Tr. J. of Mathematics 22 (1998) , 61 – 68. © TÜBİTAK

WEIGHTED ERGODIC AVERAGES

M.D.~Ha

Abstract

Let $(X, \mathcal{F}, \lambda)$ be the unit circle $\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$ with the usual σ algebra \mathcal{F} of Lebesgue measurable subsets and the normalized Lebesgue measure λ . Consider a sequence $\nu_n : \mathbb{N} \to \mathbb{R}, \ \nu_n(k) \ge 0, \ \Sigma_{k=1}^{\infty} \nu_n(k) = 1$. For any measurepreserving $\tau : X \to X$, this sequence induces a sequence $(T_n)_1^{\infty}$ of bounded, linear operators on $L^p(X), \ 1 \le p \le \infty$, by defining

$$T_n f = \sum_{k=1}^{\infty} \nu_n(k) f \circ \tau^k, \quad n = 1, 2, \dots$$

We shall prove that under suitable conditions imposed on τ and $(\nu_n)_1^{\infty}$, there exists a large collection of measurable characteristic functions f for which $\limsup_{n\to\infty} T_n f - \liminf_{n\to\infty} T_n f = 1$ a.e on X.

Keywords: Weights, weighted averages, Fourier transforms.

1. Introduction

The classical ergodic theorem of Birkhoff states that if τ is an ergodic transformation on a probability space (X, \mathcal{F}, μ) , then for each $f \in L^1(X)$, we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\infty} f \circ \tau^k = \int_X f \, d\mu$$

almost everywhere (on X). So, the sequence

$$\left\{\frac{1}{n}\sum_{k=1}^n f \circ \tau^k\right\}_{n=1}^\infty$$

of averages of f under iterates of τ converges a.e. for all f in $L^1(X)$.

^{*}AMS (MOS) subject classification (1985 revision): Primary: 28D99, Secondary: 60F99

A natural question that arises from the above is that instead of considering the sequence of usual average of f under iterates of τ as above, what would happen if we consider sequence of weighted averages, i.e., averages of the form

$$\sum_{k=1}^{\infty} \nu_n(k) f \circ \tau^k,$$

where $\nu_n(k) \ge 0$ for all n, k and

$$\sum_{k=1}^{\infty} \nu_n(k) = 1, \quad n = 1, 2, \dots,$$

and investigate its behaviour with respect to convergence. This question has been considered by several authors, including those given in [1] and [4] of the references. For our present purpose, we shall refer to any sequence

$$\nu:\mathbb{N}\to\mathbb{R},\ \nu(k)\geq 0,\quad \sum_{k=1}^\infty\nu(k)=1$$

as weights.

Now, let $(\nu_n)_1^{\infty}$ be a sequence of weights. For any probability space (X, \mathcal{F}, μ) and any ergodic $\tau: X \to X$, this sequence of weights induces a sequence of operators

$$(T_n)_1^\infty : L^1(X, \mathcal{F}, \mu) \to L^1(X, \mathcal{F}, \mu)$$

where each T_n is defined by the following formula:

$$T_n f = \sum_{k=1}^{\infty} \nu_n(k) \ f \circ \tau^k, \quad n = 1, 2, \dots$$

If we assume that the measure algebra of the space X under consideration is normalized, non-atomic, and separable, it is a standard result in ergodic theory that in the study of such averages, it is enough to consider the special case where $(X, \mathcal{F}, \lambda)$ is the unit circle $\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$ with the usual σ -algebra \mathcal{F} of Lebesgue measurable subsets and the normalized Lebesgue measure λ , and where τ is an ergodic rotation $\tau(z) = z_* z$ on \mathbb{S}^1 for some fixed z_* in \mathbb{S}^1 .

The purpose of this note is to give an elementary proof of the following result. For many other related results, the readers should consult [1].

Theorem. Let $(\nu_n)_1^{\infty}$ and $(T_n)_1^{\infty}$ be as above. Assume that $z_* \in \mathbb{S}^1$, which defines τ , has the following properties: Given any arc J on the unit circle \mathbb{S}^1 , there exists $\Lambda(J) \subseteq \mathbb{N}$ such that

- HA
- i) $D = \{z_*^m : m \in \Lambda(J)\}$ is dense in \mathbb{S}^1
- ii) $\lim_{n\to\infty}\sum_{k=1}^{\infty}\nu_n(k)z^k$ exists and belong to J for all z in D.

Then, given $\epsilon > 0$, $N \in \mathbb{N}$, there exists a set $B \in \mathcal{F}$, $\lambda(B) < \epsilon$ such that

$$\lambda \left(\sup_{n \ge N} T_n \chi_B > 1 - \epsilon \right) = 1.$$

Consequently, there exists a dense subset \mathcal{R} of \mathcal{F} such that if $A \in \mathcal{R}$,

$$\lim_{n \to \infty} \sup_{n \to \infty} T_n \chi_A = 1 \quad a.e \text{ and } \lim_{n \to \infty} \prod_{n \to \infty} T_n \chi_A = 0 \quad a.e$$

(Recall that if (X, \mathcal{F}, μ) is a probability space and if we define $\rho(A, B) = \mu(A\Delta B)$ for A, B in \mathcal{F} , then this ρ induces a metric on \mathcal{F} if we identify sets that differ from each other by a set of measure zero.)

2. Some Lemmas

The proof of our theorem follows from the following two simple lemmas. To simplify notation, let us define for $n_j \in \mathbb{N}, \ \ell = 1, 2, ..., \infty, \ \omega \in \mathbb{S}^1$,

$$S_{n_j}^\ell = \sum_{k=1}^\ell \ \nu_{n_j}(k) \quad \text{and} \quad S_{n_j}^\ell(w) = \sum_{k=1}^\ell \ \nu_{n_j}(k) w^k.$$

We also let $\{t\}$ denote the fractional part of a real number t, and $\overline{\gamma}$ is the complex conjugate of $\gamma \in \mathbb{C}$.

Lemma 1. Assume i) and ii) of the previous theorem hold. Let $0 < \epsilon, \eta$ and $N \in \mathbb{N}$ be given. There exists an integer K > N and K points $z_1, \ldots, z_K \in \mathbb{S}^1$, integers n_1, n_2, \ldots, n_K , each $n_j > K$, and an integer $m \in \mathbb{N}$ such that

- (i) $|S_{n_j}^{\infty}(z_*^m) z_j| \le \eta$ for all j = 1, 2, ..., K
- (ii) Any arc of length ϵ contains at least 3 points among z_1, \ldots, z_K .

Proof. (i) Let $0 < \epsilon$, η and $N \in \mathbb{N}$ be given. Choose K > N, $K \in \mathbb{N}$ such that $\frac{8\pi}{K} < \epsilon$. Fix some $\tilde{\eta} > 0$ with $\tilde{\eta} < \min\left(\eta, \frac{1}{2K}\right)$.

Let $I_1 = \{e^{2\pi i x} : x \in (-\tilde{\eta}, \tilde{\eta})\}$ and for j = 2, 3, ..., K, let

$$I_j = \left\{ e^{2\pi i x} : x \in \left(\frac{j-1}{K} - \tilde{\eta}, \quad \frac{j-1}{K} + \tilde{\eta} \right) \right\}$$

be K arcs on \mathbb{S}^1 of equal arc lengths. By hypothesis, there exists $m_1 \in \mathbb{N}$ and large integers $n_1, h_1 > K$ and some $z_1 \in I_1$ such that

$$|S_{n_1}^{h_1}(z_*^{m_1}) - z_1| < \frac{\tilde{\eta}}{2}$$
 and $S_{n_1}^{h_1} > 1 - \frac{\tilde{\eta}}{2}$. (1)

Again, by assumption, there exists a dense set $D_2 \subseteq \mathbb{S}^1$ such that $\lim_{n\to\infty} S_n^{\infty}(z)$ exists and belongs to I_2 for each $z \in D_2$, and moreover, each element of D_2 is of the form z_*^n for some $n \in \mathbb{N}$. Choose $z_*^{m_2} \in D_2$ with $|z_*^{m_2} - z_*^{m_1}|$ so small (so that $|z_*^{m_2k} - z_*^{m_1k}|$ is very small for each $k = 1, 2, \dots, h_1$) so that $|S_{n_1}^{h_1}(z_*^{m_2}) - z_1| < \frac{\tilde{n}}{2}$. Since $\lim_{n\to\infty} S_n^{\infty}(z_*^{m_2})$ exists and belongs to I_2 , there exists $h_2, n_2 > K$ and $z_2 \in I_2$ with

$$|S_{n_2}^{h_2}(z_*^{m_2}) - z_2| < \frac{\tilde{\eta}}{2} \quad \text{and} \quad S_{n_2}^{h_2} > 1 - \frac{\tilde{\eta}}{2}.$$
 (2)

Again, there exists a dense set $D_3 \subseteq \mathbb{S}^1$ such that $\lim_{n\to\infty} S_n^{\infty}(z)$ exists and belong to I_3 and each element z of D_3 is of the form z_*^n for some $n \in \mathbb{N}$. Choose $z_*^{m_3} \in D_3$ with $|z_*^{m_3} - z_*^{m_j}|$ very small for j = 1, 2, so that $|S_{n_1}^{h_1}(z_*^{m_3}) - z_1| < \frac{\tilde{\eta}}{2}$ and $|S_{n_2}^{h_2}(z_*^{m_3}) - z_2| < \frac{\tilde{\eta}}{2}$. Also, because $\lim_{n\to\infty} S_n^{\infty}(s_*^{m_3})$ exists and belong to I_3 , there exists $z_3 \in I_3$ and integers $h_3, n_3 > K$ such that $|S_{n_3}^{h_3}(z_*^{m_3}) - z_3| < \frac{\tilde{\eta}}{2}$ and $S_{n_3}^{h_3} > 1 - \frac{\tilde{\eta}}{2}$. Continuing this process to the K^{th} stage, we obtain an integer $m = m_K$ and $z_1, \ldots, z_K, z_j \in I_j$, integers $h_j, n_j > K$ for $j = 1, 2, \ldots, K$ such that

$$|S_{n_j}^{h_j} - z_j| < \frac{\tilde{\eta}}{2}$$
 and $S_{n_j}^{h_j} > 1 - \frac{\tilde{\eta}}{2}$ for all $j = 1, 2, \dots, K$.

Hence, it follows that for each $j = 1, 2, \ldots, K$,

$$|S_{n_j}^{\infty}(z_*^m) - z_j| \le |S_{n_j}^{h_j}(z_*^m) - z_j| + \left|\sum_{k=h_{j+1}}^{\infty} \nu_{n_j}(k) z_*^{mk}\right| < \frac{\tilde{\eta}}{2} + \frac{\tilde{\eta}}{2} = \tilde{\eta} < \eta$$

This completes the proof of (i).

(ii) Each arc I_j has arc-length $2\pi(2\tilde{\eta}) = 4\pi\tilde{\eta}$ and the gap between 2 adjacent arcs is $2\pi(\frac{1}{K} - 2\tilde{\eta})$. So any arc of length

$$4(4\pi\tilde{\eta}) + 3\left[2\pi\left(\frac{1}{K} - 2\tilde{\eta}\right)\right] < \pi\left(\frac{2}{K} + \frac{6}{K}\right) = \frac{8\pi}{K} < \epsilon$$

must contain 3 points among those of z_1, z_2, \ldots, z_K .

We shall need the following lemma

Lemma 2. ([1]) Let ϵ , $\rho > 0$ be given. Then there exists $0 < \eta = \eta(\epsilon, \rho)$ satisfying the following.

64

HA

For any probability measure μ on \mathbb{R} ,

$$|\hat{\mu}(1) - 1| < \eta \Rightarrow \mu(G_{\epsilon}) < \rho.$$

Here, $G_{\epsilon} = \bigcup_{k=-\infty}^{\infty} (\epsilon + k, \ 1 - \epsilon + k)$ and $\hat{\mu} : \mathbb{R} \to C$ is the Fourier transform of μ defined by

$$\hat{\mu}(t) = \int_{R} e^{2\pi i x t} d\mu(x), \quad t \in \mathbb{R}.$$

Using the above, we will show the following:

Lemma 3. Let $\delta, \rho > 0$ be given. Then there exists $0 < \eta = \eta(\delta, \rho)$ such that

$$\left|\sum_{k=1}^{\infty} \nu(k) z_k - 1\right| < \eta \Rightarrow \sum_{|z_k - 1| > \delta} \nu(k) < \rho$$

whenever $\nu(k) \ge 0$, $\sum_{k=1}^{\infty} \nu(k) = 1$ and $(z_k)_1^{\infty} \subseteq \mathbb{S}^1$.

Proof. Let $\delta, \rho > 0$ be given. Choose $\epsilon > 0$ such that whenever $t \in \mathbb{R}$, $\{t\} \in (\epsilon, 1-\epsilon) \Leftrightarrow |e^{2\pi i t} - 1| > \delta$. Let $0 < \eta = \eta(\epsilon, \rho)$ be as in Lemma 2. Note that $\epsilon = \epsilon(\delta)$ so that $\eta = \eta(\delta, \rho)$. Suppose $\nu(k) \ge 0$, $\sum_{k=1}^{\infty} \nu(k) = 1$ and $(z_k)_1^{\infty} \subseteq \mathbb{S}^1$. Write z_k as $z_k = e^{2\pi i t_k}$, $t_k \in \mathbb{R}$, $k = 1, 2, \ldots$ Define a probability measure μ on \mathbb{R} by $\mu(t_k) = \nu(k)$, so that μ has support contained in $\{t_1, t_2, \ldots\}$. We then have

$$\hat{\mu}(1) = \int_{R} e^{2\pi i x} d\mu(x) = \sum_{k=1}^{\infty} e^{2\pi i t_{k}} \mu(t_{k}) = \sum_{k=1}^{\infty} \nu(k) z_{k}.$$

By Lemma 2. above, we get

$$|\hat{\mu}(1) - 1| < \eta \Rightarrow \mu(G_{\epsilon}) < \rho,$$

and this completes the proof, because

$$\mu(G_{\epsilon}) = \sum_{k=1}^{\infty} \mu(\epsilon+k, \ 1-\epsilon+k) = \sum_{\{t_k\}\in(\epsilon, 1-\epsilon)} \mu(t_k) = \sum_{|z_k-1|>\delta} \nu(k).$$

Lemma 4. Given $\epsilon_0 > 0$, there exists $\eta_0 > 0$ such that

$$\left|\sum_{k=1}^{\infty} \nu_n(k)\gamma_k - \gamma\right| < \eta_0 \Rightarrow \sum_{|\gamma_k - \gamma| < \epsilon_0} \nu_n(k) > 1 - \epsilon_0$$

for all sequences $(\nu_n)_1^\infty$ of weights, and all $(\gamma_k)^\infty \subseteq \mathbb{S}^1$, $\gamma \in \mathbb{S}^1$.

Proof. Given $\epsilon_0 > 0$, let $\delta = \rho = \frac{\epsilon_0}{2}$. Choose $\eta = \eta(\delta, \rho)$ as in Lemma 3. Now, suppose $(\nu_n)_1^{\infty}$ is any sequence of weights and let $(\gamma_k)_1^{\infty} \subseteq \mathbb{S}^1$, $\gamma \in \mathbb{S}^1$ be arbitrary. Then, by Lemma 3, for every n,

$$\left|\sum_{k=1}^{\infty} \nu_n(k)\gamma_k - \overline{\gamma}\right| < \eta_0 \Rightarrow \sum_{|\gamma_k - \overline{\gamma}| \le \delta} \nu_n(k) \ge 1 - \rho.$$

Thus, if we let $\eta_0 = \eta$, we then have, for every n,

$$\left|\sum_{k=1}^{\infty} \nu_n(k)\gamma_k - \gamma\right| < \eta_0 \Rightarrow \sum_{|\gamma_k - \gamma| < \epsilon_0} \nu_n(k) > 1 - \epsilon_0.$$

3. Proof of the Theorem

Let $\epsilon > 0$, $N \in \mathbb{N}$ be given. Let $\epsilon_0 = \frac{\epsilon}{10}$. Choose $\eta_0 > 0$ as in Lemma 4. Then by Lemma 1, there exists K > N and integers n_1, \ldots, n_K , each $n_j > K > N$ and points z_1, \ldots, z_K in \mathbb{S}^1 and an integer m satisfying (i) and (ii) with ϵ_0 , η_0 in place of ϵ, η there. Let J be any arc on \mathbb{S}^1 of length ϵ . Let $B = P_m^{-1}(J)$, where $P_m(z) = z^m$ for all z in \mathbb{S}^1 . Suppose $z \in \mathbb{S}^1$. Let $J_z = \overline{z}^m J$ so that J_z has arc length $= \epsilon$. Let \mathbf{p} be the middle point of J_z and let \tilde{J}_z be the arc centered at \mathbf{p} with length ϵ_0 . By Lemma 1, \tilde{J}_z must contain at least three adjacent points among those of z_1, \ldots, z_K . Let z_q be the middle point of these three. Then $|S_{n_q}^{\infty}(z_*^m) - z_q| < \eta_0$, hence, by Lemma 4

$$\sum_{\substack{z_*^{mk} - z_q | < \epsilon_0}} \nu_{n_q}(k) \ge 1 - \epsilon_0.$$

Now, $|z_*^{mk} - z_q| < \epsilon \Rightarrow z_*^{mk} \in J_z$ (since J_z contains \tilde{J}_z in the middle and \tilde{J}_z has arc-length very small compare to that of J_z).

Thus we have

$$\sum_{|z_*^{m_k}-z_q|<\epsilon_0}\nu_{n_q}(k)>1-\epsilon_0\Rightarrow \sum_{z_*^{m_k}\in J_z}\nu_{n_q}(k)>1-\epsilon_0.$$

Now, $z_*^{mk} \in J_z \Leftrightarrow (zz_*^k)^m \in J \Leftrightarrow zz_*^k \in B$, hence,

$$\sup_{n \ge N} T_n \chi_B(z) = \sup_{n \ge N} \sum_{k=1}^{\infty} \nu_n(k) \chi_B(z z_*^k) = \sup_{n \ge N} \sum_{z z_*^k \in B} \nu_n(k)$$
$$\ge \sum_{z z_*^k \in B} \nu_{n_q}(k) = \sum_{z_*^{mk} \in J_z} \nu_{n_q}(k) > 1 - \epsilon_0 > 1 - \epsilon.$$

66

Since, $z \in \mathbb{S}^1$ was arbitrary, this clearly implies

$$\lambda\left(\left\{\sup_{n\geq N}T_n\chi_B>1-\epsilon\right\}\right)=1,$$

as to be shown.

Finally to see the other conclusions of the theorem, we let

$$G_n A = T_n \chi_A, \quad n = 1, 2, \ldots; \quad A \in \mathcal{M}.$$

Then if A and B are disjoint

$$G_n(AUB) = T_n \chi_{AUB} = \sum_{k=1}^{\infty} \nu_n(k) \chi_{AUB} \circ \tau^k$$
$$= \sum_{k=1}^{\infty} \nu_n(k) \chi_A \circ \tau^k + \sum_{k=1}^{\infty} \nu_n(k) \chi_B \circ \tau^k$$
$$= T_n \chi_A + T_n \chi_B = G_n A + G_n B.$$

Also, $(G_n)^{\infty}$ is a sequence of monotone linear maps which are continuous in measure with

$$G_n(\mathbb{S}^1) = \sum_{k=1}^{\infty} \nu_n(k) \chi_{\mathbb{S}^1} \circ \tau^k = \sum_{k=1}^{\infty} \nu_n(k) = 1$$

and such that given $\epsilon > 0$, $N \in \mathbb{N}$, there exists $B \in \mathcal{F}$, $\lambda(B) < \epsilon$ with

$$\lambda\left(\left\{\sup_{n\geq N}G_nB>1-\epsilon\right\}\right)=\lambda\left(\left\{\sup_{n\geq N}T_n\chi_B>1-\epsilon\right\}\right)=1.$$

Hence, by Theorem 1.3 of [3], the conclusion of our theorem follows.

References

HA

- M.A. Akolu, A. Bellow, R. Jones, V. Losert, K. Reinhold and M. Wierdl, The strong sweeping-out property for lacunary sequences, Riemann sums, convolution powers and related matters, Preprint.
- [2] A. del Junco and Joseph Rosenblatt, Counter-examples in ergodic theory and number theory, Math. Ann., 247 (1979), 185-197.
- [3] J. Rosenblatt, Universally bad sequences in ergodic theory, Almost every Convergence II, Proceedings of the International Conference in Probability and Ergodic Theory, Evanston, Illinois, October 16-20, 1989, edited by A. Bellow and R. Jones, Academic Press, Inc., 1991.

M.D. HA Department of Mathematics and Statistics Sultan Qaboos University Sultanate of Oman Received 17.05.1996