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ON THE ACTION OF STEENROD OPERATIONS ON

POLYNOMIAL ALGEBRAS
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Abstract

Let A be the mod-p Steenrod Algebra. Let p be an odd prime number and
Zp = Z/pZ. Let Ps = Zp[x1, x2, . . . , x1]. A polynomial N ∈ Ps is said to be hit
if it is in the image of the action A ⊗ Ps → Ps. In [10] for p = 2, Wood showed
that if α(d + s) > s then every polynomial of degree d in Ps is hit where α(d + s)
denotes the number of ones in the binary expansion of d + s. Latter in [6] Monks
extended a result of Wood to determine a new family of hit polynomials in Ps. In
this paper we are interested in determining the image of the action A ⊗ Ps → Ps.
So our results which determine a new family of hit polynomials in Ps for odd prime
numbers generalize cononical antiautaomorphism of formulas of Davis [2], Gallant
[3] and Monks [6].

1. Introduction

Let A be a mod-p Steenrod algebra. Let p be an odd prime number and Zp = Z/pZ.
Let Ps = Zp[x1, x2, . . . , xs]. A polynomial N ∈ Ps is said to be hit if it is in the image
of the action A ⊗ Ps → Ps, i.e. N ∈ APs where A is the augmentation ideal of A, i.e.
N =

∑
i P

iMi for some Mi ∈ Ps.
We are interested in determining the image of the aciton A⊗ Ps → Ps : the space of

elements in Ps that are hit by positive dimensional Steenrod operations. In [10], when
p = 2 Wood showed that if α(d + s) > s then every polynomial of degree d in Ps is
hit where α(d + s) denotes the number of ones in the binary expansion of d + s. In [9]
Singer generalized Wood’s result conjectured by Peterson and identified a larger class of
hit polynomials. In [8] Silverman generalized a result of Wood and proved a conjecture
of Singer. In [6] Monks extended a result of Wood to determine a new family of hit
polynomials in Ps.

In order to state our result we need to introduce some notation. For m ≥ 0 and t ≥ 1,

γt(m) =
m−1∑
i=0

pit, (1)
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where γt(0) = 0. A sequence of nonnegative integers L = (l1 , l2, . . . , ln) is called a t-
decomposition of a positive integer m if m =

∑n
i=1 γt(li). We define µt(m) to be the

number of terms in the shortest t-decomposition of m, i.e.

µt(m) = min{n|m =
n∑
i=1

γt(li)}. (2)

The following results are odd-primary analogues of results of Monks [6].

Theorem 1.1. Let H and K be polynomials of degree 2h, 2k respectively. If h < µt(k),

then H P p
t

is hit.

Let Pt(r1, r2, . . . , rm) be the Milnor basis element P (s1, s2, . . . , stm) where sti = ri
and sj = 0 if t does not divide j. In particular Pt(ps) = P st and P1(n) = P (n).

If R = (r1, r2, . . . , rm) is a sequence of nonnegative integers, we will write Pt(R)
for the corresponding Milnor basis element. The degree of Pt(R) is 2|R|t where |R|t =∑∞

i=1(pit − 1)ri and the excess of Pt(R) is 2e(R) where e(R) =
∑∞

i=1 ri. For a fixed t let

Bt be the vector subspace of A with basis the set of all Pt(R). For P st ∈ Bt write T̂ st for
(−1)sχ(P st ) where χ denotes the canonical antiautomorphism of Bt.

Theorem 1.2. For s, t ≥ 1, 0 ≤ k < s, and k ≤ t,

P̂t(ps − pk) = Pt((p − 1)ps−1)Pt((p − 1)ps−2) · · ·Pt((p− 1)pk) (3)

2. Some Tools

In this section we list some properties of the Steenrod algebra we need to prove
Theorem 1.1 and Theorem 1.2

Lemma 2.1. For m ≥ 0,

µt(m) = min{e(Pt(R)).
Proof. These is a 1−1 correspondence between Milnor basis elements Pt(R) satisfying
|R|t = (pt − 1) and t-representations of m given by

Pt(R)←→m =
∑
i

riγt(i).

Under this correspondence, e(Pt(R)) corresponds to the number
∑

i ri which is used in
determining µt(m). The lemma follows immediately from this observation. 2

Following lemma is analoguos to [6, Lemma 2.1].
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Lemma 2.2. For all t, m ≥ 1, µt(m) ≤ pt−1
p−1

µ1(m).

Proof. There exists positive integers l1, l2, . . . , lµ1(m) that such

m =
µ1(m)∑
i=1

γ1(li). (4)

For each li let li = tqi + ri where qi and ri are non-negative integers and x ≤ ri < t.

m =
µu(m)∑
i=1

γ1(li) =
µ1(m)∑
i=1

γ1(tqi + ri) =
µ1(m)∑
i=1

tqi+ri−1∑
i=1

pj =
µ1(m)∑
i=1

qtqi+ri − 1

=
µ1(m)∑
i=1

pt − 1
(pt − 1)(p− 1)

(qtqi+ri − 1)

=
µ1(m)∑
i=1

[
pt − pri
p− 1

ptqi − 1
pt − 1

+
pri − 1
p− 1

pt(qi+1) − 1
pt − 1

]

=

pt−pri
p−1∑
j=1

µ1(m)∑
i=1

γt(qi) +

pri−1
p−1∑
j=1

µ1(m)∑
i=1

γt(qi + 1)

This yields a t-decomposition of m with pt−1
p−1 µ1(m) terms. This completes the proof. 2

Lemma 2.3. If m ≤ pt then µt(m) = m.

Proof. Let m ≤ pt. Then m ≤ pt < pt+1 = γt (2). The only possible t-decomposition
of m is a sequence of m ones because γt is strictly increasing 2

Let L = (l1, l2, . . . , ln) be any sequence of nonnegative integers. Define

|L| =
n∑
i=1

li (5)

ν(L) = max
i
li (6)

and
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Yt(L) =
n∑
i=1

γt(li). (7)

Suppose that l1 ≥ l2 ≥ · · · ≥ ln and that |L| ≥ 1. For this sequence, we can define

δ(L) = (l′1, l
′
2, . . . , l

′
n), (8)

where

l′i =
{
li − 1 if li = l1 and (li+1 6= l1 or i = n)
li if otherwise.

It is easy to verify that

l′1 ≥ l′2 ≥ · · · ≥ l′n
|δ(L)| = |L| − 1
ν(δ(L)) ≥ ν(L)

and

Yt(δ(L)) = Yt(L) − pt(ν(L)−1).

We can define δr to be the r-fold composition of δ with itself (δ0 is the identity function)
for 0 ≤ r ≤ |L|. Let FL = (f1, f2, . . . , f|L|) be the sequence given by

fi = Yt(δi−1(L)) − Yt(δi(L)). (9)

Since δ|L|(L) = (0, 0, . . . , 0) and Yt(δ|L|(L)) = 0,

|FL| =
|L|∑
i=1

[Yt(δi−1(L)) − Yt(δi(L))] = Yt(δ0(L)) − Yt(δ|L|(L)) (10)

= Yt(L)

Lemma 2.4. If m < (p− 1)ps, then µt(m) ≤ µt(m+ (p− 1)ps).
Proof. Assume that L = (l1, l2, . . . , ln) is a t-decomposition of m+(p−1)ps. Without
lass of generality we can also assume that l1 ≥ l2 ≥ · · · ln. By definiton we have
Yt(L) = m+ (p − 1)ps, and so by (10)
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|L|∑
i=0

fi = m+ (p− 1)ps.

So FK is a non-increasing sequence whose power is m+(p−1)ps. Hence we need following
lemma: 2

Lemma 2.5. If (p − 1)pb ≤ a < pb+1,
∑r
i=1 p

xi = a, and pxi ≥ px2 ≥ · ≥ pxr then

there is a q ∈ {1, . . . , r} such that
∑q

i=1 p
xi = (p− 1)pb.

Proof. If a = (p − 1)pb then we can take q = r and we are done. Assume that
(p − 1)pb < a. Since pb+1 > a, we have pb ≥ px1 ≥ px2 · · · ≥ pXq+1 . Let q be the largest
integer such that

∑q
i=1 p

xi ≤ (p − 1)pb. Then (p − 1)pb −
∑q
i=1 p

xi ≡ 0 mod pXq+1 and

(p − 1)pb <
∑q+1

i=1 p
xi and hence

∑q
i=1 p

xi = (p− 1)pb. 2

For Lemma 2.5 there exists q ∈ {1, . . . , |L|} such that
∑q

i=1 fi = (p− 1)ps. Thus

q∑
i=1

[Yt(δi−1(L)) − Yt(δi(L))] = Yt(L) + YT (δq(L))

= m+ (p− 1)ps − Yt(δq(L)) = (p− 1)ps

and hence Yt(δq(L)) = m. Therefore µt(m) ≤ µt(m+ (p − 1)ps)
Using this result we can prove the following lemma:

Lemma 2.6. µt(ps − pk) ≥ (p − 1)pk where s, t, and k are any integers such that
s, t ≥ 1, 0 ≤ k < s, and k < t.
Proof. We will prove this by induction on s. If s = k + 1 then µt(ps − pk) =
µt((p − 1)pk) = (p − 1)pk by Lemma 2.3 Assume that it is true for s − 1. Then by
Lemma 2.4, µt(ps − pk) = µt((p − 1)ps−1 + ps−1 + pk) ≥ µt(ps−1 − pk). By inductive
hypothesis, µt(ps−1 − pk) ≥ (p− 1)pk. Hence µt(ps − pk) ≥ (p− 1)pk. 2

The Proof of the Main results

The key idea in Wood’s argument is that for any u, w ∈ Ps and any θ ∈ A, we have

u · θw ≡ θ̃u ·m module hit elements. In particular if e(θ̂) > deg(u), then u · θw is hit.
Using this We will prove Theorem 1.1. We accomplish this with the aid of the following
lemma.
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Lemma 3.7. If N ∈ Ps is any element of degree 2k, then for any t ≥ 1,

Pt(k) ·N = Npt (11)

Proof. We will prove this by induction on the number of variables in N. Suppose

N = qh1
i1
xh2
i2
· · ·xhnin

Let n = 1. Then

Pt(k)xk = (Xk)pt. (12)

So the result holds for n = 1. Assume that the result holds for all monomials comprised of

less than n variables. Let N1 = xh1
i1
xh2
i2
· · ·xhn−1

in−1
so that N = N1x

hn
in

. Let ψ : A→ A⊗A

be the diagonal map of A. Then ψ(Pt(k)) =
∑k

i=0 Pt(k − i) ⊗ Pt(i). So

Pk(k) ·N =
k∑
i=0

Pt(k − i)N1 · Pt(i)xhnin

=
hn−1∑
i=0

Pt(k − i)N1 · Pt(i)xhnin + Pt(k − hn)N1 · Pt(hn)xhnin

+
k∑

i=hn+1

Pt(k − i)N1 · Pt(i)xhnin .

Since e(Pt(k−i)) > 1
2

deg(N1),
∑hn−1
i=0 Pt(k−i)N1·Pt(i)xhnin = 0. Similarly

∑k
i=hn+1 Pt(k−

i)N1 · Pt(i)xhnin = 0 because e(Pt(i)) > 1
2

deg(xhnin ). By induction, we have

Pt(k) ·N = Pt(hn − i)N1 · Pt(i)xhnin = Npt

1 (xhnin )pt.

Hence we obtain Pt(k) ·N = Npt . 2

Wood’s argument shows that HKpt ≡ P̂t(k)H · K module hit elements. Hence if

e(P̂t(k)) > h, then P̂t(k)H = 0 and hence HKpt is hit. Therefore it remains to show that

e(P̂t(k)) = µt(k). The following limma was prowed by Gallant [3, Proposition 1].
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Lemma 3.8.

P̂t(k) =
∑
R

Pt(R),

where |R|t = (pt − 1)k.

By Lemma 2.1, µt(k) is exactly the minimum excess of the element Pt(R) where |R|t =

(pt − 1)k. On the other hand, P̂t(k) is the summand of all Pt(R) where |R|t = (pt − 1)k,

By Lemma 3.8. Hence e(P̂t(k)) = µt(k). This completes the proof of Theorem 1.1

Proof of Theorem 1.2. We will prove this by induction on s. Suppose that s = k+1.
Then since for k < t the only nonzero element Pt(R) of Bt with |R|t = (pt− 1)(p− 1) · pk

is P ((p − 1)pk), P̂t(ps − pk) = P̂t((p − 1)pk) = Pt((P − 1) · pk). This proves theorem for
s = k + 1.

Assume that it is true for s−1. Using induction hypothesis and [3, Corollary 1.a], we
have

Pt((p− 1)ps−1)Pt((p− 1)ps−2) · Pt((p − 1)pk = Pt((p− 1)ps−1)P̂t(ps−1 − pk)

=
∑
R

( ∑
i p
itri

(p− 1)pt+s−1

)
Pt(R).

where the sum is taken over all R such that |R|t = (pt− 1)(ps− pk). Since P̂t(ps − pk) is
the sum of all Pt(R) where |R|t = (pt − 1)(ps − pk), it is sufficient to show that( ∑

i p
itri

(p− 1)pt+s−1

)
≡ 1 mod p.

By Lemma 2.1 and Lemma 2.6,
∑

i ri ≥ µt(ps − pk) ≥ (p− 1)pk. For s > k and t ≥ 1 we
have

(p− 1)(pk − ps+t−1) + (pt − 1)(ps − pk) = (ps − pk+1)(pt−1 − 1) ≥ 0.

Hence

∑
i

pitri =
∑
i

(pit − 1)ri +
∑
i

ri ≥ (pt − 1)(ps − pk) + (p− 1)pk ≥ (p − 1)ps+t−1

On the other hand,
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(pt − 1)
∑
i

ri ≤
∑
i

(pit − 1)ri = (pt − 1)(ps − pk).

So
∑

i ri ≤ ps − pk. Using this inequality, we have∑
i

pitri =
∑
i

≤ps+t

(pit − 1)ri +
∑
i

ri ≤ (pt − 1)(ps − pk) + ps − pk

Hence
( ∑

i p
itri

(p− 1)pt+s−1

)
≡ 1 mod p by Lucas’s theorem [4]. This completes the proof.
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