
Tr. J. of Mathematics
22 (1998) , 127 – 143.
c© TÜBİTAK

CROSSED N-CUBES AND n-CROSSED COMPLEXES OF

COMMUTITIVE ALGEBRAS

Z. Arvasi & M. Koçak

Abstract

In this paper we will define crossed N-cubes and n-crossed complexes of commu-
tative algebras and construct a functor from the category of simplicial algebras to
that of n-crossed complexes.

Introduction

The definition of a crossed complex was first introduced under the name ‘group system’
by Blaker and systematically used by Whitehead, [15]. More recently Brown and Higgins
have studied over a groupoid (cf. [7]). Crossed complexes give useful information on the
homotopy type, but crossed n-cubes (of groups) defined by [13] give complete information
up to dimension n. Crossed n-complex and crossed N-cubes were introduced by the author,
A.Mutlu and T.Porter in [6].

It is obvious that one should be able to develop an analogous and theory of n-crossed
complexes and Crossed N-cubes for other algebraic structures such as Lie Algebras or
Commutative Algebras. In this article we have chosen to work with commutative algebras.
Many of the results in here are analogous of known group theoretic results. We will show
how the Cα,β maps which are defined in [4] fit in proofs of some results.

1. Preliminaries

Let k be a fixed commutative ring with 1 6= 0. All of the k-algebras discussed herein
are assumed to be commutative and associative but we will want to consider ideals and
modules to be algebras and so will not be requiring algebras to have unit elements. The
category of commutative algebras will be denoted by Alg.

1.1. Simplicial Algebras

A simplicial (commutative) algebra E consists of a family of algebras {En} together
with face and degeneracy maps di = dni : En → En−1, 0 ≤ i ≤ n, (n 6= 0) and
si = sni : En → En+1, 0 ≤ i ≤ n, satisfying the usual simplicial identities given in André
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[1]. It can be completely described as a functor E: ∆op →CommAlgk where ∆ is the
category of finite ordinals [n] = {0 < 1 < · · · < n} and increasing maps.

The Moore complex and the homotopy module of a simplicial algebra
Recall that given a simplicial algebra E, the Moore complex (NE, ∂) of E is the chain

complex defined by

(NE)n =
n−1⋂
i=0

Kerdni

with ∂n : NEn → NEn−1 induced from dnn by restriction.

The nth homotopy module πn(E) of E is the nth homology of the Moore complex of
E, i.e.,

πn(E) ∼= Hn(NE, ∂)

=
n⋂
i=0

Kerdni /dn+1
n+1(

n⋂
i=0

Kerdn+1
i ).

1.2. Crossed modules and crossed complexes

Whitehead (1949) [15] used crossed modules in various contexts especially in his
investigations into the algebraic structure of relative homotopy groups. In this section, we
recall the definition and elementary theory of crossed modules of commutative algebras
given by T.Porter [14].

Throughout this paper we denote an action of r ∈ R on m ∈M by r ·m.
Let R be a k-algebra with identity. A pre-crossed module of commutative algebras is

an R-algebra C, together with an R-algebra morphism

∂ : C −→ R,

such that for all c ∈ C, r ∈ R
CM1) ∂(r · c) = r∂c.

This is a crossed module if in addition, for all c, c′ ∈ C,
CM2) ∂c · c′ = cc′.
This second condition is called the Peiffer identity. We denote such a crossed module

by (C, R, ∂). Clearly any crossed module is a pre-crossed module.
A standart example of a crossed module is any ideal I in R giving an inclusion map

the image I = ∂C of C is an ideal in R.
A morphism of crossed modules from (C, R, ∂) to (C ′, R′, ∂′) is a pair of k-algebra

morphisms,
θ : C −→ C ′, ψ : R −→ R′,

such that
θ(r · c) = ψ(r) · θ(c) and ∂′θ(c) = ψ∂(c).
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In this case, we will say that θ is a crossed R-module morphism if R = R′ and ψ is the
identity.

A crossed complex of k-algebras is a sequence of k-algebras

C : · · · → Cn
∂n→ Cn−1 → · · · → C2

∂2→ C1
∂1→ C0

in which
i) (C1, C0, ∂1) is a crossed module,
ii) for i > 1, Ci is an C0-module on which ∂1C1 operates trivially and each ∂i is an

C0-module morphism,
iii) for i ≥ 1, ∂i+1∂i = 0.
Morphisms of crossed complexes are defined in the obvious way.

2. Crossed Complexes as crossed N-cubes

The following definition is due to Ellis [12]. More details can also be found in [2].
A crossed square of commutative algebras is a commutative diagram of commutative

algebras.

B D

C R

δ

∂

δ' ∂'

together with an action of R on B, C and D (there are thus actions of C on B and D

via ∂, and of D on B and C via ∂′) and a function h : C × D → B such that, for all
c, c′ ∈ C, d, d′ ∈ D, r ∈ R, b ∈ B, k ∈ k;

1. each of the maps δ, δ′, ∂, ∂′ and the composite ∂′δ = ∂δ′ are crossed modules

2. the maps δ, δ′ preserve the action of R

3. kh(c, d) = h(kc, d) = h(c, kd)

4. h(c + c′, d) = h(c, d) + h(c′, d)

5. h(c, d + d′) = h(c, d) + h(c, d′)

6. r · h(c, d) = h(r · c, d) = h(c, r · d)

7. δh(c, d) = c · d

8. δ′h(c, d) = −d · c

9. h(c, δb) = c · b
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10. h(δ′b, d) = −d · b.

Example 1. Suppose

C2

0

∂1

C1

C0

∂2

is a crossed square, then it is easily shown that ∂1∂2 = 0. Indeed, h : 0 × C1 → C2 and
from axiom 7, we have ∂2h(0, c1) = 0c1 = 0, this implies

∂2(C2) = 0 ⇒ ∂1(∂2(c2)) = ∂1(0) = 0.

The only other non-trivial h-map is that giving the action of C0 on C2. It is easy to check
that

C2

−→
∂2 C1

−→
∂1 C0

is a truncated crossed complex.

This example enable us to define an infinite dimensional crossed or crossed N-cubes.
Thus all crossed complexes will be special cases of crossed N-cubes.

We consider the set N = {1, 2, . . .} of positive natural numbers with its usual ordering.
For any m, 〈m〉 = {1, 2, . . . , m} both as a subset of N and, in discussion of crossed
m-cubes, as a set in its own right. We say a subset B ⊆ N is a down segment if
B = {k : k ≤ m} for some m and of dourse B is then equal to 〈m〉. The order on N is
important but on the subsets 〈m〉 tends to play less of a role.

Definition 2.1. A crossed N-cube of commutative algebras is a family of commutative
algebras,

{MA : A ⊆N, A finite}

together with homomorphisms µi : MA → MA−{i} for i ∈ N and for A, B ⊆N, functions

h : MA ×MB −→MA∪B
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such that for all k ∈ k, a, a′ ∈MA, b, b′ ∈MB , c ∈MC , i, j ∈ N and A ⊆ B

1) µia = a if i 6∈ A
2) µiµja = µjµia
3) µih(a, b) = h(µia, µib)
4) h(a, b) = h(µia, b) = h(a, µib) if i ∈ A ∩B
5) h(a, a′) = aa′

6) h(a, b) = h(b, a)
7) h(a + a′, b) = h(a, b) + h(a′, b)
8) h(a, b + b′) = h(a, b) + h(a, b′)
9) k · h(a, b) = h(k · a, b) = h(a, k · b)
10) h(h(a, b), c) = h(a, h(b, c)) = h(b, h(b, c)).

A morphism of crossed N-cubes is defined in the obvious way: It is a family of commuta-
tive algebra homomorphisms, for A ⊆ N fA : MA −→ M ′

A commuting with the µi’s and
h’s.

We thus obtain a category of crossed N-cubes denoted by CrsN.
If the subsets A are restricted to be subsets of < n >= {1, . . . , n}, then we have the

corresponding definition of a crossed n-cube of algebras due to Ellis [12]. This suggests
giving the first example of a crossed N-cube.

Example 2. Any crossed n-cube determines a crossed N-cube satisfying MA = 0
unless A ⊆< n > .

A neat example is the following:
A 1-crossed complex is a crossed N-cube verifying MA = 0 if A is not of the form

< n > for some n, where < 0 >= ∅ by convention.

Proposition 2.2. Let M be a 1-crossed complex and write Cn = M<n>, ∂n : Cn →
Cn−1 for µn. Then (C, ∂) is a crossed complex.

Conversely if we are given any crossed complex (C, ∂), then the crossed N-cube defined
by M<n> = Cn, µn = ∂n with n ∈ N and MA = 0 otherwise is a 1-crossed complex in
which the action of C0 on Cn, for the various n, give the only non trivial h-maps.

Proof. i) Take the h-map

h M∅ ×M<n> −→ M<n>

(a, b) 7−→ h(a, b) = a · b
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for a ∈ M∅ = R & b ∈ Cn = M<n>. As

∂n(a · b) = ∂n(h(a, b));
= h(∂na, ∂nb) by axiom 3;
= h(a, ∂nb) by ∂na = a (as axiom 1);
= a · ∂n(b),

∂1 : C1 → C2 is a crossed module.
ii) If a ∈M<1>, b ∈ M<n>, n ≥ 2, then

∂1a · b = h(∂1a, b)
= h(µ1a, b)
= h(a, µ1b)
= h(a, 0) = 0 by 1 ∈< 1 > ∩ < n >

So ∂1C1 acts trivially on Cn for n ≥ 2.
Conversely we will determine maps h. be. Suppose one of A, B is not of the form

< n > for some n. Then h : MA × MB → MA∪B must be trivial as MA = 0. If
A =< m >, B =< n > and 1 ≤ m ≤ n, then any suitable : MA × MB → MA∪B
satisfy h(a, b) = h(µ1a, b) = h(0, b) = 0. This leaves us only to see what

h : C0 × Cn → Cn & h : C1 × Cn → Cn

should be. If a ∈ C0, b ∈ Cn, then we take h(a, b) = ab, the multiplication of a and b. If
a ∈ C1, b ∈ Cn, then 1 ∈< n > ∩ < 1 >and thus

h(a, b) = h(µ1a, b)
= µ1a · b.

If n = 0 or 1, these giving equation can be easily defined as ∂1 : C1 → C0 is a crossed
module. As for all informations given above, there is only left to check the ten axioms of
a crossed N-cube. We leave it to the reader as an exercise. 2

Example 3. Let R be an algebra and given a family {Ii : i ∈< n >} of ideals of R,
then for A ⊆< n >

MA =
⋂
i∈A

Ii and M∅ = R

with µi : MA →MA−{i} defined by inclusion and

h : MA ×MB −→MA∪B
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given by h(a, b) = ab. Then
{MA : A ⊆< n >, µi, h}

is a crossed n-cube, called the inclusion crossed n-cube given by the ideal (n + 1)-ad of
algebras (R; I1, . . . , In).

The following result is due to [5].

Proposition 2.3. Let (E; I1, . . . , In) be a simplicial ideal (n + 1)-ad of algebras and
define for A ⊆< n >

MA = π0(
⋂
i∈A

Ii)

with homomorphism µi : MA → MA−{i} and h-maps induced by corresponding maps in
the simplicial inclusion crossed n-cube, constructed by applying the previous example to
each level. Then

{MA : A ⊆< n >, µi, h}

is a crossed n-cube.

Example 4. Let E be any simplicial algebra and let DecE denote the décalé G, i.e.,
the simplicial algebra with

(DecE)n = En+1

and all the face and degeneracy maps of E except the last ones at each level. The functor
Dec comes with a natural transformation δ :Dec → Id. Iterating Dec n-times and taking
the n resulting transformation δi :Decn →Decn−1 gives n ideals {Kerδi} of DecnE. In
[5] we defined a functor

M(−, n) : SimpAlg−→ Crsn

by considering π0 of the resulting simplicial crossed n-cube. For details, see [2]. This
gives

M(E, 1) ∼= (
NE1

d2(NE2)
−→ E0)

which is a crossed module and

M (E, 2) ≅

M E2/∂3 (N E3) Ker d0

Ker d1 E1
( )
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which is a crossed squre and so on.

3. n-Crossed Complexes

We start by recalling the result from [3].

Proposition 3.1. Let E be a simplicial algebra, then defining

Cn(E) =
NEn

(NEn + Dn) + dn+1(NEn+1 + Dn+1)

with ∂n(z) = dnz yields a crossed complex C(E) over an algebra.

The motivation for the way that will be followed here is that the crossed complex
(C(E), ∂) associated to a simplicial algebra E by giving the previous result has at its
base the crossed module

NE1

d2(NE2 ∩D2)
−→ E0.

This is precisely M(sk1E, 1) where sk1E is the 1 skeleton of a simplicial algebra E. To
define n-crossed complexes, they have amongst them objects with M(sknE, n) at their
base with a chain complex somehow attached to the ‘top left hand corner’ of the crossed
n-cube. We therefore will make the following definition:

Definition 3.2. An n-crossed complexM of commutative algebras is a crossed N-cube
in which if A ⊆ N is finite, MA = 0 unless A ⊆< n > or if A =< m >, for some m.

Example 5. A 2-crossed complex consists of a diagram of algebra homomorphisms

C5 C4 C3

C2

C1

C0
∂5 ∂4

λ′ µ′

µλ

. . .

together with an action of C0 on C3, C2, C1 and Cn for n ≥ 4, and a function h : C2×C1 →
C3. The ten axioms are trivially satisfied.

Proposition 3.3. Let M be a n-crossed complex. Then
(i) if m > n, µmµm+1 = 0,
(ii) the algebra M∅ = R acts on all the M<m>, m > n, in such a way that each of the

ideal µiM{i} acts trivially on M<m>, if 1 ≤ i ≤ n. No MA with A ⊆< n >, A = ∅ acts
non trivially on M<m> for m > n.
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Proof. The proof of (i) is shown in the previous proposition
To show (ii), it is clear that the h-map

h : M∅ ×M<m> −→ M<m>

(a, b) 7−→ a · b

can be defined as before. On the other hand, if µia
′ =a, then

a · b = h(µia′, b)
= h(a′, µib)
= 0

as µi : M<m> → 0. Likewise if a ∈ MA, b ∈ M<m> and i ∈ A ⊆< n >, then again
µib = 0 implies h(a, b) = h(a, µib) = 0. 2

Remark. Consider

M<0>/

n∑
i=1

Imµi = Q(M).

which is a sort of ‘total quotient’ of a crossed n-cube. It acts as π0(M). The above
proposition shows that

→M<m> →M<m−1> → · · · →M<n+1>

is a chain complex of Q(M′)-modules, where M′ is the bottom crossed n-cubes of M.
It should also be clear that the category n-CrsComp of n-crossed complexes is a full

subcategory of CrsN, the category of crossed N-cubes in such a way that if m > n,

n −CrsComp ⊂ m−CrsComp ⊂ CrsN.

Each subcategory is determined merely by specifying that certain position of a N-cube
are trivial. In each case we have a variety in the category of crossed N-cubes as this latter
category is a category of algebras for a many sorted theory. This implies in particularly
that the inclusion

n-CrsComp ↪→ (n + 1)-CrsComp

should have a left adjoint Ln+1
n . We now give this left adjoint in the following.

4. The Construction of the Functor Ln+1
n from (n+1)-CrsComp to n-CrsComp

LetM = (MA) be an n +1-crossed complex and will write Ln+1
n (M) = L = (LA) for

the corresponding n-crossed complex. The form of the two structures makes it clear how
to define LA for most A.
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- If A 6⊆< n > and for any m < n ∈ N, A is not in < m >, LA = 0,
- If A =< m >, m > n + 1, LA = MA,
- If A ⊂< n >, A 6=< n >, then LA = MA/Imµn+1,
- For < n >, let I<n> be the ideal of M<n> generated by all the elements µn+1h(a, b)

where {A, B} forms a non-trivial partition of < n + 1 >, B 6= ∅, n + 1 ∈ A, then
L<n> = M<n>/I<n>.

- For < n + 1 > let I<n+1> be the ideal of M<n+1> generated by all elements,
h(a, b), a ∈MA, b ∈MB where {A, B} is as before (above), then

L<n+1> = M<n+1>/I<n+1>.

It is now obvious to check that definitions of µi and h maps give L the structure of
an n-crossed complex.

Proposition 4.1. The structure L, an n-crossed complex has the following universal
strcture:

L

η
M M′

ϕ′

ϕ

with ϕ′η = ϕ, where the natural quotient η :M→ L a map of (n + 1)-crossed complexes
and M′ is in n-CrsComp. Thus Ln+1

n is left adjoint to the inclusion of n-CrsComp
into (n + 1)-CrsComp.

Remark. If we take the (n + 1)-cube determined by {LA : A ⊆< n + 1 >}, then the
cokernel of µn+1is exactly the same as that for {MA : A ⊆< n + 1 >}. In fact the only
case that is not immediate is that of the cokernel of

µn+1 : L<n+1> −→ L<n>.

This is induced by µn+1of M on the quotients

M<n+1>

I<n+1>
−→ M<n>

I<n>

but µn+1I<n+1> = I<n>, so the quotient is M<n>/Imµn+1as promised.
The remark will be significant to form functors from simplicial algebras to that of

n-crossed complexes.
We omit the proof of the above proposition which can be obtained by changing slightly

the corresponding result in [11].
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5. From Simplicial Algebras to n-Crossed Complexes

We are expecting n-crossed complexes look like C(Em) for m > n and M(sknE, n)
at the base, i.e. for the bottom crossed n-cube. To form these structures, we look at a
family of algebras

{MA : A finite, A ⊆N}

together with:
- if A ⊃< n >, then MA = 0,
- if A =< m > with m > n, MA = C(E)m,
- if A ⊆< n >, then MA = M(sknE, n)A.
Here we recall the formula for M(E, n)A which is defined in [5]. In the following the

Cα,β maps given in [4].

Let S(n, n − r) be the set of all monotone increasing surjective maps from [n] to
[n− r]. This can be generated from the various σni by composition. The composition of
these generating maps is subject to the following rule σjσi = σi−1σj, j < i. This implies
that every element σ ∈ S(n, n − r) has a unique expression as σ = σi1 ◦ σi2 ◦ . . . ◦ σir
with 0 ≤ i1 < i2 < . . . < ir ≤ n − 1, where the indices ik are the elements of [n] such
that {i1, . . . , ir} = {i : σ(i) = σ(i + 1)}. We thus can identify S(n, n − r) with the set
{(ir , . . . , i1) : 0 ≤ i1 < i2 < . . . < ir ≤ n − 1}. In particular, the single element of
S(n, n), defined by the identity map on [n], corresponds to the empty 0-tuple ( ) denoted
by ∅n. Similarly the only element of S(n, 0) is (n − 1, n− 2, . . . , 0). For all n ≥ 0, let

S(n) =
⋃

0≤r≤n
S(n, n− r).

Let P (n) be a set consisting of pairs of elements (α, β) from S(n) with α ∩ β = ∅, where
α = (ir , . . . , i1), β = (js, ..., j1) ∈ S(n). We write #α = r, i.e. the length of the string α.
The k-linear morphisms that we will need,

{Cα,β : NEn−#α ⊗NEn−#β −→ NEn : (α, β) ∈ P (n), n ≥ 0}

are given as composites Cα,β = pµ(sα ⊗ sβ) where

sα = sir . . . si1 : NEn−#α −→ En , sβ = sjs . . . sj1 : NEn−#β −→ En,

p : En → NEn is defined by composite projections p = pn−1 . . . p0, where pj = 1 −
sjdj with j = 0, 1, . . .n − 1 and we denote the multiplication by µ : En ⊗ En → En.
Thus

Cα,β(xα ⊗ yβ) = (1− sn−1dn−1) . . . (1− s0d0)(sα(xα)sβ(yβ)).
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If A ⊆< n >, then

M(sknE, n)A =

⋂
i∈A

Kerdni

dn+1(Kerd0 ∩
⋂
i∈A

Kerdn+1
i+1 ∩Dn+1)

We need to define µi and h-maps relative to these algebras. We note that

M<n+1> =
NEn+1

(NEn+1 ∩ En+1) + dn+2(NEn+2 ∩ En+2)

and

M<n> =
NEn

dn+1(NEn+1 ∩Dn+1)
,

so defining µn+1 to be induced by dn+1 is a reasonable choice. For m > n + 1,

µm : M<m> −→M<m−1>

is the crossed complex part of M , i.e. the boundary induced by dm have thus stopped
with the µi.

We have specified the h-maps within the bottom crossed n-cube (cf. [2]).
Suppose if A =< m > and B =< l > with say l > m > n then for any i ∈< m > for

M to be a crossed n-complex we must have for a ∈M<l> and b ∈M<m>,

h(a, b) = h(µia, b) = h(0, b) = 0.

Likewise if A =< m >, m > n and B ⊆< n > but B 6= ∅ then there is some i ∈ B and
again for a ∈MA, b ∈ MB, this implies that

h(a, b) = h(µia, b)
= h(a, µib)
= 0 as MB = 0 for B ⊆< n > .

Thus the following h-maps are needed to specified

h : M∅ ×M<m> −→M<m>.

These as in a crossed complex are defined by using the Cα,β maps, i.e., for x ∈ NEn−1

and y ∈ NEn by taking β= (m, m− 1, . . . , n), α = (n− 1), it follows that

C(n−1)(m,m−1,...,n)(x ⊗ y) = sn . . . sm(x)[
m−n∑
k=0

(−1)ksn−1+k(y)].
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So

dm+1Cα,β(x⊗ y) = sn . . . sm−1(x)[
m−n∑
k=0

(−1)ksn−1+k(y) + y]

= s
(m−n)
n (x)[

m−n∑
k=0

(−1)ksn−1+kdm(y) + y]

and this shows us

s(m−n)
n (x)y ∈ [(NEm ∩Dm) + dm+1(NEm+1 ∩Dm+1)]

that implies the actions of NEn and NEm defined by a multiplication

x · y = s(m−n)
n (x)y

via degeneracies, are trivial if n ≥ 1. Thus if

a = x + ∂(NE1) & b = y + [(NEm ∩Dm) + dm+1(NEm+1 ∩Dm+1)],

then
h(a, b) = s(m−n)

n (x)y + [(NEm ∩Dm) + dm+1(NEm+1 ∩Dm+1)].

The h-map is well defined, as Cα,β is. Of course h : M<m> ×M∅ →M<m> is then given
by axiom 6.

Now we have specified the µ and h-maps for M, it remains only to check the ten
axioms. This is not too long since they are all satisfied within M(sknE, n) and most of
the h-maps outside that n-cube are trivial. This leaves us some special cases still to check.
The axioms involving, µ’s alone trivially checked. They are true by our specification of
these homomorphisms.

Given the link both with crossed complex C(E) of E and the crossed n-cube con-
struction M(E, n), it is appropriate to allocate the notation C(E, n) to these n-crossed
associated to E. Of course C(E, 1) and C(E) are identical.

Another useful point to note is that considering

µn+1 : C(E)n+1 −→
NEn

dn+1(NEn+1 ∩Dn+1)

as part of a crossed (n + 1)-cube, we can form the quotient crossed n-cube and we find
it is M(E, n). In fact it is only at this ‘highest’ corner that M(E, n) and M(sknE, n)

different, since all other comes have the form ∩Kerdn−1
i up to isomorphism. The image

of µn+1 is of course dn+1(NEn+1) so the quotient of the above map is M(E, n)<n>. As
all the other images of µn+1 is trivial this proves the claimed result.
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This shows that C(E, n) contains the information on the n-type of E. We still have
to check that it contains the information on C(E, 1), i.e., on the crossed complex of a
simplicial algebra E.

6. From n-Crossed Complexes to (n-1)-Crossed Complexes

We now have a functor

C(−, n) : SimpAlg −→ n-CrsComp

for each n and also functors

Lnn−1 : n-CrsComp −→ (n− 1)-CrsComp.

We have expressed the hope that C(E, n) contains not only the information on M(E, n)
and thus on the n-type of E but also on C(E) the crossed complex associated to E earlier
(see also [10] ). One way in which this can happen is if

Lnn−1C(E, n) ∼= C(E, n− 1)

as then repeated use of the Lkk−1 functor will get form C(E, n) to C(E, 1) i.e. to C(E).
It is this isomorphism that we set out to prove in this section. Before proving this
isomorphism, we need to recall the following lemma due to the first author (cf. [2]).

Lemma 6.1. If, for n ≥ 2 x ∈ NEn−1 and y ∈ NEn, then

sn−1(x)y ∈ [NEn ∩Dn + dn+1(NEn+1 ∩Dn+1)].

Proposition 6.2. There is a natural isomorphism

Lnn−1C(E, n) ∼= C(E, n− 1).

Proof. We begin by analyzing the < n >-position. In this position the result is
equivalent to checking that

I<n> ∼=
(NEn ∩Dn) + dn+1(NEn+1 ∩Dn+1)

dn+1(NEn+1 ∩Dn+1)

where I<n> is the ideal generated by all h(a, b), a ∈ M A, b ∈ MB for A ∪ B =< n >
A ∩ B = ∅, B 6= ∅ and n ∈ A. (As h(a, b) = h(b, a), we could equally well required that
A 6= ∅ and n ∈ B).

Each such h(a, b) in this case is given by a ‘multiplication coset’ i.e. if a = x, b = y,
the cosets represented by x and y respectively then h(a, b) = xy.
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Take
x ∈

⋂
i∈A

Kerdi and y ∈
⋂
j∈B

Kerdj

and suppose 1 ∈ B and k ∈ B but k + 1 ∈ A. (If 1 ∈ A the roles of x and y in what
follows must be reversed.)

Consider the Cα,β, for α = (k − 1), β = (k),

C(k−1)(k)(x⊗ y) = (−1)ksk(x)[sk(y) − sk−1(x)] +
k+1∑
i=0

(−1)isi(x)si(y).

On the other hand, for α = (n− 2), β = (n− 1),

Cα,β(x⊗ y) = sn−1(x)[sn−2(y) − sn−1(y)]

and then
dn+1Cα,β(x⊗ y) = sn−1dn(x)[sn−2dn(y) − sn−1dn(y)] = a.

We calculate dn+1C(k−1)(k)(x⊗ y) and find it has to form xy− a so we have

xy = a + dn+1C(k−1)(k)(x⊗ y).

If 0 ≤ j ≤ n, one can easily see that

djC(k−1)(k)(x ⊗ y) = 0.

If j = k,
dkC(k−1)(k)(x⊗ y) = 0 since k ∈ B.

For j = k + 2,
dk+2C(k−1)(k)(x⊗ y) = 0 since k + 1 ∈ A.

and also clear that a is in NEn. Thus

xy ∈ [(NEn ∩Dn) + dn+1(NEn+1 ∩Dn+1)]

and hence

I<n> ⊆
(NEn ∩Dn) + dn+1(NEn+1 ∩Dn+1)

dn+1(NEn+1 ∩Dn+1)

as expected.
The opposite inclusion of this requires that each element of NEn ∩Dn be written as

a product of multiplication of the form xy with

x ∈
⋂
i∈A

Kerdi and y ∈
⋂
j∈B

Kerdj
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modulo dn+1(NEn+1∩Dn+1). The first step in this direction is given by the above lemma
since this reduces the work to checking that each element of NEnKn can be so written,
where Kn has a semi-direct decomposition for which see [2].

We know that
En
∼= Kerdn o sn−1(En−1)

and that Kerdn ⊂ Kn.
If x ∈ NEn, y ∈Kerdn then xy is already in the right form (A = {1, . . . , n− 1}, B =

{n}). In sn−1(En−1), we have the subalgebra sn−1(Kerdn−1
n−1). Suppose x ∈ NEn and

y = sn−1(z) for z ∈Kerdn−1
n−1. Then

sn−1(z) ∈ Kerdn and sn−1(z) − sn−2(z) ∈ Kerdnn−1,

hence x(sn−1(z) − sn−2(z)) has the right form with A = {1, . . . , n− 2, n}, B = {n− 1},
however x(sn−1(z)− sn−2(z)) is a sum of x(−sn−2(z)) and multiplication of (xsn−1(z)),
so

h(a, b) = (xsn−1(z)) = xy

which is the right form.
This process can be repeated. On the kth repeat, one attacks

sn−1 . . . sn−k(En−k)

which splits as sn−1 . . . sn−k(Kerdn−kn−k) and sn−1 . . . sn−k−1(En−k−1). Pairing an elements
of the form

y = sn−1 . . . sn−k(z) for z ∈ Kerdn−kn−k with sn−1 . . . sn−k+1sn−k−1(z)

gives an element in Kerdn−k. If x ∈ NEn, x[sn−1 . . . sn−k+1(sn−k(z) − sn−k−1(z))] gives
something in I<n> modulo ∂(NEn+1 ∩ Dn+1), but x(−sn−1 . . . sn−k+1sn−k−1(z)) is in
NEn[sn−1+1 . . . sn−k+1(Kerdn−k)] and if this has already been shown to give a subalgebra
of I<n> then so does

NEn[sn−1 . . . sn−k(Kerdn−k)].

The induction however stops with k = n− 1.
This leaves us just with the term NEn[sn−1sn−2 . . . s0d0(NE1)] to handle. First we

note that if x ∈ NEn and y ∈ NE1, the multiplication

z = sn(x)[sn . . . s2s1(y) − sn . . . s2s0(y)] ∈ NEn+1 ∩Dn+1

and that
dn+1z = x[sn−1 . . . s2s1(y) − sn−1 . . . s2s0(y)].

As we have shown already that x(−sn−1 . . . s1(y)) has the right form modulo ∂(NEn+1∩
Dn+1), the usual identity for multiplication of the form x(a+b) now completes the proof.

2
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