CODES ON SUPERELLIPTIC CURVES*

F. Özbudak \& Glukhov

Abstract

The purpose of this paper is to apply superelliptic curves with a lot of rational points to construct rather good geometric Goppa codes.

1. Introduction

Let $F_{p} \subset F_{q}$ be a Galois extension of prime field F_{p}. A. Weil [9] proved that if $f(x, y) \in F_{q}[x, y]$ is an absolutely irreducible polynomial and if N_{q} denotes the number of F_{q}-rational points of the curve defined by the equation $f(x, y)=0$, then

$$
\left|N_{q}-(q+1)\right| \leq 2 g q^{1 / 2},
$$

where g is genus of the curve. As a corollary we have that, if m is the number of distinct roots of f in its splitting field over F_{q}, χ is a non-trivial multiplicative character of exponent s and f is not an s-th power of a polynomial, then

$$
\left|\sum_{x \in F_{q}} \chi(f(x))\right| \leq(m-1) q^{1 / 2}
$$

S.A. Stepenov [2] proved the existence of a square-free polynomial $f(x) \in F_{p}[x]$ of degree $\geq 2\left(\frac{(N+1) \log 2}{\log p}+1\right)$ for which

$$
\sum_{i=1}^{N}\left(\frac{f(x)}{p}\right)=N
$$

where $\{1, \ldots, N\} \subset F_{p}$ and $(\dot{\bar{p}})$ is the Legendre symbol and $(p, 2)=1$. Later, F. Özbudak [8] extended this to arbitrary non-trivial characters of arbitrary finite fields by following

[^0]
ÖZBUDAK, GLUKHOV

Stepanov's approach. This gives a constructable proof of the fact that Weil's estimate is almost attainable for any F_{q}.

In [3], Stepanov introduced some special sums $S_{\nu}(f)=\sum_{x \in F_{q} \nu} \chi(f(x))$ with a nontrivial quadratic character χ by explicitly representing the polynomial $f(x)$, whose, absolute values are very close to Weil's upper bound. M. Glukhov [6], [7] generalized Stepanov's approach to the case of arbitrary multiplicative characters over arbitrary finite field F_{q}.

Recall the basic ideas of the Goppa construction (see for example [1] or [5]) of linear $[n, k, d]_{q}$ codes associated to a smooth projective curve X of genus $g=g(X)$ defined over a finite field F_{q}. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of F_{q}-rational points of X and set

$$
D_{0}=x_{1}+\cdots+x_{n}
$$

Let D be a F_{q}-rational divisor on X whose support is disjoint from D_{0}. Consider the following vector space of rational functions on X :

$$
L(D)=\left\{f \in F_{q}(X)^{*} \mid(f)+D \geq 0\right\} \cup\{0\}
$$

The linear $[n, k, d]$ code $C=C\left(D_{0}, D\right)$ associated to the pair $\left(D_{0}, D\right)$ is the image of the linear evaluation map

$$
E v: L(D) \rightarrow F_{q}^{n}, f \mapsto\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
$$

Such a q-ary linear code is called a geometric Goppa code. If $\operatorname{deg} D<n$ then $E v$ is an embedding, hence by Riemann-Roch theorem.

$$
k \geq \operatorname{deg} D-g+1
$$

Moreover we have

$$
d \geq n, \operatorname{deg} D
$$

In this paper we apply the Goppa construction to the curve given over F_{q} by

$$
y^{s}=f(x)
$$

where $s \mid(q-1)$ and the polynomial $f(x)$ is obtained by Stepanov's approach to attain

$$
\sum_{x \in F_{q}} \chi(f(x))=q
$$

ÖZBUDAK, GLUKHOV

where χ is a non-trivial multiplicative character of exponent s. Moreove, we apply the Goppa construction also to the polynomials $f(x)$ given in Glukhov's paper [6], [7] explicitly after some modification.

Theorem 1 Let F_{q} be a finite fields of characteristic p, s an integer $s \geq 2, s \mid(q-1)$, and c be the infimum of the set
$C=\{x:$ a non-negative real number \mid there exists an integer n such that

$$
\left.\frac{q^{x}(q-2)}{(q-1)(s-1)\left(1+\frac{1}{s^{q}(s-1)}\right)} \geq n \geq \frac{q \log s}{\log q}+x\right\}
$$

Let r be an integer satisfying

$$
s(s-1)\left\lceil\frac{q \log s}{\log q}\right\rceil-2 s<r<s q
$$

Then there exists a linear code $[n, k, d]_{q}$ with parameters

$$
\begin{aligned}
& n=s q \\
& k=r-\frac{s(s-1)}{2}\left\lceil\frac{q \log s}{\log q}+c\right\rceil+s \\
& d \geq s q-r
\end{aligned}
$$

Corollary 1 Under the same conditions with Theorem 1, there exist a code with relative parameters satisfying

$$
R \geq 1-\delta \frac{\frac{s(s-1)}{2}\left\lceil\frac{q \log s}{\log q}+c\right\rceil-s}{s q}
$$

By applying the same procedure to polynomials given explicitly by Glukhov [6], we get the following theorem.

Theorem 2 Let F_{q} be a finite field of characteristic $p, F_{q^{\nu}}$ an extension of F_{q} of degree ν, s an integer $s \geq 2, s \mid(q-1)$. Moreover,

ÖZBUDAK, GLUKHOV

i) if $p \neq 2, \nu>1$ an odd integer and r an integer satisfying

$$
(s-1)(1+q) q^{\frac{\nu-1}{2}}-4 s+2<r<s q^{\nu},
$$

then there exists a linear code $[n, k, d]_{q^{\nu}}$ with parameters

$$
\begin{aligned}
& n=s q^{\nu}, \\
& k=r+2 s-(s-1) \frac{(1+q)}{2} q^{\frac{\nu-1}{2}}-1, \\
& d \geq s q^{\nu}-r ;
\end{aligned}
$$

ii) if $p \neq 2, \nu<2$ an even integer and r an integer satisfying conditions
a) when $4 X_{\nu}$

$$
(s-1)\left(1+q^{2}\right) q^{\frac{\nu}{2}-1}-4 s+2<r<s q^{\nu},
$$

then there exists a linear code $[n, k, d]_{q^{\nu}}$ with parameters

$$
\begin{aligned}
& n=s q^{\nu}, \\
& k=r+2 s-(s-1) \frac{\left(1+q^{2}\right)}{2} q^{\frac{\nu}{2}-1}-1, \\
& d \geq s q^{\nu}-r
\end{aligned}
$$

b) when $4 \mid \nu$

$$
(s-1)\left(1+q^{2}\right) q^{\frac{\nu}{2}-1}-2(s-1) q-2 s<r<s q^{\nu},
$$

then there exists a linear code $[n, k, d]_{q^{\nu}}$ with parameters

$$
\begin{aligned}
& n=s q^{\nu}, \\
& k=r+(s-1) q+s-(s-1) \frac{\left(1+q^{2}\right)}{2} q^{\frac{\nu}{2}-1}, \\
& d \geq s q^{\nu}-r ;
\end{aligned}
$$

iii) if $p=2, \nu>1$ on odd integer and r an integer satisfying

$$
(s-1)(1+q) q^{\frac{\mu-1}{2}}-2(s-1) q-2 s<r<s q^{\nu},
$$

ÖZBUDAK, GLUKHOV

then there exists a linear code $[n, k, d]_{q^{\nu}}$ with parameters

$$
\begin{aligned}
& n=s q^{\nu} \\
& k=r+(s-1) q+s-(s-1)(1+q)^{\frac{q^{\frac{\nu-1}{2}}}{2}} \\
& d \geq s q^{\nu}-r
\end{aligned}
$$

iv) if $p=2, \nu>2$ an even integer and r an integer satisfying conditions
a) when $4 X \nu$

$$
(s-1)\left(1+q^{2}\right) q^{\frac{\nu}{2}-1}-2(s-1) q^{2}-2 s<r<s q^{\nu}
$$

then there exists a linear code $[n, k, d]_{q^{\nu}}$ with parameters

$$
\begin{aligned}
& n=s q^{\nu} \\
& k=r+(s-1) q^{2}+s-(s-1)\left(1+q^{2}\right)^{\frac{q^{\frac{\nu}{2}-1}}{2}} \\
& d \geq s q^{\nu}-r
\end{aligned}
$$

b) when $4 \mid \nu$

$$
(s-1)\left(1+q^{2}\right) q^{\frac{\nu}{2}-1}-2(s-1) q-2 s<r<s q^{\nu},
$$

then there exists a linear code $[n, k, d]_{q^{\nu}}$ with parameters

$$
\begin{aligned}
& n=s q^{\nu} \\
& k=r+(s-1) q+s-(s-1)\left(1+q^{2}\right)^{\frac{q^{\frac{\nu}{2}-1}}{2}} \\
& d \geq s q^{\nu}-r
\end{aligned}
$$

Corollary 2 Under the same conditions with Theorem 2, there exist codes with relative parameters satisfying, respectively,
i)

$$
R \geq 1-\delta-\frac{(s-1) \frac{(1+q)}{2} q^{\frac{\nu-1}{2}}-2 s+1}{s q^{\nu}}
$$

ÖZBUDAK, GLUKHOV

ii.a)

$$
R \geq 1-\delta-\frac{(s-1) \frac{\left(1+q^{2}\right)}{2} q^{\frac{\nu}{2}-1}-2 s+1}{s q^{\nu}}
$$

ii.b)

$$
R \geq 1-\delta-\frac{(s-1) \frac{\left(1+q^{2}\right)}{2} q^{\frac{\nu}{2}-1}-(s-1) q-s}{s q^{\nu}}
$$

iii)

$$
R \geq 1-\delta-\frac{(s-1)(1+q) \frac{q^{\frac{\nu-1}{2}}}{2}-(s-1) q-s}{s q^{\nu}}
$$

iv.a)

$$
R \geq 1-\delta-\frac{(s-1)\left(1+q^{2}\right) \frac{q^{\frac{\nu}{2}-1}}{2}-(s-1) q^{2}-s}{s q^{\nu}}
$$

iv.b)

$$
R \geq 1-\delta-\frac{(s-1)\left(1+q^{2}\right) \frac{q^{\frac{\nu}{2}-1}}{2}-(s-1) q-s}{s q^{\nu}}
$$

Remark 1 When $s \ll q$, we have for Corallary 1

$$
R \geq 1-\delta-J_{1}(s, q)
$$

where $J_{1}(s, q) \sim \frac{(s-1) \log s}{2} \frac{1}{\log q}$ and for Corollary 2

$$
R \geq 1-\delta-J_{2}\left(s, q^{\nu}\right)
$$

where $J_{2}\left(s, q^{\nu}\right) \sim \frac{(s-1)}{2 s} \frac{1}{q^{\frac{\nu-1}{2}}}$. Although $\frac{1}{q^{\frac{1}{2}}} \ll \frac{1}{\log q}$, Theorem 1 is significant especially when q is a prime. Indeed good codes are designed over $F_{q}, q=p^{\nu}, \nu>1$ since curves with large $\frac{N_{q}}{2}$ ratio are obtained using the structure of Galois group of F_{q} over some subfield $F_{q^{\prime}}$ where N_{q} is number of F_{q} rational points and g is the genus of the curve that Goppa construction is applied. Our result is an explicit construction of codes over $F_{p, p}$: prime, with good $\frac{N_{q}}{g}$ ratio since we have for general finite fields only Serre's lower bound: there exists $c>0$ such that $\lim _{g \rightarrow \infty} \frac{N_{q}}{g}<c \log q$ for all q.

ÖZBUDAK, GLUKHOV

Remark 2 The parameters of Theorem 2 are rather good. Moreover, it is possible to calculate directly the minimum distance d exactly in some cases. For example, we have such codes which are near to Singleton bound:
$i:$ Over $F_{27} \supset F_{3}$ if $6<r<54$, then it gives $[54, r-3, d]_{27}$ code where $d \geq 54-r$. If r : even, then $d=54-r$ (see Stichtenoth [10], Remark 2.2.5).
ii.a: Over $F_{729} \supset F_{3}$ if $84<r<1458$, then it gives $[1458, r-42, d]_{729}$ code where $d \geq 1458-r$. If $r:$ even, then $d=1458-r$.
ii.b: Over $F_{81} \supset F_{3}$ if $20<r<162$, then it gives $[162, r-10, d]_{81}$ code where $d \geq 162-r$. If r : even, then $d=162-r$.
iii: Over $F_{64} \supset F_{4}$ if $18<r<192$, then it gives $[192, r-9, d] 64$ code where $d \geq 192-r$. If $r \equiv 0 \bmod 3$, then $d=192-r$.
iv.a: Over $F_{4096} \supset F_{4}$ if $474<r<12288$, then it gives $[12288, r-237, d]_{4096}$ code where $d \geq 12288-r$. If $r \equiv 0 \bmod 3$, then $d=12288-r$.
iv.b.: Over $F_{256} \supset F_{4}$ if $114<r<768$, then it gives $[768, r-57, d]_{256}$ code where $d \geq 768-r$. If $r \equiv 0 \bmod 3$, then $d=768-r$.

For ν : even there are Hermitian codes (see for exmple Stichtenoth [10], section 7.4) which are maximal. Theorem 2 provides codes with parameters near to the parameters of maximal curves in these cases.

2. Proof of Theorem 1

Let χ be a multiplicative character of exponent s of F_{q}. If $m \geq \frac{g \log s}{\log q}+c$, then $\frac{1}{m} q^{m} \frac{q-2}{q-1} \geq(s-1) s^{q}+1$. Note that the number of monic irreducible polynomials of degree m over F_{q} is $\frac{1}{m} \sum_{d \mid m} \mu(d) q^{m / d}=\frac{1}{m} q^{m} c_{m}$ (see for example [11] page 93). Here $1 \geq c_{m} \geq 1-\frac{q^{m}-q}{q^{m}(q-1)} \geq \frac{q-2}{q-1}$. Forming q-tuples for each irreducible monic polynomial as in Stepanov [2] or Özbudak [8], by Dirichlet's pigeon-hole principle if $\frac{1}{m} q^{m} \frac{q-2}{q-1} \geq(s-1) s^{q}+1$, there exists a sequare-free polynomial $\left.f \in E_{q} \mid x\right]$ of degree $\leq m s$ such that $\chi(f(a))=1$ for each $a \in F_{q}$. Let $\operatorname{deg} f=s\left\lceil\frac{2 \log s}{\log q}+c\right\rceil$.

Since $s \mid(q-1)$ there are s many multiplicative characters of exponent s over F_{q}.

ÖZBUDAK, GLUKHOV

Moreover for any χ of exponent $s, \chi(f(a))=1$ for all $a \in F_{q}$. Therefore we have over the curve

$$
y^{s}=f(x)
$$

$N_{q}=s q$ many F_{q}-rational points (see Schmidt [12] page 79 or Stepanov [4], p. 51).
Using the well-known genus formulas for superelliptic curves (see for example Stichtenoth [10] p. 196), the geometric genus is given by

$$
g=\frac{s(s-1)}{2}\left\lceil\frac{q \log s}{\log q}+c\right\rceil-s+1
$$

Let D_{0} be the divisor on the smooth model X of $y^{s}=f(x)$, where

$$
D_{0}=\sum_{1}^{n} x_{i}
$$

By tracing the normalization of a curve one see that the number of rational points of the non-singular model X of the curve $y^{s}=f(x)$ is not less than the number of rational points of $y^{s}=f(x)$ (see for example Shafarevich [13], section 5.3). Thus $n=\operatorname{deg} D_{0} \geq N_{q}=s q$. Let x_{∞} be a point of X at infinity, $D=r P_{\infty}$ be the divisor of degree r and $\operatorname{supp} D_{0} \cap \operatorname{supp} D=\emptyset$, where r to be determined. If

$$
2 g-2<r<N_{q},
$$

by using the Goppa construction,

$$
n=N_{q}, k=r+1-g, d \geq N_{q}-r
$$

3. Proof of Theorem 2

Let $\chi_{\nu, s}(x)=\chi_{s}\left(\operatorname{norm}_{\nu}(x)\right)$ where χ_{s} is a non-trivial multiplicative character of F_{q} of exponent s, norm $m_{\nu}=x \cdot x^{q} \ldots \ldots x^{q^{\nu-1}}$. Therefore $\chi_{\nu, s}$ is a relative multiplicative character of $F_{q^{\nu}}$ of exponent s. For $f(x) \in F_{q^{\nu}}[x]$ denote by $S_{\nu}(f)$ the $\operatorname{sum} S_{\nu, s}(f)=\sum_{x \in F_{q^{\nu}}}(f(x))$.

Case(i):

There exists a polynomial $f_{1}(x) \in F_{q^{\nu}}[x]$

$$
f_{1}(x)=\left(x+x^{q^{\frac{\nu-1}{2}}}\right)^{a}\left(x+x^{x \frac{\nu+1}{2}}\right)^{b},
$$

ÖZBUDAK, GLUKHOV

where $a+b=s, a \neq b$, and $(a, s)=1$ such that $S_{\nu, s}\left(f_{1}\right)=q^{\nu}-1$ (Glukhov [7]).
We can write

$$
f_{1}(x)=x^{s}\left(1+x^{q \frac{\nu-1}{2}-1}\right)^{a}\left(1+x^{q^{\frac{\nu+1}{2}}-1}\right)^{b} .
$$

Consider $y^{s}=f_{1}(x)$. This curve is birationally isomorphic to

$$
y^{s}=f_{1,1}(x)=\left(1+x^{q^{\frac{\nu-1}{2}}-1}\right)^{a}\left(1+x^{q^{\frac{\nu+1}{2}}-1}\right)^{b}
$$

and $S_{\nu, s}\left(1_{1,1}\right)=q^{\nu}$. Moreover, we know

1. $1+x^{m}$ where $(m, q)=1$ is a square-free polynomial over $F_{q^{\nu}}$,
2. If ν is odd, then $\left(1+x^{q^{\frac{\nu-1}{2}}-1}, 1+x^{q^{\frac{\nu+1}{2}}-1}\right)=1$ over $F_{q^{\nu}}$ for $p \neq 2$.

Therefore we can apply Hurwitz genus formula (see for example Stichtenoth ([10], p. 196); hence we get

$$
g=(s-1) \frac{(1+q)}{2} q^{\frac{\nu-1}{2}}-2(s-1) .
$$

Over the curve $y^{s}=f_{1,1}(x)$ there are

$$
N_{q^{\nu}}=\sum_{\exp \chi=s} \sum_{x \in F_{q^{\nu}}} \chi_{s}\left(f_{1,1}(x)\right)=q^{\nu}+(s-1) S_{\nu, s}\left(f_{1,1}\right)=s q^{\nu}
$$

many $F_{q^{\nu}}$-rational points (Stepanov [4], p. 51). Therefore we get the desired result as in the proof of Theorem 1.

Case(ii):
We apply the same techniques to

$$
f_{2}(x)=x^{s}\left(1+x^{q^{\frac{\nu}{2}-1}-1}\right)^{a}\left(1+x^{q^{\frac{\nu}{2}+1}-1}\right)^{b}
$$

given by Glukhov [7]. Here $S_{\nu, s}\left(f_{2}\right)=\left\{\begin{array}{lll}q^{\nu}-1 & \text { if } & 4 \nmid \nu \\ q^{\nu}-q & \text { if } & 4 \mid \nu\end{array}\right.$. Moreover, if $\nu \equiv 2 \bmod 4$, then $\left(1+x^{q^{\frac{\nu}{2}-1}-1}, 1+x^{q^{\frac{\nu}{2}+1}-1}\right)=1$; and if $\nu \equiv 0 \bmod 4$, then $\left(1+x^{q^{\frac{\nu}{2}-1}-1}, 1+x^{q^{\frac{\nu}{2}+1}-1}\right)=$ $1+x^{q-1}$ over $F_{q^{\nu}}$ for $p \neq 2$. If $\nu \equiv 2 \bmod 4$, similarly consider the curve

$$
y^{s}=f_{2,2,1}(x)=\left(1+x^{q^{\frac{\nu}{2}-1}-1}\right)^{a}\left(1+x^{q^{\frac{\nu}{2}+1}-1}\right)^{b}
$$

ÖZBUDAK, GLUKHOV

whose genus is

$$
g=(s-1) \frac{\left.1+q^{2}\right)}{2} q^{\frac{\nu}{2}-1}-2(s-1)
$$

and $S_{\nu, s}\left(f_{2,2,1}\right)=q^{\nu}$. If $\nu \equiv 0 \bmod 4$ we can write $f_{2}(x)$ here as

$$
f_{2}(x)=x^{s}\left(1+x^{q-1}\right)^{s}\left(\frac{1+x^{q^{\frac{\nu}{2}-1}-1}}{1+x^{q-1}}\right)^{a}\left(\frac{1+x^{q^{\frac{\nu}{2}+1}-1}}{1+x^{q-1}}\right)^{b} .
$$

The curve $y^{s}=f_{2}(x)$ is birationally isomorphic to the curve

$$
y^{s}=f_{2,2,2}(x)=\left(\frac{1+x^{q^{\frac{\nu}{2}-1}-1}}{1+x^{q-1}}\right)^{a}\left(\frac{1+x^{q^{\frac{\nu}{2}+1}-1}}{1+x^{q-1}}\right)^{b}
$$

whose genus is

$$
g=(s-1) \frac{\left(1+q^{2}\right)}{2} q^{\frac{\nu}{2}-1}-(s-1)(1+q)
$$

and $S_{\nu, s}\left(f_{2,2,2}\right)=q^{\nu}$
Case(iii):
We apply the same techniques observing that in this case we have the following additional fact that

If $p=2$, then $\left(1+x^{k}, 1+x^{l}\right)=1+x^{(k, l)}$, where $1+x^{k}, 1+x^{l} \in F_{q^{\nu}}[x]$.
We can write $f_{1}(x)$ here as

$$
f_{1}(x)=x^{s}\left(1+x^{q-1}\right)^{s}\left(\frac{1+x^{q^{\frac{\nu-1}{2}}-1}}{1-x^{q-1}}\right)^{a}\left(\frac{1+x^{q^{\frac{\nu+1}{2}}-1}}{1+x^{q-1}}\right)^{b} .
$$

The curve $y^{s}=f_{1}(x)$ is birationally isomorphic to the curve

$$
y^{s}=f_{1,3}(x)=\left(\frac{1+x^{q^{\frac{\nu-1}{2}}-1}}{1+x^{q-1}}\right)^{a}\left(\frac{1+x^{q^{\frac{\nu+1}{2}}-1}}{1+x^{q-1}}\right)^{b} .
$$

The genus is

$$
g=(s-1)(1+q) \frac{q^{\frac{\nu-1}{2}}}{2}-(s-1)(1+q)
$$

Moreover, $S_{\nu, s}\left(f_{1}\right)=q^{\nu}-q$ (see [7]), and hence $S_{\nu, s}\left(f_{1,3}\right)=q^{\nu}$.

ÖZBUDAK, GLUKHOV

Case (iv):
We apply the same techniques as in Case(iii). We have

$$
\left(q^{\frac{\nu}{2}-1}-1, q^{\frac{\nu}{2}+1}-1\right)=\left\{\begin{array}{ccc}
q^{2}-1 & \text { if } & 4 \nmid \nu \\
q-1 & \text { if } & 4 \mid \nu
\end{array}\right.
$$

Thus when $4 \not \backslash \nu, y^{s}=f_{2}(x)$ is birationally isomorphic to

$$
y^{s}=f_{2,4,1}(x)=\left(\frac{1+x^{q^{\frac{\nu}{2}-1}-1}}{1+x^{q^{2}-1}}\right)^{a}\left(\frac{1+x^{q^{\frac{\nu}{2}+1}-1}}{1+x^{q^{2}-1}}\right)^{b}
$$

and the genus is

$$
g=(s-1)\left(1+q^{2}\right) \frac{q^{\frac{\nu}{2}-1}}{2}-(s-1)\left(1+q^{2}\right) .
$$

Moreover, $S_{\nu, s}\left(f_{2}\right)=q^{\nu}-q^{2}\left(\right.$ see [7]), and hence $S_{\nu, s}\left(f_{2,4,1}\right)=q^{\nu}$.
When $4 \mid \nu, y^{s}=f_{2}(x)$ is birationally isomorphic to

$$
y^{s}=f_{2,4,2}(x)=\left(\frac{1+x^{q^{\frac{\nu}{2}-1}-1}}{1+x^{q-1}}\right)^{a}\left(\frac{1+x^{q^{\frac{\nu}{2}+1}-1}}{1+x^{q-1}}\right)^{b}
$$

whose genus is

$$
g=(s-1)\left(1+q^{2}\right) \frac{q^{\frac{\nu}{2}-1}}{2}-(s-1)(1+q)
$$

and $S_{\nu, s}\left(f_{2}\right)=q^{\nu}-q($ see $[7])$, and hence $S_{\nu, s}\left(f_{2,4,2}\right)=q^{\nu}$.

Acknowledgment

We would like to thanks to S.A. Stepanov for his excellent guidance, comments, and suggestions in this work.

References

[1] V. G. Goppa, "Codes on algebraic curves", Soviet Math. Dokl., 1981, 24, 170-172.
[2] S. A. Stepanov, "On lower estimates of incomplete character sums of polynomials", Proceedings of the Steklov Institute of Mathematics, AMS, 1980 Issue 1, 187-189.
[3] S. A. Stepanov, "On lower bounds of sums of characters over finite fields", Discrete Math. Appl., 1992, Vol. 2, no. 5, 523-532.

ÖZBUDAK, GLUKHOV

[4] S. A. Stepanov, "Arithmetic of Algebraic Curves", Plenum, 1994.
[5] S. A. Stepanov, "Error-Correcting Codes and Algebraic Curves" CRC Press, to be published.
[6] M. Glukhov, "Lower bounds for character sums over finite fields", Diskrt. Math., 1994, 6, no. 3, 136-142 (in Russian).
[7] M. Glukhov, "On lower bounds for character sums over finite fields", preprint.
[8] F. Özbudak, "On lower bounds for incomplete character sums over finite fields, Finite Fields and Their Applications, 2, 173-191, 1996.
[9] A. Weil, "Numbers of solutions of equations in finite fields", Bull. of the American Math. Soc., 55 (1949), 497-508.
[10] H. Stichtenoth, "Algebraic Function Fields and Codes", Springer-Verlag, 1993
[11] R. Lidl and H. Niederreiter, "Finite Fields", Encyclopedia of Mathematics and It's Applications vol 20, Cambridge University Press, 1984.
[12] W. Schmidt, "Equations over Finite Fields - An Elementary Approach", Lecture Notes in Mathematics, Springer-Verlag, 1976.
[13] I. R. Shafarevich, "Basic Algebraic Geometry 1", second edition, Springer-Verlag, 1994.

Ferruh ÖZBUDAK
Received 25.08.1997
Department of Mathematics
Bilkent University
06533, Ankara - TURKEY
\&
Michael GLUKHOV
Faculty of Computer Science and Cybernetics,
Moscow State University
e-mail: mathcyb@cs.msu.su

[^0]: *The first author is now with the Department of Mathematics, Middle East Technical University, e-mail: ozbudak@mat.metu.edu.tr

