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DOLD-KAN TYPE THEOREMS FOR n-TYPES OF

SIMPLICITIAL COMMUTATIVE ALGEBRAS

Z. Arvasi & M. Koçak

Abstract

A functor from simplicial algebras to crossed n-cubes is shown to be an embed-
ding on a reflexive subcategory of the category of simplicial algebras that contains
representatives for all n types.

1. Introduction

In [16] Kan showed how one might obtain the homotopy groups of a pointed connected
simplicial set using only the tools of combinatorial groups theory. His methods involved
use of free groups and Tietsze transformations etc. That paper and its companion [17]
together provide proofs of (i) the Dold-Kan theorem for Abelian simplicial groups and
(ii) the fact that the homotopy category of simplicial groups is equivalent to that of
connected simplicial sets, which can be rephrased as saying that simplicial groups model
all homotopy types. These two results have been crucial in the development of both
algebraic topology and homological algebra in the last thirty years.

The study of n-types goes back further to work of Fox [15]. Whitehead [25] studied
combinatorial homotopy in the late 1940’s. In particular, he searched for algebraic models
of on n-types and with MacLane in [20] found a very neat model for a 2-type of a
complex. Their models are what are known as crossed modules. Whitehead in his paper
“Combinatorial Hototopy II” [24] also consider “homotopy systems” (now called “crossed
complexes”) which model a larger class of homotopy types.

The MacLane-Whitehead result was generalised by Loday [19] to give algebraic models
for all n-types for arbitrary n. These models he called catn-groups. cat1-groups were
known to be equivalent to crossed modules and Ellis & Steiner [14] have since shown that
catn-groups are equivalent to crossed n-cubes (see below). The other algebraic settings
such as commutative algebras, Lie algebras, Jordan algebras of this construction are due
to Ellis [13].

The histroy of interactions among algebraic topology and homological algebra indi-
cates that with each significant new model for homotopy types there should be a potential
application in homological algebra. Crossed modules have appeared many times in parts
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of algebra other than group theory. For instance, the commutative algebra version of
crossed modules has been examined by T. Porter (cf. [21] and [22]). It is known [4], [21]
that simplicial algebras lead to crossed modules and crossed complexes of algebra, that
free crossed modules are related to Koszul complex constructions and higher dimensional
analogues have been proposed by Ellis [13] for use in homotopical and homological algebra.
André [1] uses simplicial methods to investigate homological properties of commutative
algebras.

In [23], T. Porter examined D. M. Kan’s fundamental paper “A combinatorial defi-
nition of homotopy groups” (ref. [16]). T. Porter described a functor from the category
of simplicial groups to that of crossed n-cubes of groups, based on ideas of Loday. In
[6], the first author and T. Porter adapted that description to give an analogue of this
functor for the algebra case.

In the present work we recall from [6] a functor from simplicial algebras to crossed
n-cubes and show it to be an embedding on a reflexive subcategory of the category of
simplicial algebras that contain representatives for all n-types. The construction of this
functor is described using the décalage functor studied by Illusie [18] and Duskin [12] and
is a π0-image of a functor taking values in a category of simplicial ideal (n+ 1)-ads.

One of the aims of this series of papers is to show that what might be called ‘combi-
natorial algebra theory’, by analogy with ‘combinatorial group theory’, is an area with
interesting structure. This may provide new methods in homological algebra.

1. Preliminaries on Simplicial Algebras

All algebras will be commutative and will be over the same fixed but unspecified
ground ring.

A simplicial (commutative) algebra E consists of a family of algebras {En} together
with face and degeneracy maps di = dni : En → En−1, 0 ≤ i ≤ n, (n 6= 0) and
si = sni : En → En+1, 0 ≤ i ≤ n, satisfying the usual simplicial identities given in
Andrè [1] or Illusie [18], for example. It can be completely described as a functor E :
∆op → CommAlgk where ∆ is the category of finite ordinals [n] = {0 < 1 < · · · < n}
and increasing maps.

Recall that given a simplicial algebra E, the Moore complex (NE, ∂) of E is the chain
complex defined by

(NE)n =
n−1⋂
i=0

Ker dni

with ∂n : NEn → NEn−1 induced from dnn by restriction.
We say that the Moore complex NE of a simplicial algebra is of length k if NEn = 0

for all n ≥ k + 1 so that a Moore complex is of length k also of length r for r ≥ k.
The nth homotopy module πn(E) of E is the nth homology of the Moore complex is

E, i.e.,
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πn(E) ∼= Hn(NE, ∂)

=
n⋂
i=0

Ker dni /d
n+1
n+1

(
n⋂
i=0

Ker dn+1
i

)
.

If A is a simplicial module, (NA, ∂) is a chain complex in the usual sense and N gives a
functor from SimpMod, the category of simplicial modules to ChMod the category of
(non-negatively graded) chain complexes of modules. The Dold-Kan theorem states that
this functor N: SimpMod → ChMod is an equivalence of categories.

Various generalisations of the Dold-Kan theorem are known. For instance. Ashley
(cf. [7]) proves an equivalence between simplicial T-complexes and crossed complexes.
He ends by exploring the relation between simplicial T-complexes and simplicial groups.
Conduché [11] looks at simplicial groups whose Moore complex has trivial terms in di-
mensions greater than 2 and links them with a notion of 2-crossed module. An important
observation in Conduché’s work is the existence of a semi-direct product decomposition
of the groups Gn of n-simplices in a simplicial group G. These semidirect product de-
compositions are used in Dold-Kan theorem and have been studied in depth by Carrasco
and Cegarra [10]. By encoding the multiplication of the simplicial group in terms of
this decomposition, they were able to make precise the extra structure carried by the
Moore complex of a simplicial group up to isomorphism. This gives the most general
non-Abelian form of a Dold-Kan type theorem. Carrasco’s thesis [9] contains not only
the main results of [10] but also considers the case of simplicial algebras.

We will need to make use of the simidirect product decomposition several times. The
basic result is the following:

Proposition 1.1. If E is a simplicial algebra, then for any n ≥ 0

En ∼= (· · · (NEn ./ sn−1NEn−1) ./ · · · ./ sn−2 · · ·s0NE1) ./
(· · · (sn−2NEn−1 ./ sn−1sn−2NEn−2) ./ · · · ./ sn−1sn−2 · · ·s0NE0).

Proof. This is by repeated use of the following lemma. 2

Lemma 1.2. Let E be a simplicial algebra. Then En can be decomposed as a semidirect
product:

En ∼= Ker dnn ./ s
n−1
n−1(En−1).

Proof. The isomorphism can be defined as follows:
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θ : En → Ker dnn ./ s
n−1
n−1(En−1)

e 7→ (e− sn−1dne, sn−1dne).

2

2. Truncations

By an ideal chain complex of algebras, (X, d), we mean one in which each Im di+1

is an ideal of Xi. Given any ideal chain complex (X, d) of algebras and an integer n, the
truncation tn|X of X at level n will be defined by

(tn|X)i =

 Xi if i < n
Xi/Imdn+1 if i = n
0 if i > n.

The differential d of tn|X is that of X for i < n, dn is induced from the nth differential of
X and all other are zero. (For more information see Illusie [18]). Truncation is of course
functorial.

Proposition 2.1. There is a truncation functor tn| : SimpAlg→ SimpAlg such that
there is a natural isomorphism

tn|N ∼= Ntn|,

where N is the Moore complex functor from SimpAlg to the category of chain complexes
of algebras.
Proof. We first note that dn+1

n+1(NEn+1) is contained in En as an ideal and that all
face maps of E vanish on it. We can thus take

(tn|E)i =

{
Ei for all i < n

En
dn+1
n+1(NEn+1)

for i = n,

and for i > n we take the semidirect decomposition of Ei given by Proposition 1.1, delete
all occurrences of NEk for k > n and replace any NEn by NEn/d

n+1
n+1(NEn+1). The

definition of face and degeneracy is easy as is the verification that tn|N and Ntn| are the
same. 2

This truncation functor has nice properties. (In the chain complex case, these are
discussed in Illusie [18]).

Proposition 2.2. Let Tn| be the full subcatefory of SimpAlg defined by the simplicial
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algebras whose Moore complex is trivial in dimensions greater than n and let in : Tn| →
SimpAlg be the inclusion functor.

(a) The functor tn| is left adjoint to in. (In the future, we will usually drop the in and
so also write tn| for the composite functor.)

(b) The natural transformation η, the co-unit of the adjunction, is a natural epimor-
phism which induces an isomorphism on πi for i ≤ n.

(c) For any simplicial algebra E, π(tn|E) = 0 if i > n.

(d) To the inclusion Tn| → Tn+1|, there corresponds a natural epimorphism ηn from
tn+1| to tn|. If E is simplicial algebra, the kernel of ηn (E) is a K(πn+1(E), n+ 1),
i.e. has a single non-zero homotopy module in dimension n + 1, that being πn+1

(E).

As each statement is readily verified using the Moore complex and the semidirect
product decomposition, the proof of the above will be left out.

A comparison of these properties with those of the coskeleta functors (cf. Artin and
Mazur [2]) is worth making. Recall that given any integer k ≥ 0, there is a functor coskn
defined on the category of simplicial sets, which is the composite of a truncation functor
(differently defined) and its right adjoint. The n-simplicies of coskxX are given by Hom
(skk∆[n], X), the set of simplicial maps from the k-skeleton of the n-simplex ∆[n] to
the simplicial set X. There is a canonical map from X to coskkX whose homotopy fibre
an Eilenberg-Maclane space of type (πk(X), k). This k-coskeleton is constructed using
finite limits and there is an analogue in any category of simplicial objects in a category
C provided that C has finite limits, thus in particular in SimpAlg. The first author and
T. Porter (cf. [6]) have calculated the Moore complex of coskk E for a simplicial algebra
E using a construction described in Duskin’s Memoir [12]. Our results gives

N(coskkE)` = 0 if ` > k + 1
N(coskkE)k+1 = Ker (∂k : NEk → NEk−1)
N(coskkE)` = NE` if ` ≤ k.

There is a natural epimorphism from coskk+1E to tn|E which on passing to Moore
complexes gives

N(coskk+1 E) : 0 ∂ NE k+1 NE k NE k–1

N(t k| E) : 0 0 NE k–1/∂ NE k+1NE k

...

...

∂ k
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This epimorphism of chain complexes thus has an acyclic kernel. The epimorphism
therefore induces an isomorphism on all homotopy modules and hence is a weak homotopy
equivalence. We may thus use either tk| E or coskk+1 E as a model for k-type of simplicial
algebra E.

3. Catn-Algebras and Crossed n-Cubes

The notion of a catn-algebra is defined by Ellis [13]. A catn-algebra A is an (com-
mutative) algebra A together with 2n endomorphisms si, ti : A → A(1 ≤ i ≤ n) such
that

tisi = si siti = ti
sisj = sjsi titj = tjti, sitj = tjsi for i 6= j
aa′ = 0 for a ∈ Kersi, a′ ∈ Kerti.

A morphism of catn-algebras φ : A → A′ is an algebra homomrphism φ : A → A′ which
preserve the si and ti.

T. Porter (cf. [22]) shows that a cat1-algebra is equivalent to a crossed module and
also to an internal category within the category of algebras.

Crossed n-cubes in algebraic settings such as commutative algebras Jordan algebras
and Lie algebras have been defined by Ellis [13].

A crossed n-cube of commutative algebras is a family of commutative algebras MA

for A ⊆ 〈n〉 = {1, . . . , n} together with homomorphisms µi : MA → MA−{i} for i ∈ 〈n〉
and for A,B ⊆ 〈n〉 and functions

h : MA ×MB →MA∪B

such that for all k ∈ k, a, a′ ∈MA, b, b
′ ∈MB , c ∈MC , i, j ∈ 〈n〉 and A ⊆ B

1. µia = a if i 6∈ A

2. µiµja = µjµia

3. µih(a, b) = h(µia, µib)

4. h(a, b) = h(µia, b) = h(a, µib) if i ∈ A ∩B

5. h(a, a′) = aa′

6. h(a, b) = h(b, a)

7. h(a+ a′, b) = h(a, b) + h(a′, b)

8. h(a, b+ b′) = h(a, b) + h(a, b′)

9. k · h(a, b) = h(k · a, b) = h(a, k · b)

10. h(h(a, b), c) = h(a, h(b, c)) = h(b, h(b, c)).

176
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A morphism of crossed n-cubes is defined in the obvious way: It is a family of
commutative algebra homomorphisms, where for A ⊆ 〈n〉, fA : MA → M ′A commuting
with the µi’s and h’s. We thus obtain a category of crossed n-cubes denoted by Crsn.

Remarks.

1. In the correspondence between catn-algebras and crossed n-cubes (Ellis and
Steiner, [14]) the catn-algebra corresponding to a crossed n-cube (MA) is constructed
as a repeated semidirect product of the various MA. Within the results of algebra, the
h-functions are interpreted as being multiplications. This explains the structure of the
h-function axioms.

2. A crossed 1-cube is the same as a crossed module. Crossed squares, that is crossed
2-cubes, give the square

M<2>

M{2} µ2

µ2

µ1

M{1}

MØ

µ1

in which each µi is a crossed module as is µ1µ2, the h-functions give actions and a pairing

h : M{1} ×M{2} →M〈2〉.

The maps µ2 (or µ1) also define a map of crossed modules. In fact, a crossed square can
be thought of as a crossed module in the category of crossed modules. This generalises
to higher dimensions.

Lemma 3.1. Let M = {MA : A ⊆ 〈n〉, {µi}, h} be a crossed n-cube of algebras and
let i ∈ 〈n〉. Let M1 denote the restriction of M to those A with i ∈ A and M0, the
restriction to those A with i 6∈ A. ThenM1 and M0 are crossed (n−1)-cubes of algebras
and µi :M1 →M0 is a morphism of crossed (n− 1)-cubes of algebras.

The proof is quite simple and so will be omitted. Note that as each level of µi is
a crossed module of algebras, each Kerµi is a module and each Imµi is an ideal of the
corresponding algebra ofM0.

For convenience of notation, we will assume i = n thus the crossed (n − 1)-cube
structures on M0 and M1 are given by:

if A ⊆ 〈n− 1〉, M0,A = MA = MA and M1,A = MA∪{n}

with the µi and the h-functions induced from those of M. We will set NA = MA/Imµn
for A ⊆ 〈n − 1〉, and note that if i < n, µi : MA → MA−{i} sends Imµn to itself
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(axiom 2). This implies that µi induces a map µi : NA → NA−{i}. Similarly, since
h : MA ×MB →MA∪B satisfies h(µia, µib) = µih(a, b), it induces h̄ : NA ×NB → NA∪B
in the obvious way. It is routine to check that N = {NA : A ⊆ 〈n〉, {µi}, h̄} is a crossed
(n − 1)-cube which is the kernel of µn. (If we replaced the nth direction by some other,
essentially the same discussion applies but it is slightly messier). We thus obtain from
M a crossed 2-fold extension of crossed (n− 1)-cubes,

Ker µi →M1 →M0 → Coker µi

with the algebras in Ker µi modules.
3. Crossed n-cubes are defined algebraically, i.e. they can be specified categorically

using finite products only, unlike internal categories in which the domain of the compo-
sition morphism uses a pullback. As a consequence of this, analogues of crossed n-cubes
in other settings are easily found. For instance, instead of working with Sets as a base by
any category of sheaves of sets on a space or site, that is in any Grothendieck topos, as
all the constructions use only finite limits and colimits this would already include some
quite important and interesting cases with potential links to algebraic geometry.

Example. Let E be a simplicial algebra. Then following diagram is a crossed square:

NE 1NE 2/∂ 3 NE3

E 1NE 1 ∂

δ

∂′δ′

Here, NE1 = Ker d1
0 and NE1 = Ker d1

1.
Since E1 act on NE2∂3NE3, NE1 and NE1, there are actions of NE1 on NE2/∂3NE3

and NE1 via ∂, and NE1 act on NE2/∂3NE3 and NE1 via ∂′. As ∂ and ∂′ are inclusions,
all actions can be given by multiplication. The h-map is

NE1 ×NE1 → NE2/∂3NE3

(x, ȳ) 7→ h(x, ȳ) = s1x(s1y − s0y) + ∂3NE3,

which is bilinear. Here, x and y are in NE1 as there is a natural bijection between NE1

and NE1 (by Lemma 2.1 in [5]). The element ȳ is the image of y under this. The detailed
verifications of axioms of the crossed square can be found in [6].

This example effectively introduces the functor

M (−,2) : SimpAlg → Crs2.
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The 2-dimensional case of this general construction has been examined by the first author
and T. Porter [6], in which they defined the following construction:

The décalage functor forgets the last face operators at each level of a simplicial algebra
E and moves everything down one level. It is denoted by Dec. Thus

(Dec En) = En+1.

The last face degeneracy of E yields a contraction of Dec1 E as an augmented simplicial
algebra,

Dec1E ' K(E0, 0),

by an explicit natural homotopy equivalence (cf. [12]). The last face map will be denoted

δ0 : Dec 1E→ E.

Iterating the Dec construction gives an augmented bisimplicial algebra

[. . . Dec3E
→→→ Dec 2E

δ0→→
δ1

Dec1E]

which in expanded form is the total décalage of E:

[. . . Dec3E
→→→ Dec 2E

δ0→→
δ1

Dec1E] δ0→ E

(See [12] or [18] for details.) The maps from Dec i E to Dec i−1 E coming from the i last
face maps will be labelled δ0, . . . , δi−1 so that δ0 = dlast,δ1 = dlastbutone and so on.

For a simplicial algebra E and a given n, we write M(E,n), for the crossed n-cube
arising from the functor

M(−,n ) : SimpAlg → Crsn,

which is given by π0 (Dec E; Ker δ0, . . . ,Ker δn−1).

Proposition 3.2. (cf. The first author and T. Porter [6]). If E be a simplicial algebra,
then the crossed n-cube M(E,n) is determined by:

(i) for A ⊆ 〈n〉,

M (E,n)A =

⋂
j∈A Ker dnj−1

dn+1
n+1(Kerdn+1

0

⋂
{
⋂
j∈A Ker dn+1

j })
;
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(ii) the inclusion ⋂
j∈A

Ker dnj−1 −→
⋂

j∈A−{i}
Ker dnj−1

induces the morphism

µi : M(E,n)A →M(E,n)A−{i};

(iii) the functions, for A,B ⊆ 〈n〉,

h : M(E,n)A ×M(E,n)B →M(E,n)A∪B

given by

h(x̄, ȳ) = xy,

where an element of M(E,n)A is denoted by x̄ with x ∈ ∩j∈A Ker dnj−1.

Proof. First some explanation of the definitionM(−, n) as

π0(Dec E; Ker δ0, . . . , Ker δn−1).

For each simplicial algebra E we start by looking at the canonical augmentation map δ0
: Dec1E → E, which has kernel the simplicial algebra Kerdlast mentioned above. Then
take the simplicial inclusion crossed module Kerδ0 → Dec1 E to be M(E, 1) defining
thus a functor

M( , 1) : SimpAlg→ Simp(IncCrs
1
).

The it is easy to show that

π0(Ker δ0)→ π0(Dec1E)

is precisely M(E,1). The higher order analogues M( , n) are as follows:
For each simplicial algebra E there is a functorial short exact sequence

Ker δ0 −→ Dec 1E
δ0−→ E.

This corresponds to the 0-skeleton of the total décalage of E:

[. . . Dec3E →→
→

Dec 2E
δ0→
→
δ1

Dec1E] δ0−→ E

For n = 2, the 1-skeleton of that total décalage gives the commutative diagram
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δ1

Dec2 E. Dec1 E.

Dec1 E. E.

δ1

δ0

δ0

Here, δ1 is dnn−1 in dimension n whilst δ0 is dnn. Forming the square of kernels gives

Kerδ0 ∩ Kerδ1 Kerδ1

Kerδ0 Dec2 E.

Again, π0 of this gives M(E,2). In general, we use the (n − 1)-skeleton of the total
décalage to form an n-cube and thus a simplicial inclusion crossed n-cube corresponding
to the simplicial ideal (n+ 1)-ad

(DecnE; Ker δn−1, . . . , Ker δ0).

This simplicial inclusion n-cube will be denoted by M(E, n), and its associated crossed
n-cube by

π0(M(E, n)) = M(E, n).

The result now follows by direct calculation on examining the construction of π0 as the
zeroth homology of the Moore complex of each term in the inclusion crossed n-cube,
M(E, n). 2

An immediate consequence of the previous proposition is that M(E, n) contains all
the information about πi(E) for i < n. This suggests that K(E,n) may contain all the
information of the n-type of E, i.e. that on the subcategory Tn| of n-truncated simplicial
algebras. M(−, n) is an embedding. The proof of this will be our next aim; it can be
considered as a form of Dold-Kan theorem.

4. A Dold-Kan Equivalence for n-Types

We recall that Tn| is the full subcategory of SimpAlg given by the image of the
truncation functor, tn|.

Given a simplicial algebra E, M(E,1) is the crossed module

µ1 :
NE1

d2(NE2)
→ E0
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with µ1 induced by d1. Forming the cat1-algebra associated to this gives NE1
d2(NE2) ./ E0

which is isomorphic to E1
d2(NE2) with source and target maps corresponding to d1 and

d0, respectively. Thus from M(E,1), we can form the 1-skeleton of t1|E and, as the
higher algebras in t1|E are determined by the 1-skeleton, we have constructed t1|E from
M(E,1). The natural map from E to t1|E induces an isomorphism between M(E,1) and
M (t1|E,1). Thus we have proved the following lemma:

Lemma 4.1. On Tn|, M −, 1) is an embedding.

We next recall (Lemma 1.2) that

En ∼= Kn−1 ./ s
n−1
n−1(En−1)

for all n ≥ 1 where Kn = Ker dn+1
n+1. We use this decomposition in two ways:

(i) for any k ≥ 0, n ≥ 1, we note that

(tk|E)n ∼= (tk−1|E)n−1 ./ s
n−1
n−1(tk|E)

and

(ii) writing M0 (resp. M1) for the (n− 1)-cube of those MA with n 6∈ A (resp. n ∈ A),
we have

M(E, n)1
∼= M(K, n− 1).

It should now be clear how to proceed with an inductive proof. Using the inductive
hypothesis, we can reconstruct from M(E,n), simplicial algebras tn−1|K and tn−1|E.
The differences between tn−1|E and tn|E occur only in dimensions n− 1 and n. We write

d′i : (tn−1|E)n−1 → En−2 0 ≤ i ≤ n− 1

and note the following.

Lemma 4.2. There is an epimorphism

p : En−1 → (tn−1|E)n−1

such that p(Ker dn−1
i ) = Ker d′i for each i.

In fact p(e) = e + dn(NEn) will do. This observation allows us to use M(E, n)ø

(which is En−1) and to link it to tn|E so as to reconstruct the (n − 1)-skeleton of E.
The analogous statement for a crossed n-cube not of the form M(E,n) for some E would
seem to be false. (So, it is here that we are using properties of “special” crossed n-cubes,
where by special crossed n-cubes we merely mean one isomorphic to some M(E,n).)
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Thus we can reconstruct skn−1E(∼= skn−1(tn|E)) up to isomorphism. The action of
En−1(= M(E, n)ø) on M(K,n − 1) is given in the data specifying M(E,n), so we can
inductively reconstruct the semidirect product decomposition of (i) above.

If f : M(E, n) → M(F, n) is a map of crossed n-cubes, it is possible to pick the
epimorphisms of the previous lemma for E and F to be compatible with f.

We thus have proved the following proposition.

Proposition 4.3. On Tn|,M(−, n) is an embedding. There is a functor L defined
on the full image of functor M(−, n) such that LM(E,n) is the truncation functor tn|
whilst M(L( ), n) is naturally isomorphic to the identity functor on the full subcategory
of “special” crossed n-cubes.

We note that Tn| contains algebraic models for all n-types of simplicial algebras.
In [3], we give an analogue of Loday’s theorem for simplicial algebras that the category

of (n+ 1)-types is equivalent to a quotient category of catn-algebras or crossed n-cubes.
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