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CODES ON SUPERELLIPTIC CURVES∗

F. Özbudak & Glukhov

Abstract

The purpose of this paper is to apply superelliptic curves with a lot of rational

points to construct rather good geometric Goppa codes.

1. Introduction

Let Fp ⊂ Fq be a Galois extension of prime field Fp. A. Weil [9] proved that if

f(x, y) ∈ Fq[x, y] is an absolutely irreducible polynomial and if Nq denotes the number

of Fq-rational points of the curve defined by the equation f(x, y) = 0, then

|Nq − (q + 1)| ≤ 2gq1/2,

where g is genus of the curve. As a corollary we have that, if m is the number of distinct
roots of f in its splitting field over Fq, χ is a non-trivial multiplicative character of

exponent s and f is not an s-th power of a polynomial, then

|
∑
x∈Fq

χ(f(x))| ≤ (m− 1)q1/2.

S.A. Stepenov [2] proved the existence of a square-free polynomial f(x) ∈ Fp[x] of

degree ≥ 2( (N+1) log 2
log p

+ 1) for which

N∑
i=1

(
f(x)
p

) = N,

where {1, . . . , N} ⊂ Fp and ( ˙̄p) is the Legendre symbol and (p, 2) = 1. Later, F. Özbudak

[8] extended this to arbitrary non-trivial characters of arbitrary finite fields by following
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Stepanov’s approach. This gives a constructable proof of the fact that Weil’s estimate is
almost attainable for any Fq.

In [3], Stepanov introduced some special sums Sν(f) =
∑

x∈Fqν χ(f(x)) with a non-

trivial quadratic character χ by explicitly representing the polynomial f(x), whose, ab-

solute values are very close to Weil’s upper bound. M. Glukhov [6], [7] generalized

Stepanov’s approach to the case of arbitrary multiplicative characters over arbitrary fi-
nite field Fq.

Recall the basic ideas of the Goppa construction (see for example [1] or [5]) of linear

[n, k, d]q codes associated to a smooth projective curve X of genus g = g(X) defined over

a finite field Fq. Let {x1, . . . , xn} be a set of Fq-rational points of X and set

D0 = x1 + · · ·+ xn.

Let D be a Fq-rational divisor on X whose support is disjoint from D0. Consider the

following vector space of rational functions on X:

L(D) = {f ∈ Fq(X)∗ | (f) + D ≥ 0} ∪ {0}.

The linear [n, k, d] code C = C(D0, D) associated to the pair (D0, D) is the image of the

linear evaluation map

Ev : L(D) → F nq , f 7→ (f(x1), . . . , f(xn)).

Such a q-ary linear code is called a geometric Goppa code. If deg D < n then Ev is an
embedding, hence by Riemann-Roch theorem.

k ≥ degD − g + 1.

Moreover we have
d ≥ n, degD.

In this paper we apply the Goppa construction to the curve given over Fq by

ys = f(x),

where s | (q − 1) and the polynomial f(x) is obtained by Stepanov’s approach to attain∑
x∈Fq

χ(f(x)) = q,
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where χ is a non-trivial multiplicative character of exponent s. Moreove, we apply

the Goppa construction also to the polynomials f(x) given in Glukhov’s paper [6], [7]

explicitly after some modification.

Theorem 1 Let Fq be a finite fields of characteristic p, s an integer s ≥ 2, s|(q − 1),

and c be the infimum of the set

C = {x : a non-negative real number | there exists an integer n such that

qx(q − 2)
(q − 1)(s− 1)(1 + 1

sq(s−1))
≥ n ≥ q log s

log q
+ x}.

Let r be an integer satisfying

s(s− 1)dq log s
log q

e − 2s < r < sq.

Then there exists a linear code [n, k, d]q with parameters

n = sq

k = r − s(s− 1)
2

dq log s
log q

+ ce+ s,

d ≥ sq − r.

Corollary 1 Under the same conditions with Theorem 1, there exist a code with relative
parameters satisfying

R ≥ 1− δ
s(s−1)

2 d q log s
log q + ce − s
sq

.

By applying the same procedure to polynomials given explicitly by Glukhov [6], we

get the following theorem.

Theorem 2 Let Fq be a finite field of characteristic p, Fqν an extension of Fq of degree

ν, s an integer s ≥ 2, s|(q − 1). Moreover,
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i) if p 6= 2, ν > 1 an odd integer and r an integer satisfying

(s− 1)(1 + q)q
ν−1

2 − 4s+ 2 < r < sqν ,

then there exists a linear code [n, k, d]qν with parameters

n = sqν ,

k = r + 2s− (s− 1)
(1 + q)

2
q
ν−1

2 − 1,

d ≥ sqν − r;

ii) if p 6= 2, ν < 2 an even integer and r an integer satisfying conditions

a) when 4 6 |ν
(s− 1)(1 + q2)q

ν
2−1 − 4s+ 2 < r < sqν ,

then there exists a linear code [n, k, d]qν with parameters

n = sqν ,

k = r + 2s− (s− 1)
(1 + q2)

2
q
ν
2−1 − 1,

d ≥ sqν − r;

b) when 4 | ν
(s− 1)(1 + q2)q

ν
2−1 − 2(s− 1)q − 2s < r < sqν ,

then there exists a linear code [n, k, d]qν with parameters

n = sqν ,

k = r + (s− 1)q + s− (s− 1)
(1 + q2)

2
q
ν
2−1,

d ≥ sqν − r;

iii) if p = 2, ν > 1 on odd integer and r an integer satisfying

(s− 1)(1 + q)q
ν−1

2 − 2(s− 1)q − 2s < r < sqν ,
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then there exists a linear code [n, k, d]qν with parameters

n = sqν ,

k = r + (s− 1)q + s− (s− 1)(1 + q)
q
ν−1

2
2 ,

d ≥ sqν − r;

iv) if p = 2, ν > 2 an even integer and r an integer satisfying conditions

a) when 4 6 |ν

(s− 1)(1 + q2)q
ν
2−1 − 2(s− 1)q2 − 2s < r < sqν ,

then there exists a linear code [n, k, d]qν with parameters

n = sqν ,

k = r + (s− 1)q2 + s− (s− 1)(1 + q2)
q
ν
2 −1

2 ,

d ≥ sqν − r;

b) when 4|ν
(s− 1)(1 + q2)q

ν
2−1 − 2(s− 1)q − 2s < r < sqν ,

then there exists a linear code [n, k, d]qν with parameters

n = sqν ,

k = r + (s− 1)q + s− (s− 1)(1 + q2)
q
ν
2−1

2 ,

d ≥ sqν − r.

Corollary 2 Under the same conditions with Theorem 2, there exist codes with relative
parameters satisfying, respectively,

i)

R ≥ 1− δ −
(s− 1) (1+q)

2 q
ν−1

2 − 2s+ 1
sqν

,

227
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ii.a)

R ≥ 1− δ −
(s− 1) (1+q2)

2
q
ν
2−1 − 2s+ 1

sqν
,

ii.b)

R ≥ 1− δ −
(s− 1) (1+q2)

2 q
ν
2−1 − (s− 1)q − s
sqν

iii)

R ≥ 1− δ −
(s− 1)(1 + q) q

ν−1
2

2 − (s− 1)q − s
sqν

,

iv.a)

R ≥ 1− δ −
(s− 1)(1 + q2) q

ν
2−1

2 − (s− 1)q2 − s
sqν

,

iv.b)

R ≥ 1− δ −
(s− 1)(1 + q2) q

ν
2−1

2 − (s− 1)q − s
sqν

.

Remark 1 When s << q, we have for Corallary 1

R ≥ 1− δ − J1(s, q),

where J1(s, q) ∼ (s−1) log s
2

1
log q and for Corollary 2

R ≥ 1− δ − J2(s, qν),

where J2(s, qν) ∼ (s−1)
2s

1

q
ν−1

2
. Although 1

q
1
2
<< 1

log q , Theorem 1 is significant especially

when q is a prime. Indeed good codes are designed over Fq, q = pν, ν > 1 since curves with

large Nq
2 ratio are obtained using the structure of Galois group of Fq over some subfield

Fq′ where Nq is number of Fq rational points and g is the genus of the curve that Goppa

construction is applied. Our result is an explicit construction of codes over Fp,p : prime,

with good Nq
g

ratio since we have for general finite fields only Serre’s lower bound: there

exists c > 0 such that limg→∞
Nq
g < c log q for all q.
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Remark 2 The parameters of Theorem 2 are rather good. Moreover, it is possible to
calculate directly the minimum distance d exactly in some cases. For example, we have
such codes which are near to Singleton bound:

i: Over F27 ⊃ F3 if 6 < r < 54, then it gives [54, r− 3, d]27 code where d ≥ 54− r.
If r : even, then d = 54− r (see Stichtenoth [10], Remark 2.2.5).

ii.a: Over F729 ⊃ F3 if 84 < r < 1458, then it gives [1458, r − 42, d]729 code where

d ≥ 1458− r. If r: even, then d = 1458− r.

ii.b: Over F81 ⊃ F3 if 20 < r < 162, then it gives [162, r−10, d]81 code where d ≥ 162−r.
If r: even, then d = 162− r.

iii: Over F64 ⊃ F4 if 18 < r < 192, then it gives [192, r−9, d]64 code where d ≥ 192− r.
If r ≡ 0 mod 3, then d = 192− r.

iv.a: Over F4096 ⊃ F4 if 474 < r < 12288, then it gives [12288, r− 237, d]4096 code where

d ≥ 12288− r. If r ≡ 0 mod 3, then d = 12288− r.

iv.b.: Over F256 ⊃ F4 if 114 < r < 768, then it gives [768, r − 57, d]256 code where

d ≥ 768− r. If r ≡ 0 mod 3, then d = 768− r.

For ν: even there are Hermitian codes (see for exmple Stichtenoth [10], section 7.4)

which are maximal. Theorem 2 provides codes with parameters near to the parameters of
maximal curves in these cases.

2. Proof of Theorem 1

Let χ be a multiplicative character of exponent s of Fq. If m ≥ g log s
log q

+ c, then

1
m
qmq−2

q−1
≥ (s − 1)sq + 1. Note that the number of monic irreducible polynomials of

degree m over Fq is 1
m

∑
d|m µ(d)qm/d = 1

m
qmcm (see for example [11] page 93). Here

1 ≥ cm ≥ 1− qm−q
qm(q−1) ≥

q−2
q−1 . Forming q-tuples for each irreducible monic polynomial as in

Stepanov [2] or Özbudak [8], by Dirichlet’s pigeon-hole principle if 1
mq

m q−2
q−1 ≥ (s−1)sq+1,

there exists a sequare-free polynomial f ∈ Eq|x] of degree ≤ ms such that χ(f(a)) = 1

for each a ∈ Fq. Let deg f = sd2 log s
log q + ce.

Since s | (q − 1) there are s many multiplicative characters of exponent s over Fq.
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Moreover for any χ of exponent s, χ(f(a)) = 1 for all a ∈ Fq. Therefore we have over the
curve

ys = f(x)

Nq = sq many Fq-rational points (see Schmidt [12] page 79 or Stepanov [4], p. 51).

Using the well-known genus formulas for superelliptic curves (see for example Stichtenoth

[10] p. 196), the geometric genus is given by

g =
s(s− 1)

2
dq log s

log q
+ ce − s+ 1.

Let D0 be the divisor on the smooth model X of ys = f(x), where

D0 =
n∑
1

xi.

By tracing the normalization of a curve one see that the number of rational points

of the non-singular model X of the curve ys = f(x) is not less than the number of

rational points of ys = f(x) (see for example Shafarevich [13], section 5.3). Thus

n = degD0 ≥ Nq = sq. Let x∞ be a point of X at infinity, D = rP∞ be the divisor of

degree r and suppD0 ∩ suppD = ∅, where r to be determined. If

2g − 2 < r < Nq ,

by using the Goppa construction,

n = Nq, k = r + 1− g, d ≥ Nq − r.

3. Proof of Theorem 2

Let χν,s(x) = χs(normν(x)) where χs is a non-trivial multiplicative character of Fq of

exponent s, normν = x.xq . . . ..xq
ν−1

. Therefore χν,s is a relative multiplicative character

of Fqν of exponent s. For f(x) ∈ Fqν [x] denote by Sν(f) the sum Sν,s(f) =
∑

x∈Fqν (f(x)).

Case(i):

There exists a polynomial f1(x) ∈ Fqν [x]

f1(x) = (x+ xq
ν−1

2 )a(x+ xx
ν+1

2 )b,
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where a+ b = s, a 6= b, and (a, s) = 1 such that Sν,s(f1) = qν − 1 (Glukhov [7]).

We can write

f1(x) = xs(1 + xq
ν−1

2 −1)a(1 + xq
ν+1

2 −1)b.

Consider ys = f1(x). This curve is birationally isomorphic to

ys = f1,1(x) = (1 + xq
ν−1

2 −1)a(1 + xq
ν+1

2 −1)b,

and Sν,s(11,1) = qν . Moreover, we know

1. 1 + xm where (m, q) = 1 is a square-free polynomial over Fqν ,

2. If ν is odd, then (1 + xq
ν−1

2 −1, 1 + xq
ν+1

2 −1) = 1 over Fqν for p 6= 2.

Therefore we can apply Hurwitz genus formula (see for example Stichtenoth ([10], p.

196); hence we get

g = (s− 1)
(1 + q)

2
q
ν−1

2 − 2(s− 1).

Over the curve ys = f1,1(x) there are

Nqν =
∑

expχ=s

∑
x∈Fqν

χs(f1,1(x)) = qν + (s− 1)Sν,s(f1,1) = sqν

many Fqν -rational points (Stepanov [4], p. 51). Therefore we get the desired result as in

the proof of Theorem 1.

Case(ii):

We apply the same techniques to

f2(x) = xs(1 + xq
ν
2−1−1)a(1 + xq

ν
2 +1−1)b

given by Glukhov [7]. Here Sν,s(f2) =
{
qν − 1 if 4 6 |ν
qν − q if 4 | ν . Moreover, if ν ≡ 2 mod 4,

then (1+xq
ν
2 −1−1, 1+xq

ν
2 +1−1) = 1; and if ν ≡ 0 mod 4, then (1+xq

ν
2−1−1, 1+xq

ν
2 +1−1) =

1 + xq−1 over Fqν for p 6= 2. If ν ≡ 2 mod 4, similarly consider the curve

ys = f2,2,1(x) = (1 + xq
ν
2−1−1)a(1 + xq

ν
2 +1−1)b
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whose genus is

g = (s− 1)
1 + q2)

2
q
ν
2−1 − 2(s− 1),

and Sν,s(f2,2,1) = qν . If ν ≡ 0 mod 4 we can write f2(x) here as

f2(x) = xs(1 + xq−1)s(
1 + xq

ν
2 −1−1

1 + xq−1
)a(

1 + xq
ν
2 +1−1

1 + xq−1
)b.

The curve ys = f2(x) is birationally isomorphic to the curve

ys = f2,2,2(x) = (
1 + xq

ν
2−1−1

1 + xq−1
)a(

1 + xq
ν
2 +1−1

1 + xq−1
)b

whose genus is

g = (s− 1)
(1 + q2)

2
q
ν
2−1 − (s− 1)(1 + q)

and Sν,s(f2,2,2) = qν

Case(iii):

We apply the same techniques observing that in this case we have the following additional
fact that

If p = 2, then (1 + xk, 1 + xl) = 1 + x(k,l), where 1 + xk, 1 + xl ∈ Fqν [x].

We can write f1(x) here as

f1(x) = xs(1 + xq−1)s(
1 + xq

ν−1
2 −1

1− xq−1
)a(

1 + xq
ν+1

2 −1

1 + xq−1
)b.

The curve ys = f1(x) is birationally isomorphic to the curve

ys = f1,3(x) = (
1 + xq

ν−1
2 −1

1 + xq−1
)a(

1 + xq
ν+1

2 −1

1 + xq−1
)b.

The genus is

g = (s− 1)(1 + q)
q
ν−1

2

2
− (s− 1)(1 + q).

Moreover, Sν,s(f1) = qν − q (see [7]), and hence Sν,s(f1,3) = qν.
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Case (iv):

We apply the same techniques as in Case(iii). We have

(q
ν
2−1 − 1, q

ν
2 +1 − 1) =

{
q2 − 1 if 4 6 |ν,
q − 1 if 4 | ν.

Thus when 4 6 |ν, ys = f2(x) is birationally isomorphic to

ys = f2,4,1(x) = (
1 + xq

ν
2−1−1

1 + xq2−1
)a(

1 + xq
ν
2 +1−1

1 + xq2−1
)b

and the genus is

g = (s− 1)(1 + q2)
q
ν
2−1

2
− (s− 1)(1 + q2).

Moreover, Sν,s(f2) = qν − q2 (see [7]), and hence Sν,s(f2,4,1) = qν.

When 4 | ν, ys = f2(x) is birationally isomorphic to

ys = f2,4,2(x) = (
1 + xq

ν
2−1−1

1 + xq−1
)a(

1 + xq
ν
2 +1−1

1 + xq−1
)b,

whose genus is

g = (s− 1)(1 + q2)
q
ν
2−1

2
− (s− 1)(1 + q),

and Sν,s(f2) = qν − q(see[7]), and hence Sν,s(f2,4,2) = qν .
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