\}$ denote the fractional part of a real number t, and $\bar{\gamma}$ is the complex conjugate of $\gamma \in \mathbb{C}$.

Lemma 1. Assume i) and ii) of the previous theorem hold. Let $0<\epsilon, \eta$ and $N \in \mathbb{N}$ be given. There exists an integer $K>N$ and K points $z_{1}, \ldots, z_{K} \in \mathbb{S}^{1}$, integers $n_{1}, n_{2}, \ldots, n_{K}$, each $n_{j}>K$, and an integer $m \in \mathbb{N}$ such that
(i) $\left|S_{n_{j}}^{\infty}\left(z_{*}^{m}\right)-z_{j}\right| \leq \eta$ for all $j=1,2, \ldots, K$
(ii) Any arc of length ϵ contains at least 3 points among z_{1}, \ldots, z_{K}.

Proof. (i) Let $0<\epsilon, \eta$ and $N \in \mathbb{N}$ be given. Choose $K>N, K \in \mathbb{N}$ such that $\frac{8 \pi}{K}<\epsilon$. Fix some $\tilde{\eta}>0$ with $\tilde{\eta}<\min \left(\eta, \frac{1}{2 K}\right)$.

Let $I_{1}=\left\{e^{2 \pi i x}: x \in(-\tilde{\eta}, \tilde{\eta})\right\}$ and for $j=2,3, \ldots K$, let

$$
I_{j}=\left\{e^{2 \pi i x}: x \in\left(\frac{j-1}{K}-\tilde{\eta}, \quad \frac{j-1}{K}+\tilde{\eta}\right)\right\}
$$

HA

be K arcs on \mathbb{S}^{1} of equal arc lengths. By hypothesis, there exists $m_{1} \in \mathbb{N}$ and large integers $n_{1}, h_{1}>K$ and some $z_{1} \in I_{1}$ such that

$$
\begin{equation*}
\left|S_{n_{1}}^{h_{1}}\left(z_{*}^{m_{1}}\right)-z_{1}\right|<\frac{\tilde{\eta}}{2} \quad \text { and } \quad S_{n_{1}}^{h_{1}}>1-\frac{\tilde{\eta}}{2} \tag{1}
\end{equation*}
$$

Again, by assumption, there exists a dense set $D_{2} \subseteq \mathbb{S}^{1}$ such that $\lim _{n \rightarrow \infty} S_{n}^{\infty}(z)$ exists and belongs to I_{2} for each $z \in D_{2}$, and moreover, each element of D_{2} is of the form z_{*}^{n} for some $n \in \mathbb{N}$. Choose $z_{*}^{m_{2}} \in D_{2}$ with $\left|z_{*}^{m_{2}}-z_{*}^{m_{1}}\right|$ so small (so that $\left|z_{*}^{m_{2} k}-z_{*}^{m_{1} k}\right|$ is very small for each $\left.k=1,2, \cdots h_{1}\right)$ so that $\left|S_{n_{1}}^{h_{1}}\left(z_{*}^{m_{2}}\right)-z_{1}\right|<\frac{\tilde{\eta}}{2}$. Since $\lim _{n \rightarrow \infty} S_{n}^{\infty}\left(z_{*}^{m_{2}}\right)$ exists and belongs to I_{2}, there exists $h_{2}, n_{2}>K$ and $z_{2} \in I_{2}$ with

$$
\begin{equation*}
\left|S_{n_{2}}^{h_{2}}\left(z_{*}^{m_{2}}\right)-z_{2}\right|<\frac{\tilde{\eta}}{2} \quad \text { and } \quad S_{n_{2}}^{h_{2}}>1-\frac{\tilde{\eta}}{2} \tag{2}
\end{equation*}
$$

Again, there exists a dense set $D_{3} \subseteq \mathbb{S}^{1}$ such that $\lim _{n \rightarrow \infty} S_{n}^{\infty}(z)$ exists and belong to I_{3} and each element z of D_{3} is of the form z_{*}^{n} for some $n \in \mathbb{N}$. Choose $z_{*}^{m_{3}} \in D_{3}$ with $\left|z_{*}^{m_{3}}-z_{*}^{m_{j}}\right|$ very small for $j=1,2$, so that $\left|S_{n_{1}}^{h_{1}}\left(z_{*}^{m_{3}}\right)-z_{1}\right|<\frac{\tilde{\eta}}{2}$ and $\left|S_{n_{2}}^{h_{2}}\left(z_{*}^{m_{3}}\right)-z_{2}\right|<\frac{\tilde{\eta}}{2}$. Also, because $\lim _{n \rightarrow \infty} S_{n}^{\infty}\left(s_{*}^{m_{3}}\right)$ exists and belong to I_{3}, there exists $z_{3} \in I_{3}$ and integers $h_{3}, n_{3}>K$ such that $\left|S_{n_{3}}^{h_{3}}\left(z_{*}^{m_{3}}\right)-z_{3}\right|<\frac{\tilde{\eta}}{2}$ and $S_{n_{3}}^{h_{3}}>1-\frac{\tilde{\eta}}{2}$. Continuing this process to the $K^{t h}$ stage, we obtain an integer $m=m_{K}$ and $z_{1}, \ldots, z_{K}, \quad z_{j} \in I_{j}$, integers $h_{j}, n_{j}>K$ for $j=1,2, \ldots, K$ such that

$$
\left|S_{n_{j}}^{h_{j}}-z_{j}\right|<\frac{\tilde{\eta}}{2} \quad \text { and } \quad S_{n_{j}}^{h_{j}}>1-\frac{\tilde{\eta}}{2} \quad \text { for all } \quad j=1,2, \ldots, K
$$

Hence, it follows that for each $j=1,2, \ldots, K$,

$$
\left|S_{n_{j}}^{\infty}\left(z_{*}^{m}\right)-z_{j}\right| \leq\left|S_{n_{j}}^{h_{j}}\left(z_{*}^{m}\right)-z_{j}\right|+\left|\sum_{k=h_{j+1}}^{\infty} \nu_{n_{j}}(k) z_{*}^{m k}\right|<\frac{\tilde{\eta}}{2}+\frac{\tilde{\eta}}{2}=\tilde{\eta}<\eta
$$

This completes the proof of (i).
(ii) Each arc I_{j} has arc-length $2 \pi(2 \tilde{\eta})=4 \pi \tilde{\eta}$ and the gap between 2 adjacent arcs is $2 \pi\left(\frac{1}{K}-2 \tilde{\eta}\right)$. So any arc of length

$$
4(4 \pi \tilde{\eta})+3\left[2 \pi\left(\frac{1}{K}-2 \tilde{\eta}\right)\right]<\pi\left(\frac{2}{K}+\frac{6}{K}\right)=\frac{8 \pi}{K}<\epsilon
$$

must contain 3 points among those of $z_{1}, z_{2}, \ldots, z_{K}$.
We shall need the following lemma
Lemma 2. ([1]) Let $\epsilon, \rho>0$ be given. Then there exists $0<\eta=\eta(\epsilon, \rho)$ satisfying the following.

For any probability measure μ on \mathbb{R},

$$
|\hat{\mu}(1)-1|<\eta \Rightarrow \mu\left(G_{\epsilon}\right)<\rho
$$

Here, $G_{\epsilon}=\cup_{k=-\infty}^{\infty}(\epsilon+k, 1-\epsilon+k)$ and $\hat{\mu}: \mathbb{R} \rightarrow C$ is the Fourier transform of μ defined by

$$
\hat{\mu}(t)=\int_{R} e^{2 \pi i x t} d \mu(x), \quad t \in \mathbb{R}
$$

Using the above, we will show the following:
Lemma 3. Let $\delta, \rho>0$ be given. Then there exists $0<\eta=\eta(\delta, \rho)$ such that

$$
\left|\sum_{k=1}^{\infty} \nu(k) z_{k}-1\right|<\eta \Rightarrow \sum_{\left|z_{k}-1\right|>\delta} \nu(k)<\rho
$$

whenever $\nu(k) \geq 0, \quad \Sigma_{k=1}^{\infty} \nu(k)=1$ and $\left(z_{k}\right)_{1}^{\infty} \subseteq \mathbb{S}^{1}$.
Proof. Let $\delta, \rho>0$ be given. Choose $\epsilon>0$ such that whenever $t \in \mathbb{R}, \quad\{t\} \in$ $(\epsilon, 1-\epsilon) \Leftrightarrow\left|e^{2 \pi i t}-1\right|>\delta$. Let $0<\eta=\eta(\epsilon, \rho)$ be as in Lemma 2. Note that $\epsilon=\epsilon(\delta)$ so that $\eta=\eta(\delta, \rho)$. Suppose $\nu(k) \geq 0, \quad \sum_{k=1}^{\infty} \nu(k)=1$ and $\left(z_{k}\right)_{1}^{\infty} \subseteq \mathbb{S}^{1}$. Write z_{k} as $z_{k}=e^{2 \pi i t_{k}}, t_{k} \in \mathbb{R}, \quad k=1,2, \ldots$ Define a probability measure μ on \mathbb{R} by $\mu\left(t_{k}\right)=\nu(k)$, so that μ has support contained in $\left\{t_{1}, t_{2}, \ldots\right\}$. We then have

$$
\hat{\mu}(1)=\int_{R} e^{2 \pi i x} d \mu(x)=\sum_{k=1}^{\infty} e^{2 \pi i t_{k}} \mu\left(t_{k}\right)=\sum_{k=1}^{\infty} \nu(k) z_{k} .
$$

By Lemma 2. above, we get

$$
|\hat{\mu}(1)-1|<\eta \Rightarrow \mu\left(G_{\epsilon}\right)<\rho
$$

and this completes the proof, because

$$
\mu\left(G_{\epsilon}\right)=\sum_{k=1}^{\infty} \mu(\epsilon+k, 1-\epsilon+k)=\sum_{\left\{t_{k}\right\} \in(\epsilon, 1-\epsilon)} \mu\left(t_{k}\right)=\sum_{\left|z_{k}-1\right|>\delta} \nu(k) .
$$

Lemma 4. Given $\epsilon_{0}>0$, there exists $\eta_{0}>0$ such that

$$
\left|\sum_{k=1}^{\infty} \nu_{n}(k) \gamma_{k}-\gamma\right|<\eta_{0} \Rightarrow \sum_{\left|\gamma_{k}-\gamma\right|<\epsilon_{0}} \nu_{n}(k)>1-\epsilon_{0}
$$

for all sequences $\left(\nu_{n}\right)_{1}^{\infty}$ of weights, and all $\left(\gamma_{k}\right)^{\infty} \subseteq \mathbb{S}^{1}, \gamma \in \mathbb{S}^{1}$.
Proof. Given $\epsilon_{0}>0$, let $\delta=\rho=\frac{\epsilon_{0}}{2}$. Choose $\eta=\eta(\delta, \rho)$ as in Lemma 3. Now, suppose $\left(\nu_{n}\right)_{1}^{\infty}$ is any sequence of weights and let $\left(\gamma_{k}\right)_{1}^{\infty} \subseteq \mathbb{S}^{1}, \gamma \in \mathbb{S}^{1}$ be arbitrary. Then, by Lemma 3, for every n,

$$
\left|\sum_{k=1}^{\infty} \nu_{n}(k) \gamma_{k}-\bar{\gamma}\right|<\eta_{0} \Rightarrow \sum_{\left|\gamma_{k}-\bar{\gamma}\right| \leq \delta} \nu_{n}(k) \geq 1-\rho .
$$

Thus, if we let $\eta_{0}=\eta$, we then have, for every n,

$$
\left|\sum_{k=1}^{\infty} \nu_{n}(k) \gamma_{k}-\gamma\right|<\eta_{0} \Rightarrow \sum_{\left|\gamma_{k}-\gamma\right|<\epsilon_{0}} \nu_{n}(k)>1-\epsilon_{0} .
$$

3. Proof of the Theorem

Let $\epsilon>0, N \in \mathbb{N}$ be given. Let $\epsilon_{0}=\frac{\epsilon}{10}$. Choose $\eta_{0}>0$ as in Lemma 4. Then by Lemma 1 , there exists $K>N$ and integers n_{1}, \ldots, n_{K}, each $n_{j}>K>N$ and points z_{1}, \ldots, z_{K} in \mathbb{S}^{1} and an integer m satisfying (i) and (ii) with ϵ_{0}, η_{0} in place of ϵ, η there. Let J be any arc on \mathbb{S}^{1} of length ϵ. Let $B=P_{m}^{-1}(J)$, where $P_{m}(z)=z^{m}$ for all z in \mathbb{S}^{1}. Suppose $z \in \mathbb{S}^{1}$. Let $J_{z}=\bar{z}^{m} J$ so that J_{z} has arc length $=\epsilon$. Let \mathbf{p} be the middle point of J_{z} and let \tilde{J}_{z} be the arc centered at \mathbf{p} with length ϵ_{0}. By Lemma 1, \tilde{J}_{z} must contain at least three adjacent points among those of z_{1}, \ldots, z_{K}. Let z_{q} be the middle point of these three. Then $\left|S_{n_{q}}^{\infty}\left(z_{*}^{m}\right)-z_{q}\right|<\eta_{0}$, hence, by Lemma 4

$$
\sum_{\left|z_{*}^{m k}-z_{q}\right|<\epsilon_{0}} \nu_{n_{q}}(k) \geq 1-\epsilon_{0} .
$$

Now, $\left|z_{*}^{m k}-z_{q}\right|<\epsilon \Rightarrow z_{*}^{m k} \in J_{z}$ (since J_{z} contains \tilde{J}_{z} in the middle and \tilde{J}_{z} has arc-length very small compare to that of J_{z}).

Thus we have

$$
\sum_{\left|z_{*}^{m_{k}}-z_{q}\right|<\epsilon_{0}} \nu_{n_{q}}(k)>1-\epsilon_{0} \Rightarrow \sum_{z_{*}^{m k} \in J_{z}} \nu_{n_{q}}(k)>1-\epsilon_{0} .
$$

Now, $z_{*}^{m k} \in J_{z} \Leftrightarrow\left(z z_{*}^{k}\right)^{m} \in J \Leftrightarrow z z_{*}^{k} \in B$, hence,

$$
\begin{aligned}
\sup _{n \geq N} T_{n} \chi_{B}(z) & =\sup _{n \geq N} \sum_{k=1}^{\infty} \nu_{n}(k) \chi_{B}\left(z z_{*}^{k}\right)=\sup _{n \geq N} \sum_{z z_{*}^{k} \in B} \nu_{n}(k) \\
& \geq \sum_{z z_{*}^{k} \in B} \nu_{n_{q}}(k)=\sum_{z_{*}^{m k} \in J_{z}} \nu_{n_{q}}(k)>1-\epsilon_{0}>1-\epsilon
\end{aligned}
$$

Since, $z \in \mathbb{S}^{1}$ was arbitrary, this clearly implies

$$
\lambda\left(\left\{\sup _{n \geq N} T_{n} \chi_{B}>1-\epsilon\right\}\right)=1
$$

as to be shown.
Finally to see the other conclusions of the theorem, we let

$$
G_{n} A=T_{n} \chi_{A}, \quad n=1,2, \ldots ; \quad A \in \mathcal{M}
$$

Then if A and B are disjoint

$$
\begin{aligned}
G_{n}(A U B) & =T_{n} \chi_{A U B}=\sum_{k=1}^{\infty} \nu_{n}(k) \chi_{A U B} \circ \tau^{k} \\
& =\sum_{k=1}^{\infty} \nu_{n}(k) \chi_{A} \circ \tau^{k}+\sum_{k=1}^{\infty} \nu_{n}(k) \chi_{B} \circ \tau^{k} \\
& =T_{n} \chi_{A}+T_{n} \chi_{B}=G_{n} A+G_{n} B .
\end{aligned}
$$

Also, $\left(G_{n}\right)^{\infty}$ is a sequence of monotone linear maps which are continuous in measure with

$$
G_{n}\left(\mathbb{S}^{1}\right)=\sum_{k=1}^{\infty} \nu_{n}(k) \chi_{\mathbb{S}^{1}} \circ \tau^{k}=\sum_{k=1}^{\infty} \nu_{n}(k)=1
$$

and such that given $\epsilon>0, N \in \mathbb{N}$, there exists $B \in \mathcal{F}, \lambda(B)<\epsilon$ with

$$
\lambda\left(\left\{\sup _{n \geq N} G_{n} B>1-\epsilon\right\}\right)=\lambda\left(\left\{\sup _{n \geq N} T_{n} \chi_{B}>1-\epsilon\right\}\right)=1
$$

Hence, by Theorem 1.3 of [3], the conclusion of our theorem follows.

References

[1] M.A. Akolu, A. Bellow, R. Jones, V. Losert, K. Reinhold and M. Wierdl, The strong sweeping-out property for lacunary sequences, Riemann sums, convolution powers and related matters, Preprint.
[2] A. del Junco and Joseph Rosenblatt, Counter-examples in ergodic theory and number theory, Math. Ann., 247 (1979), 185-197.
[3] J. Rosenblatt, Universally bad sequences in ergodic theory, Almost every Convergence II, Proceedings of the International Conference in Probability and Ergodic Theory, Evanston, Illinois, October 16-20, 1989, edited by A. Bellow and R. Jones, Academic Press, Inc., 1991.
M.D. HA

Received 17.05.1996
Department of Mathematics and Statistics
Sultan Qaboos University
Sultanate of Oman

[^0]: *AMS (MOS) subject classification (1985 revision): Primary: 28D99, Secondary: 60F99

