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FINITE DIRECT SUMS OF (D1)-MODULES

Derya Keskin

Abstract

In this paper we give necessary conditions for a finite direct sum of (D1)-modules
to be a (D1)-module.

1. Introduction

Let R be aring and M = M; & My a decomposition of a right R—module M. We
are interested in conditions on M7, My which make M a (D1)-module. If M isa (D1)—
module it is well-known that M; and My are both (D1)-modules. In this paper, we prove
that if M; and Ms are relatively projective, quasi-projective and (D1)-modules then
M is a (D1)-module. Let M = @;c;M; be a decomposition that complements direct
summands. We prove that M is (quasi-) discrete if and only if (i) for every ¢ € I, M (I —1)
is (quasi-) discrete, (ii) for every ¢ € I, M; and M (I —1) are relatively projective modules.

Throughout, all rings will have identities and all modules will be unital right
modules.

Let R be aring and M an R—module. Let A and L be submodules of M. L is
called a supplement of A in M if it is minimal with respect to the property M = A+ L.
A submodule K of M is called a supplement (in M) if K is a supplement of some
submodule of M. It is easy to check that L is a supplement of A in M if and only if
M=A+L and ANL issmall in L.

Let R be a ring and M an R—module. We consider

(D1) For every submodule A of M there exists a direct summand M; of M such that
M =M, @& My and M; < A, AN M, is small in Ms.

(D2) For any submodule A of M for which M/A is isomorphic to a direct summand of
M then A is a direct summand of M.

(D3) If My and My are direct summands of M with M = M + My, then My N My is
also a direct summand of M .

M is said to have (Di) (or to be a (Di)-module) if it satisfies (Di) (i =1,2,3). M is
called a (quasi-) discrete module if it has ((D1) and (D3)) (D1) and (D2).
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Lemma 1. Let A and B be modules with local endomorphism rings such that M = AGB
has (D1). Let C be a submodule of A and let f: B — A/C be a homomorphism. Then
the following hold.

(i) If f cannot be lifted to a homomorphism from B to A, then f is an epimorphism
and there exists an epimorphism from A to B.

(ii) If any epimorphism from A to B is an isomorphism, then B is A —projective.
(i4i) If there is no epimorphism from A to B, then B is A—projective.

Proof. (i). Let f: B — A/C, and suppose f cannot be lifted to a homomorphism
from B to A. Consider the canonical epimorphism 7 : A — A/C. Set U = {a+b :
a€ A be B, f(b) =—n(a)}. Then M =U + A. By Proposition 4.8 in [2] there exists
a supplement U* of A in M with U* < U and U* is a direct summand of M . By the
Krull-Schmidt-Azumaya Theorem [1, Corollary 12.7], M = U*® A or M = U* & B.
Assume M = U* @ A. Let « denote the canonical projection of M = U* & A onto
A. Let «o|p denote the resriction of o to B. It is easily checked that wa|p = f. This
is a contradiction, for f cannot be lifted to a homomorphism from B to A. Hence
M = U* @ B. We prove that f is epic. Indeed, if a + C € A/C then we write
a=u*+b=a +b +b where u* € U*, v* = a1 + b1, f(b1) = —7(a1), a1 € A
and b,b; € B. Hence a = a1, b = —by and f(b) = a+ C. Thus f is epic. Now
let 8|4 denote the resriction of the canonical projection 3 : U* ® B — B to A. Since
M=U*®B=U*+ A then (|4(4) = B.

(ii). Suppose any epimorphism from A to B is an isomorphism. Let C be a
submodule of A and f : B — A/C any homomorphism. As in the proof of (i), if
M =U*®A then f can be lifted to a homomorphism from B to A. Assume M = U*®B.
Let 1 denote the canonical projection of M = U* @& B onto B and |4 the restriction
of ) to A. Then 9|4 is an epimorphism from A onto B and then, by assumption, v |4
is an isomorphism. It follows easily that M = U* & A.

(iii). This is clear from (i). O

Corollary 2. Let M be a uniserial module with unique composition series M D U D
V' 2>0. Then M & (U/V) does not have (D1).

Proof. Assume M is uniserial with unique composition series M D U D V D 0. Clearly
M and U/V have local endomorphism rings. Suppose M @ (U/V) has (D1). Let f de-
note the inclusion map from U/V to M/V. Then f is not an epimorphism. By Lemma
1(i), f can be lifted to a homomorphism g from U/V to M. Note that ¢ is not epic.
Hence Img = U or Img = V. Each case leads to a contradiction. O
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Remark. Let M be a uniform module and N a non-zero module isomorphic to L/K
for some submodules K < L of M. Then N is not M —projective by [2, Lemma 4.30
and Proposition 4.31]. Therefore in Corollary 2, U/V is not an M —projective module.

Lemma 3. Let My be a simple module and Mo a uniserial module with unique compo-
sition series My DU D 0. Then M = My @& My has (D1).

Proof. Let L be a non-zero submodule of M. We show that there exists a submodule
K of M such that M = K® K', K <L and LN K’ is small in K’ for some submodule
K" of M. If My N(L+ M) =0 then L < M. Hence L is a small submodule or direct
summand of M. Assume Mj N (L + M3) #0. Then My < L+ My and M = L+ M>.
If LNMy=DMsor LNMy;=0o0or LNMy;=U and LN M; = M; we are done. Assume
LNMy; =U and LNM; =0. Then U < L. Hence M = L&M;. Thus M has (D1). O

Example 4. Let p be a prime integer and M denote the Z-module, (Z/pZ)® (Z/p?*Z).
Then M has (D1) and Z/pZ is not Z/p*Z-projective.

Proof. By Lemma 3 and Remark. O

Lemma 5. The following statements are equivalent for a module M = My & Ms .
(i) My is My —projective.

(ii) For each submodule N of M with M = M, + N there exists a submodule M’ of
N such that M = M, & M'.

Proof. The proof is in [3, 41.14, (3) < (4)]. A proof of (i) = (#) can also be found in
[2, Lemma 4.47].

Consider the Z-module M = Z@Z(p>) where Z(p*>°) denotes the Prufer p—group.
Then it is well-known that Z and Z(p>) are relatively projective, M does not have (D1)
and Z(p*>) has (D1). Also, Z is not semisimple. In this vein we prove the following
theorem. O

Theorem 6. Let the module M = My ® My be a direct sum of relatively projective
modules My, M, such that My is semisimple and Ms has (D1). Then M has (D1).

Proof. Let L be a non-zero submodule of M .

Case 1. K=M;N(L+ M) #0. Then M; = K & K’ for some submodule K’ of
M; and hence M = K @ K' & My = L+ (Mz & K'). By [2, Prop. 4.31, Prop. 4.32 and
Prop. 4.33], K is My @& K'—projective. By Lemma 5, there exists a submodule L' of L
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such that M = L' @ (Ma & K'). Assume LN (M2 @ K’) #0. Let X be any submodule
of My. Since LN (X+K')<XN(L+K')+K' N(L+X) and K'N(L+ X) =0, then
LN(X+K) < Xn(L+K'). In the same way, X N (L + K') < LN (X + K').
So LN (X + K') = XN (L+ K') for every submodule X of M;. Since M, has
(D1), there exists a submodule A; of Mo N (L + K') = LN (M & K') such that
My = A; @ As and Ay N (L + K') is small in Ay for some submodule Ay of M.
Thus M =(L'® A1) @ (A2 K'), (@A) <Land LN(A2 @ K') = AsN(L+ K') is
small in A, @ K'.

Case 2. My N (L+ My) =0. This implies L < Ms. Since My has (D1), there
exists a submodule By of L such that My = By @ By and L N By is small in By for
some submodule By of M. Hence M = By & (M1 @ B) and LN (My @ Be) = LN By
is small in My @ Bo. It follows that M has (D1). O

Let RadM denote the Jacobson radical of any R—module M .

Corollary 7. Let M; be a semisimple module and My a module such that RadMy
=M. Then M = My & Ms has (D1) if and only if M2 has (D1) and My and My are
relatively projective.

Proof. Sufficiency is clear from Theorem 6. Conversely assume M = M; & My has
(D1). It is well-known that My has (D1) by [2, Lemma 4.7]. Since M; is semisimple,
M is My —projective. We prove that M; is Ms—projective. Let N be a submodule of
M with M = N + M, . By Proposition 4.8 of [2] there exists a submodule K of N such
that M = K+ My = K @& K’ and K N M> is small in K for some submodule K’ of
M . Tt follows easily that RadK = K N M. Since RadM = RadK @ RadK’ = M>, then
K N Ms is a direct summand of K. Hence M = K @& My. Thus M; is My— projective
by Lemma 5. O

Theorem 8. Let the module M = My ® My be a direct sum of relatively projective
modules My, Ma such that My and My are quasi—discrete modules. Then M has (D1).

Proof. Let L be a non-zero submodule of M .

Case 1. My N (L+ M) # 0. Since My has (D1), there exists a submodule A;
of My N (L+ Ms) such that My = A; @ Az and As N (L + My) is small in Ay for some
submodule Ay of My. Then M = L+ (Ay & Ms). If Mon (L + Az) = 0 then by [2,
Lemma 4.7], A = C; & Cy and LN Cy is small in Cs for some submodules Cy and Cy
in A2 with Cl S (L n AQ) . Hence M =L + (CQ D Mg) = (Al D Cl) D (CQ D MQ) . Since
My and A, are quasi—discrete and My is Ms—projective, then A; & Cy is Cy & Mso—
projective from [2, Lemma 4.23, Prop. 4.31, Prop. 4.32 and Prop. 4.33]. Hence there
exists a submodule L’ of L such that M = L' & Cy & My by Lemma 5. Note that
LN (Ce® My) < Con(L+ M) = LNCy. Therefore LN (Cy @ Ms) is small in Cy & My,
because LNCs issmallin Cy. Assume M>N(L+Az) # 0. Since M has (D1), there exists
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a submodule By of MaN(L+ Az) such that My = By @ Bs and BoN(L+ Ag) is small in
Bs for some submodule By of My. Then M = L+(As®Bs) = (A1®B1)® (A28 By) and
LN(Ay® By) issmall in Ay @ By because A3N(L+ Bz) issmall in A and BaN(L+ As)
is small in By. Since A; & By is As & Bs—projective, there exists a submodule L’ of L
such that M = L' & As ® By by Lemma 5. This completes the proof in this case.

Case 2. My N (L + M) = 0. The proof of this case is the same as that of case 2
of Theorem 6. O

Theorem 9. Let the module M = My ® My be a direct sum of relatively projective
modules My, My such that My and My have (D1). Suppose further that My and M,
are quasi—projective modules. Then M has (D1).

Proof. By [2, Lemma 4.6 and Prop.4.38], My and M, are quasi-discrete. Hence M
has (D1) by Theorem 8. O

Example 10. For any non-zero positive integer a, Z/aZ is quasi-projective by [1,
Exer. 16.14]. Let p be any prime integer. Then the Z-module M = (Z/pZ) & (Z/p*Z)
does not have (D1) and Z/pZ is not Z/p3Z—projective.

Proof. By Corollary 2 and Remark. O

Theorem 11. Let M be a (D1)-module. Then the following statements are equivalent.
(i) M has (D3).

(ii) Whenever M = My @& My is a direct sum of submodules My, Ma, then M; and M,
are relatively projective.

Proof. (i) = (ii). By [2, Lemma 4.23].
(i4) = (7). By [3, 41.14. (4) = (6)]. O

Proposition 12. Let the module M = My & Ms be a direct sum of relatively projective
modules My, Ms such that Ms is quasi-discrete. Let K, L be direct summands of M such
that M = K + L. Suppose further that M = K+ Ms. Then KN L is a direct summand
of M.

Proof. Assume M = K + M,. By Lemma 5, there exists a submodule K’ of K such
that M = K’ @ M, . Without loss of generality we may assume K’ = Mj so that M; is a
submodule of K. Then KNM> is a direct summand of M. We write My = T®(KNMs)
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for some submodule T of My. By Theorem 11, KN My and T are relatively projective.
Note that K = My @ (K N Ms). By [2, Prop. 4.32 and Prop. 4.33], T is K —projective.
Then by Lemma 5, M = K & L’ for some submodule L’ of L. Hence L=L" & (KNL).
Thus K N L is a direct summand of M. a

Let M, ..., M; be hollow and relatively projective modules. Then M; & ---& M;
complements direct summands [2, Corollary 4.50]. Therefore we have the following
corollary, which is also given in [2, Corollary 4.50].

Corollary 13. Let M be a module such that M = My & ---& My is a finite direct sum
of hollow modules M; (1 <i <t). Then M is quasi-discrete if and only if My,. .., My
are relatively projective.

Proof. The necessity is clear. Conversely suppose that M = M; & Ms and My, M,
are relatively projective hollow modules. Since M; and M, are quasi—discrete, M has
(D1) by Theorem 8. Let K and L be direct summands of M with M = K + L. Since
M complements direct summands, either M = K & M; or M = K & M,. Hence by
Proposition 12, K N L is a direct summand of M. Thus M has (D3). The proof is
completed by induction on t. O

Let I be any index set. In the next two theorems we use M (J) to denote &,ecsM;
for J C I and M(I — i) to denote M (I — {i}) for i € I.

Theorem 14. Let M = @®;c1M; be a decomposition that complements direct summands.
Then M 1is quasi-discrete if and only if

(i) M(I —1) is quasi-discrete for every i € I, and
(is) M; and M(I —1i) are relatively projective for every i € I.

Proof. The necessity follows by Theorem 11 and [2, Lemma 4.7]. Conversely assume
the conditions hold. Since M = M; & M (I — i), by Theorem 8, M has (D1). We prove
that M has (D3). Let A and B be submodules of M such that M = A @ B. Then
M =A@ M(J) for some subset J of I. It follows by (ii) and [2, Prop. 4.31 and Prop.
4.32] that A and B are relatively projective. By Theorem 11, M has (D3). Hence M
is quasi-discrete. O

Note that Corollary 13 may also be obtained using Theorem 14.

Theorem 15. Let M = ®;c;M; be a decomposition that complements direct sum-
mands. Then M is discrete if and only if

(i) M(I —1i) is discrete for every i € I, and
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(is) M; and M(I —1i) are relatively projective for every i € I.

Proof. The necessity follows by Theorem 14 and [2, Lemma 4.7]. Conversely suppose
that (¢) and (i7) hold for M. Then by Theorem 14, M is quasi-discrete, and since
M; (i € I) is discrete, then by [2, Theorem 4.15], M; (i € I) is a direct sum of hol-
low modules and each hollow summand of M; (i € I) is discrete. Thus M is a direct
sum of hollow modules each of which is discrete. By Theorem 5.2 of [2], M is discrete. O

Corollary 16. Let M be a module such that M = My & ---& My is a finite direct sum
of hollow modules M;, (1 <1i <t). Then M is discrete if and only if My, ..., M; are
relatively projective discrete modules.
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