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FINITE DIRECT SUMS OF (D1)-MODULES

Derya Keskin

Abstract

In this paper we give necessary conditions for a finite direct sum of (D1)–modules
to be a (D1)–module.

1. Introduction

Let R be a ring and M = M1⊕M2 a decomposition of a right R–module M . We
are interested in conditions on M1,M2 which make M a (D1)–module. If M is a (D1)–
module it is well-known that M1 and M2 are both (D1)–modules. In this paper, we prove
that if M1 and M2 are relatively projective, quasi-projective and (D1)–modules then
M is a (D1)–module. Let M = ⊕i∈IMi be a decomposition that complements direct
summands. We prove that M is (quasi-) discrete if and only if (i) for every i ∈ I,M(I−i)
is (quasi-) discrete, (ii) for every i ∈ I,Mi and M(I−i) are relatively projective modules.

Throughout, all rings will have identities and all modules will be unital right
modules.

Let R be a ring and M an R–module. Let A and L be submodules of M . L is
called a supplement of A in M if it is minimal with respect to the property M = A+L .
A submodule K of M is called a supplement (in M ) if K is a supplement of some
submodule of M . It is easy to check that L is a supplement of A in M if and only if
M = A + L and A ∩ L is small in L .

Let R be a ring and M an R–module. We consider

(D1) For every submodule A of M there exists a direct summand M1 of M such that
M = M1 ⊕M2 and M1 ≤ A , A ∩M2 is small in M2 .

(D2) For any submodule A of M for which M/A is isomorphic to a direct summand of
M then A is a direct summand of M .

(D3) If M1 and M2 are direct summands of M with M = M1 + M2 , then M1 ∩M2 is
also a direct summand of M .

M is said to have (Di) (or to be a (Di)–module) if it satisfies (Di) (i = 1, 2, 3). M is
called a (quasi-) discrete module if it has ((D1) and (D3)) (D1) and (D2).
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Lemma 1. Let A and B be modules with local endomorphism rings such that M = A⊕B
has (D1) . Let C be a submodule of A and let f : B → A/C be a homomorphism. Then
the following hold.

(i) If f cannot be lifted to a homomorphism from B to A , then f is an epimorphism
and there exists an epimorphism from A to B .

(ii) If any epimorphism from A to B is an isomorphism, then B is A–projective.

(iii) If there is no epimorphism from A to B , then B is A–projective.

Proof. (i). Let f : B → A/C , and suppose f cannot be lifted to a homomorphism
from B to A . Consider the canonical epimorphism π : A → A/C . Set U = { a + b :
a ∈ A, b ∈ B, f(b) = −π(a) } . Then M = U + A . By Proposition 4.8 in [2] there exists
a supplement U∗ of A in M with U∗ ≤ U and U∗ is a direct summand of M . By the
Krull-Schmidt-Azumaya Theorem [1, Corollary 12.7], M = U∗ ⊕ A or M = U∗ ⊕ B .
Assume M = U∗ ⊕ A . Let α denote the canonical projection of M = U∗ ⊕ A onto
A . Let α|B denote the resriction of α to B . It is easily checked that πα|B = f . This
is a contradiction, for f cannot be lifted to a homomorphism from B to A . Hence
M = U∗ ⊕ B . We prove that f is epic. Indeed, if a + C ∈ A/C then we write
a = u∗ + b = a1 + b1 + b where u∗ ∈ U∗ , u∗ = a1 + b1 , f(b1) = −π(a1), a1 ∈ A
and b, b1 ∈ B . Hence a = a1 , b = −b1 and f(b) = a + C . Thus f is epic. Now
let β|A denote the resriction of the canonical projection β : U∗ ⊕ B → B to A . Since
M = U∗ ⊕ B = U∗ +A then β|A(A) = B .

(ii). Suppose any epimorphism from A to B is an isomorphism. Let C be a
submodule of A and f : B → A/C any homomorphism. As in the proof of (i), if
M = U∗⊕A then f can be lifted to a homomorphism from B to A . Assume M = U∗⊕B .
Let ψ denote the canonical projection of M = U∗ ⊕ B onto B and ψ|A the restriction
of ψ to A . Then ψ|A is an epimorphism from A onto B and then, by assumption, ψ |A
is an isomorphism. It follows easily that M = U∗ ⊕ A .

(iii). This is clear from (i). 2

Corollary 2. Let M be a uniserial module with unique composition series M ⊃ U ⊃
V ⊃ 0 . Then M ⊕ (U/V ) does not have (D1) .

Proof. Assume M is uniserial with unique composition series M ⊃ U ⊃ V ⊃ 0. Clearly
M and U/V have local endomorphism rings. Suppose M ⊕ (U/V ) has (D1). Let f de-
note the inclusion map from U/V to M/V . Then f is not an epimorphism. By Lemma
1(i), f can be lifted to a homomorphism g from U/V to M . Note that g is not epic.
Hence Img = U or Img = V . Each case leads to a contradiction. 2

86



KESKİN

Remark. Let M be a uniform module and N a non-zero module isomorphic to L/K
for some submodules K < L of M . Then N is not M –projective by [2, Lemma 4.30
and Proposition 4.31]. Therefore in Corollary 2, U/V is not an M –projective module.

Lemma 3. Let M1 be a simple module and M2 a uniserial module with unique compo-
sition series M2 ⊃ U ⊃ 0 . Then M = M1 ⊕M2 has (D1) .
Proof. Let L be a non-zero submodule of M . We show that there exists a submodule
K of M such that M = K ⊕K′ , K ≤ L and L∩K′ is small in K′ for some submodule
K′ of M . If M1 ∩ (L+ M2) = 0 then L ≤M2 . Hence L is a small submodule or direct
summand of M . Assume M1 ∩ (L + M2) 6= 0. Then M1 ≤ L + M2 and M = L + M2 .
If L∩M2 = M2 or L ∩M2 = 0 or L∩M2 = U and L∩M1 = M1 we are done. Assume
L∩M2 = U and L∩M1 = 0. Then U ≤ L . Hence M = L⊕M1 . Thus M has (D1). 2

Example 4. Let p be a prime integer and M denote the Z–module, (Z/pZ)⊕(Z/p2Z).
Then M has (D1) and Z/pZ is not Z/p2Z–projective.
Proof. By Lemma 3 and Remark. 2

Lemma 5. The following statements are equivalent for a module M = M1 ⊕M2 .

(i) M2 is M1 –projective.

(ii) For each submodule N of M with M = M1 + N there exists a submodule M ′ of
N such that M = M1 ⊕M ′ .

Proof. The proof is in [3, 41.14, (3)⇔ (4)]. A proof of (i)⇒ (ii) can also be found in
[2, Lemma 4.47].

Consider the Z–module M = Z⊕Z(p∞) where Z(p∞) denotes the Prufer p–group.
Then it is well-known that Z and Z(p∞) are relatively projective, M does not have (D1)
and Z(p∞) has (D1). Also, Z is not semisimple. In this vein we prove the following
theorem. 2

Theorem 6. Let the module M = M1 ⊕M2 be a direct sum of relatively projective
modules M1, M2 , such that M1 is semisimple and M2 has (D1) . Then M has (D1) .
Proof. Let L be a non-zero submodule of M .

Case 1. K = M1 ∩ (L+M2) 6= 0. Then M1 = K ⊕K′ for some submodule K′ of
M1 and hence M = K ⊕K′ ⊕M2 = L + (M2 ⊕K′). By [2, Prop. 4.31, Prop. 4.32 and
Prop. 4.33], K is M2 ⊕K′ –projective. By Lemma 5, there exists a submodule L′ of L
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such that M = L′ ⊕ (M2 ⊕K′). Assume L ∩ (M2 ⊕K′) 6= 0. Let X be any submodule
of M2 . Since L∩ (X +K′) ≤ X ∩ (L+K′) +K′ ∩ (L+X) and K′ ∩ (L+X) = 0, then
L ∩ (X + K′) ≤ X ∩ (L + K′). In the same way, X ∩ (L + K′) ≤ L ∩ (X + K′).
So L ∩ (X + K′) = X ∩ (L + K′) for every submodule X of M2 . Since M2 has
(D1), there exists a submodule A1 of M2 ∩ (L + K′) = L ∩ (M2 ⊕ K′) such that
M2 = A1 ⊕ A2 and A2 ∩ (L + K′) is small in A2 for some submodule A2 of M2 .
Thus M = (L′ ⊕A1)⊕ (A2 ⊕K′), (L′ ⊕A1) ≤ L and L ∩ (A2 ⊕K′) = A2 ∩ (L+K′) is
small in A2 ⊕K′ .

Case 2. M1 ∩ (L + M2) = 0. This implies L ≤ M2 . Since M2 has (D1), there
exists a submodule B1 of L such that M2 = B1 ⊕ B2 and L ∩ B2 is small in B2 for
some submodule B2 of M2 . Hence M = B1 ⊕ (M1 ⊕ B2) and L ∩ (M1 ⊕ B2) = L ∩B2

is small in M1 ⊕ B2 . It follows that M has (D1). 2

Let RadM denote the Jacobson radical of any R–module M .

Corollary 7. Let M1 be a semisimple module and M2 a module such that RadM2

= M2 . Then M = M1⊕M2 has (D1) if and only if M2 has (D1) and M1 and M2 are
relatively projective.
Proof. Sufficiency is clear from Theorem 6. Conversely assume M = M1 ⊕M2 has
(D1). It is well-known that M2 has (D1) by [2, Lemma 4.7]. Since M1 is semisimple,
M2 is M1 –projective. We prove that M1 is M2 –projective. Let N be a submodule of
M with M = N +M2 . By Proposition 4.8 of [2] there exists a submodule K of N such
that M = K + M2 = K ⊕ K′ and K ∩M2 is small in K for some submodule K′ of
M . It follows easily that RadK = K ∩M2 . Since RadM = RadK ⊕RadK′ = M2 , then
K ∩M2 is a direct summand of K . Hence M = K ⊕M2 . Thus M1 is M2 – projective
by Lemma 5. 2

Theorem 8. Let the module M = M1 ⊕M2 be a direct sum of relatively projective
modules M1,M2 such that M1 and M2 are quasi–discrete modules. Then M has (D1) .
Proof. Let L be a non-zero submodule of M .

Case 1. M1 ∩ (L + M2) 6= 0. Since M1 has (D1), there exists a submodule A1

of M1 ∩ (L +M2) such that M1 = A1 ⊕A2 and A2 ∩ (L +M2) is small in A2 for some
submodule A2 of M1 . Then M = L + (A2 ⊕M2). If M2 ∩ (L + A2) = 0 then by [2,
Lemma 4.7], A2 = C1 ⊕C2 and L ∩ C2 is small in C2 for some submodules C1 and C2

in A2 with C1 ≤ (L ∩A2). Hence M = L+ (C2 ⊕M2) = (A1 ⊕C1)⊕ (C2 ⊕M2). Since
M1 and A2 are quasi–discrete and M1 is M2 –projective, then A1 ⊕ C1 is C2 ⊕M2 –
projective from [2, Lemma 4.23, Prop. 4.31, Prop. 4.32 and Prop. 4.33]. Hence there
exists a submodule L′ of L such that M = L′ ⊕ C2 ⊕ M2 by Lemma 5. Note that
L∩ (C2⊕M2) ≤ C2 ∩ (L+M2) = L∩C2 . Therefore L∩ (C2⊕M2) is small in C2⊕M2 ,
because L∩C2 is small in C2 . Assume M2∩(L+A2) 6= 0. Since M2 has (D1), there exists
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a submodule B1 of M2∩ (L+A2) such that M2 = B1⊕B2 and B2 ∩ (L+A2) is small in
B2 for some submodule B2 of M2 . Then M = L+(A2⊕B2) = (A1⊕B1)⊕(A2⊕B2) and
L∩ (A2⊕B2) is small in A2⊕B2 because A2∩ (L+B2) is small in A2 and B2∩ (L+A2)
is small in B2 . Since A1 ⊕ B1 is A2 ⊕ B2 –projective, there exists a submodule L′ of L
such that M = L′ ⊕ A2 ⊕ B2 by Lemma 5. This completes the proof in this case.

Case 2. M1 ∩ (L + M2) = 0. The proof of this case is the same as that of case 2
of Theorem 6. 2

Theorem 9. Let the module M = M1 ⊕M2 be a direct sum of relatively projective
modules M1 , M2 such that M1 and M2 have (D1) . Suppose further that M1 and M2

are quasi–projective modules. Then M has (D1) .
Proof. By [2, Lemma 4.6 and Prop.4.38], M1 and M2 are quasi–discrete. Hence M
has (D1) by Theorem 8. 2

Example 10. For any non-zero positive integer a , Z/aZ is quasi-projective by [1,
Exer. 16.14]. Let p be any prime integer. Then the Z–module M = (Z/pZ)⊕ (Z/p3Z)
does not have (D1) and Z/pZ is not Z/p3Z–projective.
Proof. By Corollary 2 and Remark. 2

Theorem 11. Let M be a (D1)–module.Then the following statements are equivalent.

(i) M has (D3) .

(ii) Whenever M = M1⊕M2 is a direct sum of submodules M1,M2 , then M1 and M2

are relatively projective.

Proof. (i)⇒ (ii). By [2, Lemma 4.23].
(ii) ⇒ (i). By [3, 41.14. (4)⇒ (6)] . 2

Proposition 12. Let the module M = M1 ⊕M2 be a direct sum of relatively projective
modules M1,M2 such that M2 is quasi-discrete. Let K,L be direct summands of M such
that M = K +L. Suppose further that M = K +M2 . Then K ∩L is a direct summand
of M .
Proof. Assume M = K + M2 . By Lemma 5, there exists a submodule K′ of K such
that M = K′⊕M2 . Without loss of generality we may assume K′ = M1 so that M1 is a
submodule of K . Then K∩M2 is a direct summand of M2 . We write M2 = T⊕(K∩M2)
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for some submodule T of M2 . By Theorem 11, K ∩M2 and T are relatively projective.
Note that K = M1 ⊕ (K ∩M2). By [2, Prop. 4.32 and Prop. 4.33], T is K –projective.
Then by Lemma 5, M = K ⊕L′ for some submodule L′ of L . Hence L = L′⊕ (K ∩L).
Thus K ∩ L is a direct summand of M . 2

Let M1, . . . ,Mt be hollow and relatively projective modules. Then M1 ⊕ · · ·⊕Mt

complements direct summands [2, Corollary 4.50]. Therefore we have the following
corollary, which is also given in [2, Corollary 4.50].

Corollary 13. Let M be a module such that M = M1 ⊕ · · · ⊕Mt is a finite direct sum
of hollow modules Mi (1 ≤ i ≤ t) . Then M is quasi-discrete if and only if M1, . . . ,Mt

are relatively projective.
Proof. The necessity is clear. Conversely suppose that M = M1 ⊕M2 and M1 , M2

are relatively projective hollow modules. Since M1 and M2 are quasi–discrete, M has
(D1) by Theorem 8. Let K and L be direct summands of M with M = K + L . Since
M complements direct summands, either M = K ⊕M1 or M = K ⊕M2 . Hence by
Proposition 12, K ∩ L is a direct summand of M . Thus M has (D3). The proof is
completed by induction on t . 2

Let I be any index set. In the next two theorems we use M(J) to denote ⊕j∈JMj

for J ⊆ I and M(I − i) to denote M(I − {i}) for i ∈ I .

Theorem 14. Let M = ⊕i∈IMi be a decomposition that complements direct summands.
Then M is quasi-discrete if and only if

(i) M(I − i) is quasi-discrete for every i ∈ I , and

(ii) Mi and M(I − i) are relatively projective for every i ∈ I .

Proof. The necessity follows by Theorem 11 and [2, Lemma 4.7]. Conversely assume
the conditions hold. Since M = Mi ⊕M(I − i), by Theorem 8, M has (D1). We prove
that M has (D3). Let A and B be submodules of M such that M = A ⊕ B . Then
M = A⊕M(J) for some subset J of I . It follows by (ii) and [2, Prop. 4.31 and Prop.
4.32] that A and B are relatively projective. By Theorem 11, M has (D3). Hence M
is quasi-discrete. 2

Note that Corollary 13 may also be obtained using Theorem 14.

Theorem 15. Let M = ⊕i∈IMi be a decomposition that complements direct sum-
mands.Then M is discrete if and only if

(i) M(I − i) is discrete for every i ∈ I , and
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(ii) Mi and M(I − i) are relatively projective for every i ∈ I .

Proof. The necessity follows by Theorem 14 and [2, Lemma 4.7]. Conversely suppose
that (i) and (ii) hold for M . Then by Theorem 14, M is quasi-discrete, and since
Mi (i ∈ I) is discrete, then by [2, Theorem 4.15], Mi (i ∈ I) is a direct sum of hol-
low modules and each hollow summand of Mi (i ∈ I) is discrete. Thus M is a direct
sum of hollow modules each of which is discrete. By Theorem 5.2 of [2], M is discrete. 2

Corollary 16. Let M be a module such that M = M1 ⊕ · · · ⊕Mt is a finite direct sum
of hollow modules Mi , (1 ≤ i ≤ t) . Then M is discrete if and only if M1, . . . ,Mt are
relatively projective discrete modules.

Acknowledgement

I would like to express my gratefulness to the referee for valuable suggestions which
improved the presentation of the paper.

References

[1] Anderson, F. W. and Fuller, K. R. Rings and categories of modules (Springer–Verlag, 1974).

[2] Mohamed, S. H. and Muller, B. J. Continuous and discrete modules, London Math. Soc.
LNS 147 (Cambridge Univ. Press, Cambridge, 1990).

[3] Wisbauer, R. Foundations of module and ring theory (Gordon and Breach, Philadelphia,
1991).

Derya KESKİN
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