ON THE ACTION OF STEENROD OPERATIONS ON POLYNOMIAL ALGEBRAS

İsmet Karaca

Abstract

Let \mathbb{A} be the mod-*p* Steenrod Algebra. Let *p* be an odd prime number and $Z_p = Z/pZ$. Let $P_s = Z_p[x_1, x_2, \ldots, x_1]$. A polynomial $N \in P_s$ is said to be hit if it is in the image of the action $A \otimes P_s \to P_s$. In [10] for p = 2, Wood showed that if $\alpha(d+s) > s$ then every polynomial of degree *d* in P_s is hit where $\alpha(d+s)$ denotes the number of ones in the binary expansion of d+s. Latter in [6] Monks extended a result of Wood to determine a new family of hit polynomials in P_s . In this paper we are interested in determining the image of the action $A \otimes P_s \to P_s$. So our results which determine a new family of hit polynomials in P_s for odd prime numbers generalize cononical antiautaomorphism of formulas of Davis [2], Gallant [3] and Monks [6].

1. Introduction

Let \mathcal{A} be a mod-p Steenrod algebra. Let p be an odd prime number and $\mathbf{Z}_p = \mathbf{Z}/p\mathbf{Z}$. Let $P_s = \mathbf{Z}_p[x_1, x_2, \dots, x_s]$. A polynomial $N \in P_s$ is said to be **hit** if it is in the image of the action $A \otimes P_s \to P_s$, i.e. $N \in AP_s$ where A is the augmentation ideal of \mathcal{A} , i.e. $N = \sum_i P^i M_i$ for some $M_i \in P_s$.

We are interested in determining the image of the aciton $A \otimes P_s \to P_s$: the space of elements in P_s that are hit by positive dimensional Steenrod operations. In [10], when p = 2 Wood showed that if $\alpha(d + s) > s$ then every polynomial of degree d in P_s is hit where $\alpha(d + s)$ denotes the number of ones in the binary expansion of d + s. In [9] Singer generalized Wood's result conjectured by Peterson and identified a larger class of hit polynomials. In [8] Silverman generalized a result of Wood and proved a conjecture of Singer. In [6] Monks extended a result of Wood to determine a new family of hit polynomials in P_s .

In order to state our result we need to introduce some notation. For $m \ge 0$ and $t \ge 1$,

$$\gamma_t(m) = \sum_{i=0}^{m-1} p^{it},\tag{1}$$

-1	c	0
	n	-1
-	v	U

where $\gamma_t(0) = 0$. A sequence of nonnegative integers $L = (l_1, l_2, \dots, l_n)$ is called a *t*-decomposition of a positive integer *m* if $m = \sum_{i=1}^n \gamma_t(l_i)$. We define $\mu_t(m)$ to be the number of terms in the shortest *t*-decomposition of *m*, i.e.

$$\mu_t(m) = \min\{n | m = \sum_{i=1}^n \gamma_t(l_i)\}.$$
(2)

The following results are odd-primary analogues of results of Monks [6].

Theorem 1.1. Let H and K be polynomials of degree 2h, 2k respectively. If $h < \mu_t(k)$, then H P^{p^t} is hit.

Let $P_t(r_1, r_2, \ldots, r_m)$ be the Milnor basis element $P(s_1, s_2, \ldots, s_{tm})$ where $s_{ti} = r_i$ and $s_j = 0$ if t does not divide j. In particular $P_t(p^s) = P_t^s$ and $P_1(n) = P(n)$.

If $R = (r_1, r_2, \ldots, r_m)$ is a sequence of nonnegative integers, we will write $P_t(R)$ for the corresponding Milnor basis element. The degree of $P_t(R)$ is $2|R|_t$ where $|R|_t = \sum_{i=1}^{\infty} (p^{it} - 1)r_i$ and the excess of $P_t(R)$ is 2e(R) where $e(R) = \sum_{i=1}^{\infty} r_i$. For a fixed t let B_t be the vector subspace of A with basis the set of all $P_t(R)$. For $P_t^s \in B_t$ write \widehat{T}_t^s for $(-1)^s \chi(P_t^s)$ where χ denotes the canonical antiautomorphism of B_t .

Theorem 1.2. For $s, t \ge 1, 0 \le k < s$, and $k \le t$,

$$\widehat{P}_t(p^s - p^k) = P_t((p-1)p^{s-1})P_t((p-1)p^{s-2})\cdots P_t((p-1)p^k)$$
(3)

2. Some Tools

In this section we list some properties of the Steenrod algebra we need to prove Theorem 1.1 and Theorem 1.2

Lemma 2.1. For $m \ge 0$,

$$\mu_t(m) = \min\{e(P_t(R)).$$

Proof. These is a 1-1 correspondence between Milnor basis elements $P_t(R)$ satisfying $|R|_t = (p^t - 1)$ and t-representations of m given by

$$P_t(R) \longleftrightarrow m = \sum_i r_i \gamma_t(i).$$

Under this correspondence, $e(P_t(R))$ corresponds to the number $\sum_i r_i$ which is used in determining $\mu_t(m)$. The lemma follows immediately from this observation.

Following lemma is analoguos to [6, Lemma 2.1].

Lemma 2.2. For all $t, m \ge 1, \mu_t(m) \le \frac{p^t - 1}{p - 1} \mu_1(m)$. **Proof.** There exists positive integers $l_1, l_2, \ldots, l_{\mu_1(m)}$ that such

$$m = \sum_{i=1}^{\mu_1(m)} \gamma_1(l_i).$$
(4)

For each l_i let $l_i = tq_i + r_i$ where q_i and r_i are non-negative integers and $x \le r_i < t$.

$$m = \sum_{i=1}^{\mu_u(m)} \gamma_1(l_i) = \sum_{i=1}^{\mu_1(m)} \gamma_1(tq_i + r_i) = \sum_{i=1}^{\mu_1(m)} \sum_{i=1}^{tq_i + r_i - 1} p^j = \sum_{i=1}^{\mu_1(m)} q^{tq_i + r_i} - 1$$
$$= \sum_{i=1}^{\mu_1(m)} \frac{p^t - 1}{(p^t - 1)(p - 1)} (q^{tq_i + r_i} - 1)$$
$$= \sum_{i=1}^{\mu_1(m)} \left[\frac{p^t - p^{r_i}}{p - 1} \frac{p^{tq_i} - 1}{p^t - 1} + \frac{p^{r_i} - 1}{p - 1} \frac{p^{t(q_i + 1)} - 1}{p^t - 1} \right]$$
$$= \sum_{j=1}^{\frac{p^t - p^{r_i}}{p - 1}} \sum_{i=1}^{\mu_1(m)} \gamma_t(q_i) + \sum_{j=1}^{\frac{p^{r_i} - 1}{p - 1}} \sum_{i=1}^{\mu_1(m)} \gamma_t(q_i + 1)$$

This yields a *t*-decomposition of *m* with $\frac{p^t-1}{p-1}\mu_1(m)$ terms. This completes the proof. \Box

Lemma 2.3. If $m \leq p^t$ then $\mu_t(m) = m$. **Proof.** Let $m \leq p^t$. Then $m \leq p^t < p^t + 1 = \gamma_t$ (2). The only possible t-decomposition of m is a sequence of m ones because γ_t is strictly increasing \Box

Let $L = (l_1, l_2, ..., l_n)$ be any sequence of nonnegative integers. Define

$$|L| = \sum_{i=1}^{n} l_i \tag{5}$$

$$\nu(L) = \max_{i} l_i \tag{6}$$

and

$$Y_t(L) = \sum_{i=1}^n \gamma_t(l_i).$$
(7)

Suppose that $l_1 \ge l_2 \ge \cdots \ge l_n$ and that $|L| \ge 1$. For this sequence, we can define

$$\delta(L) = (l'_1, l'_2, \dots, l'_n), \tag{8}$$

where

$$l'_{i} = \begin{cases} l_{i} - 1 & \text{if } l_{i} = l_{1} \text{ and } (l_{i+1} \neq l_{1} \text{ or } i = n) \\ l_{i} & \text{if otherwise.} \end{cases}$$

It is easy to verify that

$$\begin{split} l_1' &\geq l_2' \geq \cdots \geq l_n' \\ |\delta(L)| &= |L|-1 \\ \nu(\delta(L)) \geq \nu(L) \end{split}$$

and

$$Y_t(\delta(L)) = Y_t(L) - p^{t(\nu(L)-1)}.$$

We can define δ^r to be the *r*-fold composition of δ with itself (δ^0 is the identity function) for $0 \leq r \leq |L|$. Let $F_L = (f_1, f_2, \ldots, f_{|L|})$ be the sequence given by

$$f_i = Y_t(\delta^{i-1}(L)) - Y_t(\delta^i(L)).$$
(9)

Since $\delta^{|L|}(L) = (0, 0, \dots, 0)$ and $Y_t(\delta^{|L|}(L)) = 0$,

$$|F_L| = \sum_{i=1}^{|L|} [Y_t(\delta^{i-1}(L)) - Y_t(\delta^i(L))] = Y_t(\delta^0(L)) - Y_t(\delta^{|L|}(L))$$
(10)
= $Y_t(L)$

Lemma 2.4. If $m < (p-1)p^s$, then $\mu_t(m) \le \mu_t(m+(p-1)p^s)$. **Proof.** Assume that $L = (l_1, l_2, \ldots, l_n)$ is a t-decomposition of $m + (p-1)p^s$. Without lass of generality we can also assume that $l_1 \ge l_2 \ge \cdots l_n$. By definiton we have $Y_t(L) = m + (p-1)p^s$, and so by (10)

$$\sum_{i=0}^{|L|} f_i = m + (p-1)p^s.$$

So F_K is a non-increasing sequence whose power is $m + (p-1)p^s$. Hence we need following lemma:

Lemma 2.5. If $(p-1)p^b \leq a < p^{b+1}, \sum_{i=1}^r p^{x_i} = a$, and $p^{x_i} \geq p^{x_2} \geq \cdots \geq p^{x_r}$ then there is a $q \in \{1, \ldots, r\}$ such that $\sum_{i=1}^q p^{x_i} = (p-1)p^b$.

Proof. If $a = (p-1)p^b$ then we can take q = r and we are done. Assume that $(p-1)p^b < a$. Since $p^{b+1} > a$, we have $p^b \ge p^{x_1} \ge p^{x_2} \cdots \ge p^{X_{q+1}}$. Let q be the largest integer such that $\sum_{i=1}^q p^{x_i} \le (p-1)p^b$. Then $(p-1)p^b - \sum_{i=1}^q p^{x_i} \equiv 0 \mod p^{X_{q+1}}$ and $(p-1)p^b < \sum_{i=1}^{q+1} p^{x_i}$ and hence $\sum_{i=1}^q p^{x_i} = (p-1)p^b$.

For Lemma 2.5 there exists $q \in \{1, \ldots, |L|\}$ such that $\sum_{i=1}^{q} f_i = (p-1)p^s$. Thus

$$\sum_{i=1}^{q} [Y_t(\delta^{i-1}(L)) - Y_t(\delta^i(L))] = Y_t(L) + Y_T(\delta^q(L))$$
$$= m + (p-1)p^s - Y_t(\delta_q(L)) = (p-1)p^s$$

and hence $Y_t(\delta^q(L)) = m$. Therefore $\mu_t(m) \le \mu_t(m + (p-1)p^s)$ Using this result we can prove the following lemma:

Lemma 2.6. $\mu_t(p^s - p^k) \ge (p - 1)p^k$ where s, t, and k are any integers such that $s, t \ge 1, 0 \le k < s$, and k < t.

Proof. We will prove this by induction on s. If s = k + 1 then $\mu_t(p^s - p^k) = \mu_t((p-1)p^k) = (p-1)p^k$ by Lemma 2.3 Assume that it is true for s-1. Then by Lemma 2.4, $\mu_t(p^s - p^k) = \mu_t((p-1)p^{s-1} + p^{s-1} + p^k) \ge \mu_t(p^{s-1} - p^k)$. By inductive hypothesis, $\mu_t(p^{s-1} - p^k) \ge (p-1)p^k$. Hence $\mu_t(p^s - p^k) \ge (p-1)p^k$. \Box

The Proof of the Main results

The key idea in Wood's argument is that for any $u, w \in P_s$ and any $\theta \in \mathcal{A}$, we have $u \cdot \theta w \equiv \tilde{\theta} u \cdot m$ module hit elements. In particular if $e(\hat{\theta}) > \deg(u)$, then $u \cdot \theta w$ is hit. Using this We will prove Theorem 1.1. We accomplish this with the aid of the following lemma.

167

Lemma 3.7. If $N \in P_s$ is any element of degree 2k, then for any $t \ge 1$,

$$P_t(k) \cdot N = N^{p^t} \tag{11}$$

Proof. We will prove this by induction on the number of variables in N. Suppose

$$N = q_{i_1}^{h_1} x_{i_2}^{h_2} \cdots x_{i_n}^{h_n}$$

Let n = 1. Then

$$P_t(k)x^k = (X^k)p^t. (12)$$

So the result holds for n = 1. Assume that the result holds for all monomials comprised of less than n variables. Let $N_1 = x_{i_1}^{h_1} x_{i_2}^{h_2} \cdots x_{i_{n-1}}^{h_{n-1}}$ so that $N = N_1 x_{i_n}^{h_n}$. Let $\psi : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ be the diagonal map of \mathcal{A} . Then $\psi(P_t(k)) = \sum_{i=0}^k P_t(k-i) \otimes P_t(i)$. So

$$\begin{aligned} P_k(k) \cdot N &= \sum_{i=0}^k P_t(k-i) N_1 \cdot P_t(i) x_{i_n}^{h_n} \\ &= \sum_{i=0}^{h_n - 1} P_t(k-i) N_1 \cdot P_t(i) x_{i_n}^{h_n} + P_t(k-h_n) N_1 \cdot P_t(h_n) x_{i_n}^{h_n} \\ &+ \sum_{i=h_n + 1}^k P_t(k-i) N_1 \cdot P_t(i) x_{i_n}^{h_n}. \end{aligned}$$

Since $e(P_t(k-i)) > \frac{1}{2} \deg(N_1), \sum_{i=0}^{h_n-1} P_t(k-i) N_1 \cdot P_t(i) x_{i_n}^{h_n} = 0$. Similarly $\sum_{i=h_n+1}^k P_t(k-i) N_1 \cdot P_t(i) x_{i_n}^{h_n} = 0$ because $e(P_t(i)) > \frac{1}{2} \deg(x_{i_n}^{h_n})$. By induction, we have

$$P_t(k) \cdot N = P_t(h_n - i)N_1 \cdot P_t(i)x_{i_n}^{h_n} = N_1^{p^t}(x_{i_n}^{h_n})p^t.$$

Hence we obtain $P_t(k) \cdot N = N^{p_t}$.

Wood's argument shows that $HK^{p_t} \equiv \hat{P}_t(k)H \cdot K$ module hit elements. Hence if $e(\hat{P}_t(k)) > h$, then $\hat{P}_t(k)H = 0$ and hence HK^{p^t} is hit. Therefore it remains to show that $e(\hat{P}_t(k)) = \mu_t(k)$. The following limma was proved by Gallant [3, Proposition 1].

Lemma 3.8.

$$\widehat{P}_t(k) = \sum_R P_t(R),$$

where $|R|_t = (p^t - 1)k$.

By Lemma 2.1, $\mu_t(k)$ is exactly the minimum excess of the element $P_t(R)$ where $|R|_t = (p^t - 1)k$. On the other hand, $\hat{P}_t(k)$ is the summand of all $P_t(R)$ where $|R|_t = (p^t - 1)k$, By Lemma 3.8. Hence $e(\hat{P}_t(k)) = \mu_t(k)$. This completes the proof of Theorem 1.1

Proof of Theorem 1.2. We will prove this by induction on *s*. Suppose that s = k + 1. Then since for k < t the only nonzero element $P_t(R)$ of B_t with $|R|_t = (p^t - 1)(p - 1) \cdot p^k$ is $P((p - 1)p^k)$, $\widehat{P}_t(p^s - p^k) = \widehat{P}_t((p - 1)p^k) = P_t((P - 1) \cdot p^k)$. This proves theorem for s = k + 1.

Assume that it is true for s-1. Using induction hypothesis and [3, Corollary 1.a], we have

$$P_t((p-1)p^{s-1})P_t((p-1)p^{s-2}) \cdot P_t((p-1)p^k = P_t((p-1)p^{s-1})\widehat{P}_t(p^{s-1}-p^k)$$
$$= \sum_R \left(\begin{array}{c} \sum_i p^{it}r_i\\ (p-1)p^{t+s-1} \end{array} \right) P_t(R).$$

where the sum is taken over all R such that $|R|_t = (p^t - 1)(p^s - p^k)$. Since $\widehat{P}_t(p^s - p^k)$ is the sum of all $P_t(R)$ where $|R|_t = (p^t - 1)(p^s - p^k)$, it is sufficient to show that

$$\left(\begin{array}{c}\sum_{i}p^{it}r_{i}\\(p-1)p^{t+s-1}\end{array}\right)\equiv 1 \mod p.$$

By Lemma 2.1 and Lemma 2.6, $\sum_i r_i \ge \mu_t (p^s - p^k) \ge (p - 1)p^k$. For s > k and $t \ge 1$ we have

$$(p-1)(p^k - p^{s+t-1}) + (p^t - 1)(p^s - p^k) = (p^s - p^{k+1})(p^{t-1} - 1) \ge 0.$$

Hence

$$\sum_{i} p^{it} r_{i} = \sum_{i} (p^{it} - 1)r_{i} + \sum_{i} r_{i} \ge (p^{t} - 1)(p^{s} - p^{k}) + (p - 1)p^{k} \ge (p - 1)p^{s+t-1}$$

On the other hand,

$$(p^t - 1) \sum_i r_i \le \sum_i (p^{it} - 1)r_i = (p^t - 1)(p^s - p^k).$$

So $\sum_i r_i \leq p^s - p^k$. Using this inequality, we have

$$\sum_{i} p^{it} r_{i} = \sum_{\substack{i \\ \leq p^{s+t}}} (p^{it} - 1) r_{i} + \sum_{i} r_{i} \leq (p^{t} - 1)(p^{s} - p^{k}) + p^{s} - p^{k}$$

Hence $\begin{pmatrix} \sum_{i} p^{it} r_i \\ (p-1)p^{t+s-1} \end{pmatrix} \equiv 1 \mod p$ by Lucas's theorem [4]. This completes the proof.

References

- E.H. Brown, D.M. Davis, and F.P. Peterson, *The Homology of BO and Some Results About Steenrod Algebra*, Math. Proc. Camb. Phil. Soc. 81 (1977), 393-398.
- [2] D.M. Davis, The Antiautomorphism of the Steenrod Algebra, Proc. A.M.S. 44 (1974), 235-236.
- [3] A.M. Gallant, Excess and Conjugation in the Steenrod Algebra, Proc. Amer. Math. Soc. 76, (1979), 161-166.
- [4] E. Local, Théorie des Functions Numériques Simplement Preiodiques, American J. Math. 1 (1978), 184-240, 289-321.
- [5] J. Milnor, The Steenrod Algebra and its Dual, Ann. of Math. 67 (1958), 150-171.
- [6] K.G. Monks, Polynomial Modules Over the Steenrod Algebra, Preprint (1993).
- [7] F.P. Peterson, A-generators for Certain Polynomial Algebras, Math. Proc. Camb. Phil. Soc. 105 (1989), 311-312.
- [8] J.H. Silverman, Hit Polynomials and The Canonical Antiautomorphism of the Steenrod Algebra, Preprint (1993).
- [9] R.M.W. Wood, Steenrod Squares of Polynomials and the Peterson Conjecture, Math. Proc. Camb. Phil. Soc. 105 (1989), 307-309.

Received 19.11.1996

İsmet KARACA Lehigh University, Bethlenem, PA 18015-USA