FINITE DIRECT SUMS OF (D1)-MODULES

Derya Keskin

Abstract

In this paper we give necessary conditions for a finite direct sum of ($D 1$)-modules to be a ($D 1$)-module.

1. Introduction

Let R be a ring and $M=M_{1} \oplus M_{2}$ a decomposition of a right R-module M. We are interested in conditions on M_{1}, M_{2} which make M a $(D 1)$-module. If M is a (D1)module it is well-known that M_{1} and M_{2} are both ($D 1$)-modules. In this paper, we prove that if M_{1} and M_{2} are relatively projective, quasi-projective and ($D 1$)-modules then M is a $(D 1)$-module. Let $M=\oplus_{i \in I} M_{i}$ be a decomposition that complements direct summands. We prove that M is (quasi-) discrete if and only if (i) for every $i \in I, M(I-i)$ is (quasi-) discrete, (ii) for every $i \in I, M_{i}$ and $M(I-i)$ are relatively projective modules.

Throughout, all rings will have identities and all modules will be unital right modules.

Let R be a ring and M an R-module. Let A and L be submodules of $M . L$ is called a supplement of A in M if it is minimal with respect to the property $M=A+L$. A submodule K of M is called a supplement (in M) if K is a supplement of some submodule of M. It is easy to check that L is a supplement of A in M if and only if $M=A+L$ and $A \cap L$ is small in L.

Let R be a ring and M an R-module. We consider
($D 1$) For every submodule A of M there exists a direct summand M_{1} of M such that $M=M_{1} \oplus M_{2}$ and $M_{1} \leq A, A \cap M_{2}$ is small in M_{2}.
(D2) For any submodule A of M for which M / A is isomorphic to a direct summand of M then A is a direct summand of M.
(D3) If M_{1} and M_{2} are direct summands of M with $M=M_{1}+M_{2}$, then $M_{1} \cap M_{2}$ is also a direct summand of M.
M is said to have ($D i$) (or to be a ($D i$)-module) if it satisfies ($D i$) $(i=1,2,3) . M$ is called a (quasi-) discrete module if it has ((D1) and (D3)) (D1) and (D2).

KESKİN

Lemma 1. Let A and B be modules with local endomorphism rings such that $M=A \oplus B$ has (D1). Let C be a submodule of A and let $f: B \rightarrow A / C$ be a homomorphism. Then the following hold.
(i) If f cannot be lifted to a homomorphism from B to A, then f is an epimorphism and there exists an epimorphism from A to B.
(ii) If any epimorphism from A to B is an isomorphism, then B is A-projective.
(iii) If there is no epimorphism from A to B, then B is A-projective.

Proof. (i). Let $f: B \rightarrow A / C$, and suppose f cannot be lifted to a homomorphism from B to A. Consider the canonical epimorphism $\pi: A \rightarrow A / C$. Set $U=\{a+b$: $a \in A, b \in B, f(b)=-\pi(a)\}$. Then $M=U+A$. By Proposition 4.8 in [2] there exists a supplement U^{*} of A in M with $U^{*} \leq U$ and U^{*} is a direct summand of M. By the Krull-Schmidt-Azumaya Theorem [1, Corollary 12.7], $M=U^{*} \oplus A$ or $M=U^{*} \oplus B$. Assume $M=U^{*} \oplus A$. Let α denote the canonical projection of $M=U^{*} \oplus A$ onto A. Let $\left.\alpha\right|_{B}$ denote the resriction of α to B. It is easily checked that $\left.\pi \alpha\right|_{B}=f$. This is a contradiction, for f cannot be lifted to a homomorphism from B to A. Hence $M=U^{*} \oplus B$. We prove that f is epic. Indeed, if $a+C \in A / C$ then we write $a=u^{*}+b=a_{1}+b_{1}+b$ where $u^{*} \in U^{*}, u^{*}=a_{1}+b_{1}, f\left(b_{1}\right)=-\pi\left(a_{1}\right), a_{1} \in A$ and $b, b_{1} \in B$. Hence $a=a_{1}, b=-b_{1}$ and $f(b)=a+C$. Thus f is epic. Now let $\left.\beta\right|_{A}$ denote the resriction of the canonical projection $\beta: U^{*} \oplus B \rightarrow B$ to A. Since $M=U^{*} \oplus B=U^{*}+A$ then $\left.\beta\right|_{A}(A)=B$.
(ii). Suppose any epimorphism from A to B is an isomorphism. Let C be a submodule of A and $f: B \rightarrow A / C$ any homomorphism. As in the proof of (i), if $M=U^{*} \oplus A$ then f can be lifted to a homomorphism from B to A. Assume $M=U^{*} \oplus B$. Let ψ denote the canonical projection of $M=U^{*} \oplus B$ onto B and $\left.\psi\right|_{A}$ the restriction of ψ to A. Then $\left.\psi\right|_{A}$ is an epimorphism from A onto B and then, by assumption, $\left.\psi\right|_{A}$ is an isomorphism. It follows easily that $M=U^{*} \oplus A$.
(iii). This is clear from (i).

Corollary 2. Let M be a uniserial module with unique composition series $M \supset U \supset$ $V \supset 0$. Then $M \oplus(U / V)$ does not have ($D 1$).
Proof. Assume M is uniserial with unique composition series $M \supset U \supset V \supset 0$. Clearly M and U / V have local endomorphism rings. Suppose $M \oplus(U / V)$ has $(D 1)$. Let f denote the inclusion map from U / V to M / V. Then f is not an epimorphism. By Lemma $1(\mathrm{i}), f$ can be lifted to a homomorphism g from U / V to M. Note that g is not epic. Hence $\operatorname{Img}=U$ or $I m g=V$. Each case leads to a contradiction.

KESKİN

Remark. Let M be a uniform module and N a non-zero module isomorphic to L / K for some submodules $K<L$ of M. Then N is not M-projective by [2, Lemma 4.30 and Proposition 4.31]. Therefore in Corollary $2, U / V$ is not an M-projective module.

Lemma 3. Let M_{1} be a simple module and M_{2} a uniserial module with unique composition series $M_{2} \supset U \supset 0$. Then $M=M_{1} \oplus M_{2}$ has $(D 1)$.
Proof. Let L be a non-zero submodule of M. We show that there exists a submodule K of M such that $M=K \oplus K^{\prime}, K \leq L$ and $L \cap K^{\prime}$ is small in K^{\prime} for some submodule K^{\prime} of M. If $M_{1} \cap\left(L+M_{2}\right)=0$ then $L \leq M_{2}$. Hence L is a small submodule or direct summand of M. Assume $M_{1} \cap\left(L+M_{2}\right) \neq 0$. Then $M_{1} \leq L+M_{2}$ and $M=L+M_{2}$. If $L \cap M_{2}=M_{2}$ or $L \cap M_{2}=0$ or $L \cap M_{2}=U$ and $L \cap M_{1}=M_{1}$ we are done. Assume $L \cap M_{2}=U$ and $L \cap M_{1}=0$. Then $U \leq L$. Hence $M=L \oplus M_{1}$. Thus M has (D1).

Example 4. Let p be a prime integer and M denote the \mathbb{Z}-module, $(\mathbb{Z} / p \mathbb{Z}) \oplus\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$. Then M has ($D 1$) and $\mathbb{Z} / p \mathbb{Z}$ is not $\mathbb{Z} / p^{2} \mathbb{Z}$-projective.
Proof. By Lemma 3 and Remark.

Lemma 5. The following statements are equivalent for a module $M=M_{1} \oplus M_{2}$.
(i) M_{2} is $M_{1}-$ projective.
(ii) For each submodule N of M with $M=M_{1}+N$ there exists a submodule M^{\prime} of N such that $M=M_{1} \oplus M^{\prime}$.

Proof. The proof is in $[3,41.14,(3) \Leftrightarrow(4)]$. A proof of $(i) \Rightarrow(i i)$ can also be found in [2, Lemma 4.47].

Consider the \mathbb{Z}-module $M=\mathbb{Z} \oplus \mathbb{Z}\left(p^{\infty}\right)$ where $\mathbb{Z}\left(p^{\infty}\right)$ denotes the Prufer p-group. Then it is well-known that \mathbb{Z} and $\mathbb{Z}\left(p^{\infty}\right)$ are relatively projective, M does not have ($D 1$) and $\mathbb{Z}\left(p^{\infty}\right)$ has $(D 1)$. Also, \mathbb{Z} is not semisimple. In this vein we prove the following theorem.

Theorem 6. Let the module $M=M_{1} \oplus M_{2}$ be a direct sum of relatively projective modules M_{1}, M_{2}, such that M_{1} is semisimple and M_{2} has ($D 1$). Then M has ($D 1$).
Proof. Let L be a non-zero submodule of M.
Case 1. $K=M_{1} \cap\left(L+M_{2}\right) \neq 0$. Then $M_{1}=K \oplus K^{\prime}$ for some submodule K^{\prime} of M_{1} and hence $M=K \oplus K^{\prime} \oplus M_{2}=L+\left(M_{2} \oplus K^{\prime}\right)$. By [2, Prop. 4.31, Prop. 4.32 and Prop. 4.33], K is $M_{2} \oplus K^{\prime}$-projective. By Lemma 5, there exists a submodule L^{\prime} of L

KESKİN

such that $M=L^{\prime} \oplus\left(M_{2} \oplus K^{\prime}\right)$. Assume $L \cap\left(M_{2} \oplus K^{\prime}\right) \neq 0$. Let X be any submodule of M_{2}. Since $L \cap\left(X+K^{\prime}\right) \leq X \cap\left(L+K^{\prime}\right)+K^{\prime} \cap(L+X)$ and $K^{\prime} \cap(L+X)=0$, then $L \cap\left(X+K^{\prime}\right) \leq X \cap\left(L+K^{\prime}\right)$. In the same way, $X \cap\left(L+K^{\prime}\right) \leq L \cap\left(X+K^{\prime}\right)$. So $L \cap\left(X+K^{\prime}\right)=X \cap\left(L+K^{\prime}\right)$ for every submodule X of M_{2}. Since M_{2} has (D1), there exists a submodule A_{1} of $M_{2} \cap\left(L+K^{\prime}\right)=L \cap\left(M_{2} \oplus K^{\prime}\right)$ such that $M_{2}=A_{1} \oplus A_{2}$ and $A_{2} \cap\left(L+K^{\prime}\right)$ is small in A_{2} for some submodule A_{2} of M_{2}. Thus $M=\left(L^{\prime} \oplus A_{1}\right) \oplus\left(A_{2} \oplus K^{\prime}\right),\left(L^{\prime} \oplus A_{1}\right) \leq L$ and $L \cap\left(A_{2} \oplus K^{\prime}\right)=A_{2} \cap\left(L+K^{\prime}\right)$ is small in $A_{2} \oplus K^{\prime}$.

Case 2. $M_{1} \cap\left(L+M_{2}\right)=0$. This implies $L \leq M_{2}$. Since M_{2} has $(D 1)$, there exists a submodule B_{1} of L such that $M_{2}=B_{1} \oplus B_{2}$ and $L \cap B_{2}$ is small in B_{2} for some submodule B_{2} of M_{2}. Hence $M=B_{1} \oplus\left(M_{1} \oplus B_{2}\right)$ and $L \cap\left(M_{1} \oplus B_{2}\right)=L \cap B_{2}$ is small in $M_{1} \oplus B_{2}$. It follows that M has ($D 1$).

Let $\operatorname{Rad} M$ denote the Jacobson radical of any R-module M.
Corollary 7. Let M_{1} be a semisimple module and M_{2} a module such that $\operatorname{Rad} M_{2}$ $=M_{2}$. Then $M=M_{1} \oplus M_{2}$ has (D1) if and only if M_{2} has $(D 1)$ and M_{1} and M_{2} are relatively projective.
Proof. Sufficiency is clear from Theorem 6. Conversely assume $M=M_{1} \oplus M_{2}$ has ($D 1$). It is well-known that M_{2} has ($D 1$) by [2, Lemma 4.7]. Since M_{1} is semisimple, M_{2} is M_{1}-projective. We prove that M_{1} is M_{2}-projective. Let N be a submodule of M with $M=N+M_{2}$. By Proposition 4.8 of [2] there exists a submodule K of N such that $M=K+M_{2}=K \oplus K^{\prime}$ and $K \cap M_{2}$ is small in K for some submodule K^{\prime} of M. It follows easily that $\operatorname{Rad} K=K \cap M_{2}$. Since $\operatorname{Rad} M=\operatorname{Rad} K \oplus \operatorname{Rad} K^{\prime}=M_{2}$, then $K \cap M_{2}$ is a direct summand of K. Hence $M=K \oplus M_{2}$. Thus M_{1} is M_{2} - projective by Lemma 5 .

Theorem 8. Let the module $M=M_{1} \oplus M_{2}$ be a direct sum of relatively projective modules M_{1}, M_{2} such that M_{1} and M_{2} are quasi-discrete modules. Then M has (D1).
Proof. Let L be a non-zero submodule of M.
Case 1. $M_{1} \cap\left(L+M_{2}\right) \neq 0$. Since M_{1} has $(D 1)$, there exists a submodule A_{1} of $M_{1} \cap\left(L+M_{2}\right)$ such that $M_{1}=A_{1} \oplus A_{2}$ and $A_{2} \cap\left(L+M_{2}\right)$ is small in A_{2} for some submodule A_{2} of M_{1}. Then $M=L+\left(A_{2} \oplus M_{2}\right)$. If $M_{2} \cap\left(L+A_{2}\right)=0$ then by [2, Lemma 4.7], $A_{2}=C_{1} \oplus C_{2}$ and $L \cap C_{2}$ is small in C_{2} for some submodules C_{1} and C_{2} in A_{2} with $C_{1} \leq\left(L \cap A_{2}\right)$. Hence $M=L+\left(C_{2} \oplus M_{2}\right)=\left(A_{1} \oplus C_{1}\right) \oplus\left(C_{2} \oplus M_{2}\right)$. Since M_{1} and A_{2} are quasi-discrete and M_{1} is M_{2}-projective, then $A_{1} \oplus C_{1}$ is $C_{2} \oplus M_{2}$ projective from [2, Lemma 4.23, Prop. 4.31, Prop. 4.32 and Prop. 4.33]. Hence there exists a submodule L^{\prime} of L such that $M=L^{\prime} \oplus C_{2} \oplus M_{2}$ by Lemma 5. Note that $L \cap\left(C_{2} \oplus M_{2}\right) \leq C_{2} \cap\left(L+M_{2}\right)=L \cap C_{2}$. Therefore $L \cap\left(C_{2} \oplus M_{2}\right)$ is small in $C_{2} \oplus M_{2}$, because $L \cap C_{2}$ is small in C_{2}. Assume $M_{2} \cap\left(L+A_{2}\right) \neq 0$. Since M_{2} has $(D 1)$, there exists

KESKİN

a submodule B_{1} of $M_{2} \cap\left(L+A_{2}\right)$ such that $M_{2}=B_{1} \oplus B_{2}$ and $B_{2} \cap\left(L+A_{2}\right)$ is small in B_{2} for some submodule B_{2} of M_{2}. Then $M=L+\left(A_{2} \oplus B_{2}\right)=\left(A_{1} \oplus B_{1}\right) \oplus\left(A_{2} \oplus B_{2}\right)$ and $L \cap\left(A_{2} \oplus B_{2}\right)$ is small in $A_{2} \oplus B_{2}$ because $A_{2} \cap\left(L+B_{2}\right)$ is small in A_{2} and $B_{2} \cap\left(L+A_{2}\right)$ is small in B_{2}. Since $A_{1} \oplus B_{1}$ is $A_{2} \oplus B_{2}$-projective, there exists a submodule L^{\prime} of L such that $M=L^{\prime} \oplus A_{2} \oplus B_{2}$ by Lemma 5 . This completes the proof in this case.

Case 2. $M_{1} \cap\left(L+M_{2}\right)=0$. The proof of this case is the same as that of case 2 of Theorem 6 .

Theorem 9. Let the module $M=M_{1} \oplus M_{2}$ be a direct sum of relatively projective modules M_{1}, M_{2} such that M_{1} and M_{2} have (D1). Suppose further that M_{1} and M_{2} are quasi-projective modules. Then M has ($D 1$).
Proof. By [2, Lemma 4.6 and Prop.4.38], M_{1} and M_{2} are quasi-discrete. Hence M has $(D 1)$ by Theorem 8 .

Example 10. For any non-zero positive integer $a, \mathbb{Z} / a \mathbb{Z}$ is quasi-projective by $[1$, Exer. 16.14]. Let p be any prime integer. Then the \mathbb{Z}-module $M=(\mathbb{Z} / p \mathbb{Z}) \oplus\left(\mathbb{Z} / p^{3} \mathbb{Z}\right)$ does not have ($D 1$) and $\mathbb{Z} / p \mathbb{Z}$ is not $\mathbb{Z} / p^{3} \mathbb{Z}$-projective.
Proof. By Corollary 2 and Remark.

Theorem 11. Let M be a (D1)-module. Then the following statements are equivalent.
(i) M has (D3).
(ii) Whenever $M=M_{1} \oplus M_{2}$ is a direct sum of submodules M_{1}, M_{2}, then M_{1} and M_{2} are relatively projective.

Proof. $\quad(i) \Rightarrow(i i)$. By [2, Lemma 4.23].
$(i i) \Rightarrow(i)$. By $[3,41.14 .(4) \Rightarrow(6)]$.

Proposition 12. Let the module $M=M_{1} \oplus M_{2}$ be a direct sum of relatively projective modules M_{1}, M_{2} such that M_{2} is quasi-discrete. Let K, L be direct summands of M such that $M=K+L$. Suppose further that $M=K+M_{2}$. Then $K \cap L$ is a direct summand of M.
Proof. Assume $M=K+M_{2}$. By Lemma 5, there exists a submodule K^{\prime} of K such that $M=K^{\prime} \oplus M_{2}$. Without loss of generality we may assume $K^{\prime}=M_{1}$ so that M_{1} is a submodule of K. Then $K \cap M_{2}$ is a direct summand of M_{2}. We write $M_{2}=T \oplus\left(K \cap M_{2}\right)$

KESKİN

for some submodule T of M_{2}. By Theorem 11, $K \cap M_{2}$ and T are relatively projective. Note that $K=M_{1} \oplus\left(K \cap M_{2}\right)$. By [2, Prop. 4.32 and Prop. 4.33], T is K-projective. Then by Lemma $5, M=K \oplus L^{\prime}$ for some submodule L^{\prime} of L. Hence $L=L^{\prime} \oplus(K \cap L)$. Thus $K \cap L$ is a direct summand of M.

Let M_{1}, \ldots, M_{t} be hollow and relatively projective modules. Then $M_{1} \oplus \cdots \oplus M_{t}$ complements direct summands [2, Corollary 4.50]. Therefore we have the following corollary, which is also given in [2, Corollary 4.50].

Corollary 13. Let M be a module such that $M=M_{1} \oplus \cdots \oplus M_{t}$ is a finite direct sum of hollow modules $M_{i}(1 \leq i \leq t)$. Then M is quasi-discrete if and only if M_{1}, \ldots, M_{t} are relatively projective.
Proof. The necessity is clear. Conversely suppose that $M=M_{1} \oplus M_{2}$ and M_{1}, M_{2} are relatively projective hollow modules. Since M_{1} and M_{2} are quasi-discrete, M has ($D 1$) by Theorem 8 . Let K and L be direct summands of M with $M=K+L$. Since M complements direct summands, either $M=K \oplus M_{1}$ or $M=K \oplus M_{2}$. Hence by Proposition 12, $K \cap L$ is a direct summand of M. Thus M has (D3). The proof is completed by induction on t.

Let I be any index set. In the next two theorems we use $M(J)$ to denote $\oplus_{j \in J} M_{j}$ for $J \subseteq I$ and $M(I-i)$ to denote $M(I-\{i\})$ for $i \in I$.

Theorem 14. Let $M=\oplus_{i \in I} M_{i}$ be a decomposition that complements direct summands. Then M is quasi-discrete if and only if
(i) $M(I-i)$ is quasi-discrete for every $i \in I$, and
(ii) M_{i} and $M(I-i)$ are relatively projective for every $i \in I$.

Proof. The necessity follows by Theorem 11 and [2, Lemma 4.7]. Conversely assume the conditions hold. Since $M=M_{i} \oplus M(I-i)$, by Theorem $8, M$ has $(D 1)$. We prove that M has $(D 3)$. Let A and B be submodules of M such that $M=A \oplus B$. Then $M=A \oplus M(J)$ for some subset J of I. It follows by (ii) and [2, Prop. 4.31 and Prop. 4.32] that A and B are relatively projective. By Theorem $11, M$ has $(D 3)$. Hence M is quasi-discrete.

Note that Corollary 13 may also be obtained using Theorem 14.
Theorem 15. Let $M=\oplus_{i \in I} M_{i}$ be a decomposition that complements direct summands. Then M is discrete if and only if
(i) $M(I-i)$ is discrete for every $i \in I$, and

KESKİN

(ii) M_{i} and $M(I-i)$ are relatively projective for every $i \in I$.

Proof. The necessity follows by Theorem 14 and [2, Lemma 4.7]. Conversely suppose that (i) and ($i i$) hold for M. Then by Theorem $14, M$ is quasi-discrete, and since $M_{i}(i \in I)$ is discrete, then by [2, Theorem 4.15], $M_{i}(i \in I)$ is a direct sum of hollow modules and each hollow summand of $M_{i}(i \in I)$ is discrete. Thus M is a direct sum of hollow modules each of which is discrete. By Theorem 5.2 of [2], M is discrete.

Corollary 16. Let M be a module such that $M=M_{1} \oplus \cdots \oplus M_{t}$ is a finite direct sum of hollow modules $M_{i},(1 \leq i \leq t)$. Then M is discrete if and only if M_{1}, \ldots, M_{t} are relatively projective discrete modules.

Acknowledgement

I would like to express my gratefulness to the referee for valuable suggestions which improved the presentation of the paper.

References

[1] Anderson, F. W. and Fuller, K. R. Rings and categories of modules (Springer-Verlag, 1974).
[2] Mohamed, S. H. and Muller, B. J. Continuous and discrete modules, London Math. Soc. LNS 147 (Cambridge Univ. Press, Cambridge, 1990).
[3] Wisbauer, R. Foundations of module and ring theory (Gordon and Breach, Philadelphia, 1991).

Derya KESKİN

Hacettepe University,
Department of Mathematics,
Beytepe Campus, Beytepe 06532, Ankara - TURKEY

