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CODES ON SUPERELLIPTIC CURVES*

F. Ozbudak & Glukhov

Abstract
The purpose of this paper is to apply superelliptic curves with a lot of rational

points to construct rather good geometric Goppa codes.

1. Introduction

Let F, C F, be a Galois extension of prime field Fj,. A. Weil [9] proved that if
f(z,y) € Fy[x,y] is an absolutely irreducible polynomial and if N, denotes the number
of F,-rational points of the curve defined by the equation f(x,y) = 0, then

[Ny — (g +1)| < 294",
where g is genus of the curve. As a corollary we have that, if m is the number of distinct
roots of f in its splitting field over Fj, x is a non-trivial multiplicative character of

exponent s and f is not an s-th power of a polynomial, then

1> x(f(@))] < (m —1)g"/>.

TEF,

S.A. Stepenov [2] proved the existence of a square-free polynomial f(x) € Fp[x] of

(N+1)log?2

degree > 2( Toap

+ 1) for which

@), _
Z(p)—N,

i=1

where {1,...,N} C F, and (;) is the Legendre symbol and (p,2) = 1. Later, F. Ozbudak

[8] extended this to arbitrary non-trivial characters of arbitrary finite fields by following

*The first author is now with the Department of Mathematics, Middle East Technical University,
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Stepanov’s approach. This gives a constructable proof of the fact that Weil’s estimate is
almost attainable for any Fj,.

In [3], Stepanov introduced some special sums S, (f) = >_,cp, , X(f(x)) with a non-

trivial quadratic character x by explicitly representing the polynomial f(x), whose, ab-
solute values are very close to Weil’s upper bound. M. Glukhov [6], [7] generalized
Stepanov’s approach to the case of arbitrary multiplicative characters over arbitrary fi-
nite field Fj,.

Recall the basic ideas of the Goppa construction (see for example [1] or [5]) of linear
[n, k, d], codes associated to a smooth projective curve X of genus g = g(X) defined over

a finite field F,. Let {z1,...,x,} be a set of F,-rational points of X and set
D0=$1+"'+$n.

Let D be a Fj-rational divisor on X whose support is disjoint from Dy. Consider the

following vector space of rational functions on X:
L(D) ={f € Fy(X)" | (f) + D = 0} U {0}.

The linear [n, k, d] code C = C(Dy, D) associated to the pair (D, D) is the image of the

linear evaluation map
EUL(D) _)Fqnaf'_)(f(xl)aaf(xn))

Such a g-ary linear code is called a geometric Goppa code. If deg D < n then Ev is an

embedding, hence by Riemann-Roch theorem.
k>degD —g+1.

Moreover we have
d > n,degD.

In this paper we apply the Goppa construction to the curve given over F; by

where s | (¢ — 1) and the polynomial f(z) is obtained by Stepanov’s approach to attain

> x(f@) =4,

TEF,
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where x is a non-trivial multiplicative character of exponent s. Moreove, we apply
the Goppa construction also to the polynomials f(z) given in Glukhov’s paper [6], [7]

explicitly after some modification.

Theorem 1 Let Fy; be a finite fields of characteristic p, s an integer s > 2,s|(q — 1),
and c¢ be the infimum of the set
C = {x : a non-negative real number | there exists an integer n such that

Tlqg—2 I
q*(¢—2) gy dloss oy
(¢—1)(s =D+ 575=7) log ¢

Let r be an integer satisfying

1
s(s—l)[%] — 25 <r < sq.

Then there exists a linear code [n, k, d|q with parameters

n = sq
s(s—1) qlogs
k=r- 2222
r 5 [10gq +c] + s,
d>sq—r.

Corollary 1  Under the same conditions with Theorem 1, there exist a code with relative

parameters satisfying

s(s—1) rqlogs _
2 |— log q +C—| S

5q

R>1-6

By applying the same procedure to polynomials given explicitly by Glukhov [6], we
get the following theorem.

Theorem 2  Let F;, be a finite field of characteristic p, Fyv an extension of Fy, of degree

v, s an integer s > 2, s|(q — 1). Moreover,

225



OZBUDAK, GLUKHOV

i) if p# 2, v>1 an odd integer and r an integer satisfying

v—

(s — 1)(1—i—q)qT1 —4s+2<r<sq”,
then there exists a linear code [n, k,d|q with parameters

n=sq",

k=r+2s—(s—1)

d>sq” —r;

i) if p#£ 2, v <2 an even integer and r an integer satisfying conditions

a) when 4 fv
(s—1(1+ gzt —ds+2<r < s¢”,

then there exists a linear code [n, k,d]|q with parameters

n = sq”,

14+¢) »
(2.
d>sq” —r;

b) when 4| v
(s —1)(1+¢*g2 ' —2(s —1)g— 25 <7 < s¢",

then there exists a linear code [n, k,d]|q with parameters

n = sq”,

14+¢3) .
k=rto-Dgts—(s- )T g5
d>sq” —r;

iii) if p=2, v >1 on odd integer and r an integer satisfying

(s—=1D(1+q)g 2 —2(s—1)g—2s<r<s¢",
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then there exists a linear code [n, k,d|q with parameters

n=sq",

v—1

a =

E=rt(s—Dats—(s— D+ T
d> sq” —r;

w) if p=2, v>2 an even integer and r an integer satisfying conditions
a) when 4 fv
(s —1)(14¢*gz P —2(s — 1)¢* — 25 < r < s¢",

then there exists a linear code [n, k,d|q with parameters

n=sq”,

2 oyaZ !
k=r+(s—1)¢"+s—(s—1)Q+q¢*) =,
d> sq” —r;

b) when 4jv
(s —1)(1+¢*g2 ' —2(s —1)g—2s <7 < s¢",

then there exists a linear code [n, k,d]q with parameters

n = sq”,

g2t
k’:r—l—(s—l)q—l—s—(s—l)(l—i—qQ) z
d>sq” —r.

Corollary 2 Under the same conditions with Theorem 2, there exist codes with relative

parameters satisfying, respectively,

i)
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oy +d®) ro1
R>1_g_ B T5rar —25+1
- sqV )
ii.b)
2 v
R>1_5_(5—1)(12‘1)q5‘1—(5—1)q—5
> 7
iii)
R>1_5_(s—1)(1+q)q22 —(s—1)g—s
- sqV )
iv.a)
by s DO (1 s
- sqV )
iv.b)
R>1_5_(5—1)(1+q2)q527 —(s—1)g—s
- Sq’/ .
Remark 1

When s << q, we have for Corallary 1
where J1(s,q) ~

R>1-6—Ji(s,q),
(s=blogs 1 4nq for Corollary 2
2 log ¢ v

where Jo(s,q") ~ (82_81)

R Z 1-6- JQ(SaqV)a
L. Although L% <<
q 2 q
large Ny

1
2

log g’
when q is a prime. Indeed good codes are designed over Fy,q = p¥,v > 1 since curves with

Theorem 1 is significant especially

Fy where Ny is number of Fy; rational points and g is the genus of the curve that Goppa
with good Ny

ratio are obtained using the structure of Galois group of F, over some subfield
g

construction is applied. Our result is an explicit construction of codes over F,, : prime,

ratio since we have for general finite fields only Serre’s lower bound: there
exists ¢ > 0 such that limgy_. % < clogq for all q.
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Remark 2  The parameters of Theorem 2 are rather good. Moreover, it is possible to
calculate directly the minimum distance d exactly in some cases. For example, we have

such codes which are near to Singleton bound:

i: Over Fo7 D F3 if 6 <r < b4, then it gives [54,r — 3,d]a7 code where d > 54 — r.
If r . even, then d = 54 — r (see Stichtenoth [10], Remark 2.2.5).

ii.a: Over Frag9 D F3 if 84 < r < 1458, then it gives [1458,r — 42,d]729 code where
d > 1458 —r. Ifr: even, then d = 1458 —r.

ii.b: Over Fg1 D F3 if 20 < r < 162, then it gives [162,r—10, d]s1 code where d > 162—r.
If r: even, then d = 162 — r.

iti: Over Fgq D Fy if 18 < r < 192, then it gives [192,r — 9, d]ss code where d > 192 —r.
If r=0 mod 3, then d =192 —r.

iv.a: Quver Fypos D Fy if 474 < r < 12288, then it gives [12288,r — 237, d|ages code where
d>12288 —r. If r =0 mod 3, then d = 12288 — r.

iv.b.: Over Fase D Fy if 114 < r < 768, then it gives [768,r — 57,d]256 code where
d>768 —r. If r=0 mod 3, then d =768 —r.

For v: even there are Hermitian codes (see for exmple Stichtenoth [10], section 7.4)
which are mazimal. Theorem 2 provides codes with parameters near to the parameters of

maximal curves in these cases.

2. Proof of Theorem 1

Let x be a multiplicative character of exponent s of F,. If m > % + ¢, then

%qmg:—f > (s — 1)s? 4+ 1. Note that the number of monic irreducible polynomials of

degree m over Fy is + > dim u(d)g™'* = Lg™mcy, (see for example [11] page 93). Here

1>cp>1— quTq_—ql) > Z:—f. Forming g-tuples for each irreducible monic polynomial as in

Stepanov [2] or Ozbudak [8], by Dirichlet’s pigeon-hole principle if %qmg:—f > (s—1)s7+1,
there exists a sequare-free polynomial f € E4|z] of degree < ms such that x(f(a)) =1

for each a € F, Let deg f = 5[%5; +cl.

Since s | (¢ — 1) there are s many multiplicative characters of exponent s over Fy.
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Moreover for any x of exponent s, x(f(a)) =1 for all a € Fy,. Therefore we have over the
curve

y* = f(z)
N, = sq many F,-rational points (see Schmidt [12] page 79 or Stepanov [4], p. 51).
Using the well-known genus formulas for superelliptic curves (see for example Stichtenoth

[10] p. 196), the geometric genus is given by

s(s—1) [qlogs

— 1.
2 logq tel-s+

g:

Let Dg be the divisor on the smooth model X of y* = f(x), where

n

DQ == in.

1

By tracing the normalization of a curve one see that the number of rational points
of the non-singular model X of the curve y* = f(x) is not less than the number of
rational points of y* = f(z) (see for example Shafarevich [13], section 5.3). Thus
n = deg Dy > N, = sq. Let o be a point of X at infinity, D = rP. be the divisor of
degree r and suppDg N suppD = B, where r to be determined. If

29 — 2 <r < Ny,
by using the Goppa construction,

n=Ng k=r+1-—g, d>Ny—r.

3. Proof of Theorem 2
Let xu,s(x) = xs(norm,(x)) where x, is a non-trivial multiplicative character of F, of

exponent s, norm, = x.z?... ..24""" . Therefore Xv,s 1s a relative multiplicative character

of Fyv of exponent s. For f(z) € Fyv[z] denote by S, (f) the sum S, s(f) = erFqV (f(z)).
Case(i):

There exists a polynomial fi(z) € Fyv[z]

v—1

fi(z) = (@ +a? 7 ) e+ 2" ),
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where a +b=s,a # b, and (a,s) = 1 such that S, ;(f1) = ¢“ — 1 (Glukhov [7]).

We can write

v41

filz) = a%(L4+a9 T “He(L4ae T
Consider y* = f1(z). This curve is birationally isomorphic to

v—1 v41
v = fia(r) = (1427 )1 427 7 7H,
and S’V7s(1171) = ¢¥. Moreover, we know

1. 14 2™ where (m,¢) = 1 is a square-free polynomial over Fv,

r—1 r4l
2. If visodd, then (1+27 *> 1 1+29 % ~1) =1 over F, for p # 2.
Therefore we can apply Hurwitz genus formula (see for example Stichtenoth ([10], p.

196); hence we get

(1J2rq)q”51 —2s—1).

g=(s—1)

Over the curve y* = fi 1(x) there are

Ng» = Z Z Xs(fi1(@) =q¢" + (s =1)S, 5(f1.1) = s¢”

exp x=s x€Fyv

many Fyv-rational points (Stepanov [4], p. 51). Therefore we get the desired result as in
the proof of Theorem 1.

Case(ii):
We apply the same techniques to

fo(z) =2°(1 + xqéil_l)“(l + xq%H_l)b

v =1 if 4 v

¢ —q if 4[v- Moreover, if v = 2 mod 4,

given by Glukhov [7]. Here S, s(f2) = {

then (1+xq%71_1, 1—1—30‘1%“_1) = 1; and if v = 0 mod 4, then (1+xq%71_1, 1+xq%+1_1) =

1+ 2971 over Fyv for p# 2. If v = 2 mod 4, similarly consider the curve
S __ _ q%71—1 a q%+1—1 b
Y= fapa(z) =(1+=z )L+ )
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whose genus is

14 4?)

9 q%_l _2(5_1)5

g=(s—-1)

and Sy 5(f2,2,1) = ¢”. If v =0 mod 4 we can write f2(z) here as

R T B
14 g9t ) 14 g9t

fa(2) = 2 (1 + 297 ).

The curve y* = fa(z) is birationally isomorphic to the curve

v _ r
14297 =L 14497 1
a

s __ _ b
Yy —f27272($) _( 1+$q_1 ) ( 1+$q_1 )
whose genus is
1+q2 r_
o= (- (g

and Sy s(f2,2,2) = ¢”

Case(iii):
We apply the same techniques observing that in this case we have the following additional
fact that

If p=2, then (1 + 2% 1+ 2!) =1+2FD where 1 +2F,1+2! € Fyvlz].

We can write fi(x) here as

v—1 v41
X 1472 L 14222 1
— S qg—1\s a b
fl(x)_x (1+$ ) ( 1 — pa—1 ) ( 1+$q_1

The curve y* = fi(z) is birationally isomorphic to the curve

v—1 1 v41 1
q 2 — ¢z —
1+2x a1+

y' = fis(z) = ( 11 i1 )*( 11 a1 ).

The genus is
v—1

9= (-0 +0T — (=D +0).

Moreover, S, s(f1) = ¢¥ — q (see [7]), and hence S, s(f1,3) = ¢".
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Case (iv):
We apply the same techniques as in Case(iii). We have

2 .
r-1 Y41 ) q — 1 if 4 /Yl/,
(¢? La 1)_{q—l if 4|v.

Thus when 4 fv,y* = fo(x) is birationally isomorphic to

T B L
1+ 21 ) 1+ g1

y' = foaa(z) = ( )’
and the genus is

gz !

g=(s—1)(1+¢) —(s=1)(1+¢%.

Moreover, S, s(f2) = q” — ¢* (see [7]), and hence S, s(f2,41) = ¢".
When 4| v, y* = fo(z) is birationally isomorphic to

v _ r
14292 =1 14g92 1
a

)“(

y* = foun(z) = ( ),

149! 14 za!
whose genus is
N E
g=(-1+q) —(s=1D(+4q),

and S, 5(f2) = ¢¥ — q(see[7]), and hence S, s(f2,42) = ¢”.
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