ON THE ACTION OF STEENROD OPERATIONS ON POLYNOMIAL ALGEBRAS

İsmet Karaca

Abstract

Let \mathbb{A} be the mod- p Steenrod Algebra. Let p be an odd prime number and $Z_{p}=Z / p Z$. Let $P_{s}=Z_{p}\left[x_{1}, x_{2}, \ldots, x_{1}\right]$. A polynomial $N \in P_{s}$ is said to be hit if it is in the image of the action $A \otimes P_{s} \rightarrow P_{s}$. In [10] for $p=2$, Wood showed that if $\alpha(d+s)>s$ then every polynomial of degree d in P_{s} is hit where $\alpha(d+s)$ denotes the number of ones in the binary expansion of $d+s$. Latter in [6] Monks extended a result of Wood to determine a new family of hit polynomials in P_{s}. In this paper we are interested in determining the image of the action $A \otimes P_{s} \rightarrow P_{s}$. So our results which determine a new family of hit polynomials in P_{s} for odd prime numbers generalize cononical antiautaomorphism of formulas of Davis [2], Gallant [3] and Monks [6].

1. Introduction

Let \mathcal{A} be a mod- p Steenrod algebra. Let p be an odd prime number and $\mathbf{Z}_{p}=\mathbf{Z} / p \mathbf{Z}$. Let $P_{s}=\mathbf{Z}_{p}\left[x_{1}, x_{2}, \ldots, x_{s}\right]$. A polynomial $N \in P_{s}$ is said to be hit if it is in the image of the action $A \otimes P_{s} \rightarrow P_{s}$, i.e. $N \in A P_{s}$ where A is the augmentation ideal of \mathcal{A}, i.e. $N=\sum_{i} P^{i} M_{i}$ for some $M_{i} \in P_{s}$.

We are interested in determining the image of the aciton $A \otimes P_{s} \rightarrow P_{s}$: the space of elements in P_{s} that are hit by positive dimensional Steenrod operations. In [10], when $p=2$ Wood showed that if $\alpha(d+s)>s$ then every polynomial of degree d in P_{s} is hit where $\alpha(d+s)$ denotes the number of ones in the binary expansion of $d+s$. In [9] Singer generalized Wood's result conjectured by Peterson and identified a larger class of hit polynomials. In [8] Silverman generalized a result of Wood and proved a conjecture of Singer. In [6] Monks extended a result of Wood to determine a new family of hit polynomials in P_{s}.

In order to state our result we need to introduce some notation. For $m \geq 0$ and $t \geq 1$,

$$
\begin{equation*}
\gamma_{t}(m)=\sum_{i=0}^{m-1} p^{i t} \tag{1}
\end{equation*}
$$

KARACA

where $\gamma_{t}(0)=0$. A sequence of nonnegative integers $L=\left(l_{1}, l_{2}, \ldots, l_{n}\right)$ is called a t decomposition of a positive integer m if $m=\sum_{i=1}^{n} \gamma_{t}\left(l_{i}\right)$. We define $\mu_{t}(m)$ to be the number of terms in the shortest t-decomposition of m, i.e.

$$
\begin{equation*}
\mu_{t}(m)=\min \left\{n \mid m=\sum_{i=1}^{n} \gamma_{t}\left(l_{i}\right)\right\} \tag{2}
\end{equation*}
$$

The following results are odd-primary analogues of results of Monks [6].
Theorem 1.1. Let H and K be polynomials of degree 2h, 2k respectively. If $h<\mu_{t}(k)$, then $H P^{p^{t}}$ is hit.

Let $P_{t}\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ be the Milnor basis element $P\left(s_{1}, s_{2}, \ldots, s_{t m}\right)$ where $s_{t i}=r_{i}$ and $s_{j}=0$ if t does not divide j. In particular $P_{t}\left(p^{s}\right)=P_{t}^{s}$ and $P_{1}(n)=P(n)$.

If $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ is a sequence of nonnegative integers, we will write $P_{t}(R)$ for the corresponding Milnor basis element. The degree of $P_{t}(R)$ is $2|R|_{t}$ where $|R|_{t}=$ $\sum_{i=1}^{\infty}\left(p^{i t}-1\right) r_{i}$ and the excess of $P_{t}(R)$ is $2 e(R)$ where $e(R)=\sum_{i=1}^{\infty} r_{i}$. For a fixed t let B_{t} be the vector subspace of A with basis the set of all $P_{t}(R)$. For $P_{t}^{s} \in B_{t}$ write \widehat{T}_{t}^{s} for $(-1)^{s} \chi\left(P_{t}^{s}\right)$ where χ denotes the canonical antiautomorphism of B_{t}.

Theorem 1.2. For $s, t \geq 1,0 \leq k<s$, and $k \leq t$,

$$
\begin{equation*}
\widehat{P}_{t}\left(p^{s}-p^{k}\right)=P_{t}\left((p-1) p^{s-1}\right) P_{t}\left((p-1) p^{s-2}\right) \cdots P_{t}\left((p-1) p^{k}\right) \tag{3}
\end{equation*}
$$

2. Some Tools

In this section we list some properties of the Steenrod algebra we need to prove Theorem 1.1 and Theorem 1.2

Lemma 2.1. For $m \geq 0$,

$$
\mu_{t}(m)=\min \left\{e\left(P_{t}(R)\right) .\right.
$$

Proof. These is a $1-1$ correspondence between Milnor basis elements $P_{t}(R)$ satisfying $|R|_{t}=\left(p^{t}-1\right)$ and t-representations of m given by

$$
P_{t}(R) \longleftrightarrow m=\sum_{i} r_{i} \gamma_{t}(i)
$$

Under this correspondence, $e\left(P_{t}(R)\right)$ corresponds to the number $\sum_{i} r_{i}$ which is used in determining $\mu_{t}(m)$. The lemma follows immediately from this observation.

Following lemma is analoguos to [6, Lemma 2.1].

Lemma 2.2. For all $t, m \geq 1, \mu_{t}(m) \leq \frac{p^{t}-1}{p-1} \mu_{1}(m)$.
Proof. There exists positive integers $l_{1}, l_{2}, \ldots, l_{\mu_{1}(m)}$ that such

$$
\begin{equation*}
m=\sum_{i=1}^{\mu_{1}(m)} \gamma_{1}\left(l_{i}\right) \tag{4}
\end{equation*}
$$

For each l_{i} let $l_{i}=t q_{i}+r_{i}$ where q_{i} and r_{i} are non-negative integers and $x \leq r_{i}<t$.

$$
\begin{aligned}
m & =\sum_{i=1}^{\mu_{u}(m)} \gamma_{1}\left(l_{i}\right)=\sum_{i=1}^{\mu_{1}(m)} \gamma_{1}\left(t q_{i}+r_{i}\right)=\sum_{i=1}^{\mu_{1}(m)} \sum_{i=1}^{t q_{i}+r_{i}-1} p^{j}=\sum_{i=1}^{\mu_{1}(m)} q^{t q_{i}+r_{i}}-1 \\
& =\sum_{i=1}^{\mu_{1}(m)} \frac{p^{t}-1}{\left(p^{t}-1\right)(p-1)}\left(q^{t q_{i}+r_{i}}-1\right) \\
& =\sum_{i=1}^{\mu_{1}(m)}\left[\frac{p^{t}-p^{r_{i}}}{p-1} \frac{p^{t q_{i}}-1}{p^{t}-1}+\frac{p^{r_{i}}-1}{p-1} \frac{p^{t\left(q_{i}+1\right)}-1}{p^{t}-1}\right] \\
& =\sum_{j=1}^{\frac{p^{t}-p^{r_{i}}}{p-1}} \sum_{i=1}^{\mu_{1}(m)} \gamma_{t}\left(q_{i}\right)+\sum_{j=1}^{\frac{p^{r_{i}-1}}{p-1}} \sum_{i=1}^{\mu_{1}(m)} \gamma_{t}\left(q_{i}+1\right)
\end{aligned}
$$

This yields a t-decomposition of m with $\frac{p^{t}-1}{p-1} \mu_{1}(m)$ terms. This completes the proof.

Lemma 2.3. If $m \leq p^{t}$ then $\mu_{t}(m)=m$.
Proof. Let $m \leq p^{t}$. Then $m \leq p^{t}<p^{t}+1=\gamma_{t}(2)$. The only possible t-decomposition of m is a sequence of m ones because γ_{t} is strictly increasing

Let $L=\left(l_{1}, l_{2}, \ldots, l_{n}\right)$ be any sequence of nonnegative integers. Define

$$
\begin{equation*}
|L|=\sum_{i=1}^{n} l_{i} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\nu(L)=\max _{i} l_{i} \tag{6}
\end{equation*}
$$

and

KARACA

$$
\begin{equation*}
Y_{t}(L)=\sum_{i=1}^{n} \gamma_{t}\left(l_{i}\right) \tag{7}
\end{equation*}
$$

Suppose that $l_{1} \geq l_{2} \geq \cdots \geq l_{n}$ and that $|L| \geq 1$. For this sequence, we can define

$$
\begin{equation*}
\delta(L)=\left(l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{n}^{\prime}\right) \tag{8}
\end{equation*}
$$

where

$$
l_{i}^{\prime}= \begin{cases}l_{i}-1 & \text { if } l_{i}=l_{1} \text { and }\left(l_{i+1} \neq l_{1} \text { or } i=n\right) \\ l_{i} & \text { if otherwise }\end{cases}
$$

It is easy to verify that

$$
\begin{gathered}
l_{1}^{\prime} \geq l_{2}^{\prime} \geq \cdots \geq l_{n}^{\prime} \\
|\delta(L)|=|L|-1 \\
\nu(\delta(L)) \geq \nu(L)
\end{gathered}
$$

and

$$
Y_{t}(\delta(L))=Y_{t}(L)-p^{t(\nu(L)-1)}
$$

We can define δ^{r} to be the r-fold composition of δ with itself (δ^{0} is the identity function) for $0 \leq r \leq|L|$. Let $F_{L}=\left(f_{1}, f_{2}, \ldots, f_{|L|}\right)$ be the sequence given by

$$
\begin{equation*}
f_{i}=Y_{t}\left(\delta^{i-1}(L)\right)-Y_{t}\left(\delta^{i}(L)\right) \tag{9}
\end{equation*}
$$

Since $\delta^{|L|}(L)=(0,0, \ldots, 0)$ and $Y_{t}\left(\delta^{|L|}(L)\right)=0$,

$$
\begin{align*}
\left|F_{L}\right| & =\sum_{i=1}^{|L|}\left[Y_{t}\left(\delta^{i-1}(L)\right)-Y_{t}\left(\delta^{i}(L)\right)\right]=Y_{t}\left(\delta^{0}(L)\right)-Y_{t}\left(\delta^{|L|}(L)\right) \tag{10}\\
& =Y_{t}(L)
\end{align*}
$$

Lemma 2.4. If $m<(p-1) p^{s}$, then $\mu_{t}(m) \leq \mu_{t}\left(m+(p-1) p^{s}\right)$.
Proof. Assume that $L=\left(l_{1}, l_{2}, \ldots, l_{n}\right)$ is a t-decomposition of $m+(p-1) p^{s}$. Without lass of generality we can also assume that $l_{1} \geq l_{2} \geq \cdots l_{n}$. By definiton we have $Y_{t}(L)=m+(p-1) p^{s}$, and so by (10)

$$
\sum_{i=0}^{|L|} f_{i}=m+(p-1) p^{s}
$$

So F_{K} is a non-increasing sequence whose power is $m+(p-1) p^{s}$. Hence we need following lemma:

Lemma 2.5. If $(p-1) p^{b} \leq a<p^{b+1}, \sum_{i=1}^{r} p^{x_{i}}=a$, and $p^{x_{i}} \geq p^{x_{2}} \geq \cdot \geq p^{x_{r}}$ then there is a $q \in\{1, \ldots, r\}$ such that $\sum_{i=1}^{q} p^{x_{i}}=(p-1) p^{b}$.
Proof. If $a=(p-1) p^{b}$ then we can take $q=r$ and we are done. Assume that $(p-1) p^{b}<a$. Since $p^{b+1}>a$, we have $p^{b} \geq p^{x_{1}} \geq p^{x_{2}} \cdots \geq p^{X_{q+1}}$. Let q be the largest integer such that $\sum_{i=1}^{q} p^{x_{i}} \leq(p-1) p^{b}$. Then $(p-1) p^{b}-\sum_{i=1}^{q} p^{x_{i}} \equiv 0 \bmod p^{X_{q+1}}$ and $(p-1) p^{b}<\sum_{i=1}^{q+1} p^{x_{i}}$ and hence $\sum_{i=1}^{q} p^{x_{i}}=(p-1) p^{b}$.

For Lemma 2.5 there exists $q \in\{1, \ldots,|L|\}$ such that $\sum_{i=1}^{q} f_{i}=(p-1) p^{s}$. Thus

$$
\begin{aligned}
\sum_{i=1}^{q}\left[Y_{t}\left(\delta^{i-1}(L)\right)-Y_{t}\left(\delta^{i}(L)\right)\right] & =Y_{t}(L)+Y_{T}\left(\delta^{q}(L)\right) \\
& =m+(p-1) p^{s}-Y_{t}\left(\delta_{q}(L)\right)=(p-1) p^{s}
\end{aligned}
$$

and hence $Y_{t}\left(\delta^{q}(L)\right)=m$. Therefore $\mu_{t}(m) \leq \mu_{t}\left(m+(p-1) p^{s}\right)$
Using this result we can prove the following lemma:
Lemma 2.6. $\quad \mu_{t}\left(p^{s}-p^{k}\right) \geq(p-1) p^{k}$ where s, t, and k are any integers such that $s, t \geq 1,0 \leq k<s$, and $k<t$.
Proof. We will prove this by induction on s. If $s=k+1$ then $\mu_{t}\left(p^{s}-p^{k}\right)=$ $\mu_{t}\left((p-1) p^{k}\right)=(p-1) p^{k}$ by Lemma 2.3 Assume that it is true for $s-1$. Then by Lemma 2.4, $\mu_{t}\left(p^{s}-p^{k}\right)=\mu_{t}\left((p-1) p^{s-1}+p^{s-1}+p^{k}\right) \geq \mu_{t}\left(p^{s-1}-p^{k}\right)$. By inductive hypothesis, $\mu_{t}\left(p^{s-1}-p^{k}\right) \geq(p-1) p^{k}$. Hence $\mu_{t}\left(p^{s}-p^{k}\right) \geq(p-1) p^{k}$.

The Proof of the Main results

The key idea in Wood's argument is that for any $u, w \in P_{s}$ and any $\theta \in \mathcal{A}$, we have $u \cdot \theta w \equiv \tilde{\theta} u \cdot m$ module hit elements. In particular if $e(\widehat{\theta})>\operatorname{deg}(u)$, then $u \cdot \theta w$ is hit. Using this We will prove Theorem 1.1. We accomplish this with the aid of the following lemma.

KARACA

Lemma 3.7. If $N \in P_{s}$ is any element of degree $2 k$, then for any $t \geq 1$,

$$
\begin{equation*}
P_{t}(k) \cdot N=N^{p^{t}} \tag{11}
\end{equation*}
$$

Proof. We will prove this by induction on the number of variables in N. Suppose

$$
N=q_{i_{1}}^{h_{1}} x_{i_{2}}^{h_{2}} \cdots x_{i_{n}}^{h_{n}}
$$

Let $n=1$. Then

$$
\begin{equation*}
P_{t}(k) x^{k}=\left(X^{k}\right) p^{t} \tag{12}
\end{equation*}
$$

So the result holds for $n=1$. Assume that the result holds for all monomials comprised of less than n variables. Let $N_{1}=x_{i_{1}}^{h_{1}} x_{i_{2}}^{h_{2}} \cdots x_{i_{n-1}}^{h_{n-1}}$ so that $N=N_{1} x_{i_{n}}^{h_{n}}$. Let $\psi: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ be the diagonal map of \mathcal{A}. Then $\psi\left(P_{t}(k)\right)=\sum_{i=0}^{k} P_{t}(k-i) \otimes P_{t}(i)$. So

$$
\begin{aligned}
P_{k}(k) \cdot N & =\sum_{i=0}^{k} P_{t}(k-i) N_{1} \cdot P_{t}(i) x_{i_{n}}^{h_{n}} \\
& =\sum_{i=0}^{h_{n}-1} P_{t}(k-i) N_{1} \cdot P_{t}(i) x_{i_{n}}^{h_{n}}+P_{t}\left(k-h_{n}\right) N_{1} \cdot P_{t}\left(h_{n}\right) x_{i_{n}}^{h_{n}} \\
& +\sum_{i=h_{n}+1}^{k} P_{t}(k-i) N_{1} \cdot P_{t}(i) x_{i_{n}}^{h_{n}}
\end{aligned}
$$

Since $e\left(P_{t}(k-i)\right)>\frac{1}{2} \operatorname{deg}\left(N_{1}\right), \sum_{i=0}^{h_{n}-1} P_{t}(k-i) N_{1} \cdot P_{t}(i) x_{i_{n}}^{h_{n}}=0$. Similarly $\sum_{i=h_{n}+1}^{k} P_{t}(k-$ i) $N_{1} \cdot P_{t}(i) x_{i_{n}}^{h_{n}}=0$ because $e\left(P_{t}(i)\right)>\frac{1}{2} \operatorname{deg}\left(x_{i_{n}}^{h_{n}}\right)$. By induction, we have

$$
P_{t}(k) \cdot N=P_{t}\left(h_{n}-i\right) N_{1} \cdot P_{t}(i) x_{i_{n}}^{h_{n}}=N_{1}^{p^{t}}\left(x_{i_{n}}^{h_{n}}\right) p^{t}
$$

Hence we obtain $P_{t}(k) \cdot N=N^{p_{t}}$.

Wood's argument shows that $H K^{p_{t}} \equiv \widehat{P}_{t}(k) H \cdot K$ module hit elements. Hence if $e\left(\widehat{P}_{t}(k)\right)>h$, then $\widehat{P}_{t}(k) H=0$ and hence $H K^{p^{t}}$ is hit. Therefore it remains to show that $e\left(\widehat{P}_{t}(k)\right)=\mu_{t}(k)$. The following limma was prowed by Gallant [3, Proposition 1].

KARACA

Lemma 3.8.

$$
\widehat{P}_{t}(k)=\sum_{R} P_{t}(R),
$$

where $|R|_{t}=\left(p^{t}-1\right) k$.
By Lemma 2.1, $\mu_{t}(k)$ is exactly the minimum excess of the element $P_{t}(R)$ where $|R|_{t}=$ $\left(p^{t}-1\right) k$. On the other hand, $\widehat{P}_{t}(k)$ is the summand of all $P_{t}(R)$ where $|R|_{t}=\left(p^{t}-1\right) k$, By Lemma 3.8. Hence $e\left(\widehat{P}_{t}(k)\right)=\mu_{t}(k)$. This completes the proof of Theorem 1.1

Proof of Theorem 1.2. We will prove this by induction on s. Suppose that $s=k+1$. Then since for $k<t$ the only nonzero element $P_{t}(R)$ of B_{t} with $|R|_{t}=\left(p^{t}-1\right)(p-1) \cdot p^{k}$ is $P\left((p-1) p^{k}\right), \widehat{P}_{t}\left(p^{s}-p^{k}\right)=\widehat{P}_{t}\left((p-1) p^{k}\right)=P_{t}\left((P-1) \cdot p^{k}\right)$. This proves theorem for $s=k+1$.

Assume that it is true for $s-1$. Using induction hypothesis and [3, Corollary 1.a], we have

$$
\begin{aligned}
P_{t}\left((p-1) p^{s-1}\right) P_{t}\left((p-1) p^{s-2}\right) \cdot P_{t}\left((p-1) p^{k}\right. & =P_{t}\left((p-1) p^{s-1}\right) \widehat{P}_{t}\left(p^{s-1}-p^{k}\right) \\
& =\sum_{R}\binom{\sum_{i} p^{i t} r_{i}}{(p-1) p^{t+s-1}} P_{t}(R) .
\end{aligned}
$$

where the sum is taken over all R such that $|R|_{t}=\left(p^{t}-1\right)\left(p^{s}-p^{k}\right)$. Since $\widehat{P}_{t}\left(p^{s}-p^{k}\right)$ is the sum of all $P_{t}(R)$ where $|R|_{t}=\left(p^{t}-1\right)\left(p^{s}-p^{k}\right)$, it is sufficient to show that

$$
\binom{\sum_{i} p^{i t} r_{i}}{(p-1) p^{t+s-1}} \equiv 1 \bmod p
$$

By Lemma 2.1 and Lemma 2.6, $\sum_{i} r_{i} \geq \mu_{t}\left(p^{s}-p^{k}\right) \geq(p-1) p^{k}$. For $s>k$ and $t \geq 1$ we have

$$
(p-1)\left(p^{k}-p^{s+t-1}\right)+\left(p^{t}-1\right)\left(p^{s}-p^{k}\right)=\left(p^{s}-p^{k+1}\right)\left(p^{t-1}-1\right) \geq 0 .
$$

Hence

$$
\sum_{i} p^{i t} r_{i}=\sum_{i}\left(p^{i t}-1\right) r_{i}+\sum_{i} r_{i} \geq\left(p^{t}-1\right)\left(p^{s}-p^{k}\right)+(p-1) p^{k} \geq(p-1) p^{s+t-1}
$$

On the other hand,

KARACA

$$
\left(p^{t}-1\right) \sum_{i} r_{i} \leq \sum_{i}\left(p^{i t}-1\right) r_{i}=\left(p^{t}-1\right)\left(p^{s}-p^{k}\right) .
$$

So $\sum_{i} r_{i} \leq p^{s}-p^{k}$. Using this inequality, we have

$$
\sum_{i} p^{i t} r_{i}=\sum_{\substack{i \\ \leq p^{s+t}}}\left(p^{i t}-1\right) r_{i}+\sum_{i} r_{i} \leq\left(p^{t}-1\right)\left(p^{s}-p^{k}\right)+p^{s}-p^{k}
$$

Hence $\binom{\sum_{i} p^{i t} r_{i}}{(p-1) p^{t+s-1}} \equiv 1 \bmod p$ by Lucas's theorem [4]. This completes the proof.

References

[1] E.H. Brown, D.M. Davis, and F.P. Peterson, The Homology of BO and Some Results About Steenrod Algebra, Math. Proc. Camb. Phil. Soc. 81 (1977), 393-398.
[2] D.M. Davis, The Antiautomorphism of the Steenrod Algebra, Proc. A.M.S. 44 (1974), 235-236.
[3] A.M. Gallant, Excess and Conjugation in the Steenrod Algebra, Proc. Amer. Math. Soc. 76, (1979), 161-166.
[4] E. Local, Théorie des Functions Numériqyes Simplement Preiodiques, American J. Math. 1 (1978), 184-240, 289-321.
[5] J. Milnor, The Steenrod Algebra and its Dual, Ann. of Math. 67 (1958), 150-171.
[6] K.G. Monks, Polynomial Modules Over the Steenrod Algebra, Preprint (1993).
[7] F.P. Peterson, A-generators for Certain Polynomial Algebras, Math. Proc. Camb. Phil. Soc. 105 (1989), 311-312.
[8] J.H. Silverman, Hit Polynomials and The Canonical Antiautomorphism of the Steenrod Algebra, Preprint (1993).
[9] R.M.W. Wood, Steenrod Squares of Polynomials and the Peterson Conjecture, Math. Proc. Camb. Phil. Soc. 105 (1989), 307-309.

İsmet KARACA
Received 19.11.1996
Lehigh University,
Bethlenem, PA 18015-USA

