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Doğan Dönmez

Abstract

We defined an equivalence among group actions and find sufficient conditions

for actions of compact connected Lie groups on Euclidean spaces for which the

topological version of the Borel-Hirzebruch formula holds.
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1. Introduction

The usefulness of the Borel-Hirzebruch formula in the study of differentiable actions

of high dimensional campact Lie groups on differentiable manifolds is undeniable, see

for example [3][4]. Similar methods for topological actions fail for two reasons: lack of

equivariant normal (micro)bundle and the lack of a formula for the characteristic classes

of equivariant (micro)bundles to assign characteristic classes to microbundles we use the

results of Kister, see [7]. In this article we will discuss the validity of a formula for the

characteristic classes of some topological Rn bundles.

Since weights can be defined for actions on acyclic topological manifolds andH∗(BTOP ;

Q) has been determined by Kirby and Siebenmann, the question of topological Borel-

Hirzebruch (B-H for short) formula is meaningful and may be useful in the study of

topological actions on manifolds. In its simplest form, the topological B-H question can

be phrased as folows:
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Let G be a compact connected Lie group, H a closed connected subgroup acting or Rn,

then G×H Rn is an (equivariant) Rn bundle over G/H. H∗(BTOP ;Q) ∼= H∗(BPL, Q) ∼=

H∗(BO , Q) ∼= Q[p1, p2, . . .] has been proved by Kirby and Siebenmann [6] and Hirsch [2]

so G ×H Rn has rational Pontryagin classes; the total rational Pontryagin class will be

denoted by P. Let T be a maximal torus H ; Ω′ = {±ω1,±ω2, . . . ,±ωk} be the nonzero

weights (defined only up to a rational multiple, possibly repeated) of the restricted T

action on Rn,Ω+ = {ω1, ω2, . . . , ωk}; π : G/T → /H, j : G/T → BT the canonical maps.

One would like to know if (for a suitable choice of weights)

π∗(P ) = j∗(
∏
ω∈Ω+

(1 + ω2)

holds; where P is the total Pontryagin class of the Rn bundle G ×H Rn → G/H. For

linear actions, the geometric weights agree with the usual weights. Borel and Hirzebruch,

in [1], proved this formula for the usual weights of linear actions. If such weights exist

we will say the B-H formula holds for this action (this does not depend on the maximal

torus chosen).

We will establish the validity of this formula for a class of actions of compact Lie

groups. We will not strive for the most general case but will be content to discuss only

the cases that interests us.

2. Preliminaries

Using the above formula, (when the dimension of the group is large) one can severely

restrict the possibilities for the orbit types for the differentiable actions of a compact Lie

group under suitable assumptions on the characteristic classes of the manifold on which

the group is acting, see for example [4]. We will use concordance (as far as the author

knows) not used in this context before.

Definition 2.1. Let a compact connected Lie group H act on topological space X two

ways, via ϕ0 and ϕ1. We say ϕ0 is (topologically) concordant to ϕ1, if there is an action
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Φ of H on X× I(I = [0, 1]), leaving X× 0 and X× 1 invariant and restricting to ϕ0 and

ϕ1 on these subsets respectively.

Concordance is clearly an equivalence relation. One can also define differentiable

concordance of differentiable actions, with an additional condition on the behavior near

the boundary (G action being a product action in a neighborhood of the boundary, i.e.

conditioned in the language of Kirby and Siebenmann).

Let us recall briefly the definition of geometric weight system given by Hsiang in [5].

Let a torus T act on an acyclic (cohomology) manifoldX, with fixed point set F (which is

an acyclic cohomology manifold). X/F has the cohomology of a sphere so the generator

of the top cohomology (in the Serre spectral sequence of (X/F )T → BT ) is transgressive.

Its transgression in H∗(BT ;Q) will split into a product of linear factors (defined only up

to a rational multiple). The set of these linear factors (with multiplicities) is called by

Hsiang, after including zero weights, the geometric weight system of the action and the

set of nonzero weights is denoted by Ω′. They could also be defined as the duals of subtori

having (locally) larger dimensional fixed point sets. For an arbitrary compact connected

Lie group G acting on a contractible manifold, we fix a maximal torus T and define the

geometric weight system of G (relative to T ) to be the geometric weight system of the

restricted T action.

3. Results

All Lie groups appearing in this article are compact and connected. We will use the

following propositions in the proof of our main theorem:

Proposition 3.1. If two actions ϕ0 and ϕ1 of H on Rn (or on any acyclic cohomology

manifold) have concordant restrictions to some maximal torus then they have the same

geometric weight system.

Proof. First we observe that the action Φ of the maximal torus T on Rn × I be as-

sumed to be a product action near Rn×0 and Rn×1 (i.e. conditioned). Since Rn×(0, 1)
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is contractible manifold, the action of T will have a (nonempty) connected fixed point set.

Since Rn × 0 and Rn × 1 are also invariant and contractible, weights for the actions ϕ0

and ϕ1 will be same as the weights of Φ, except a zero weight. Thus the weights relative

to T are equal. 2

Observe that an action of H naturally extends to Rn+1, trivially on the second factor

outside [0,1].

Proposition 3.2. If two actions ϕ0 and ϕ1 of a Lie subgroup H of a Lie group G

on Rn are concordant via a concordance Φ, then G ×Φ R
n+1 → G/H (Φ acts on Rn+1

as indicated above) is equivalent (in the sense of microbundles) to the sum of any one of

G×ϕi Rn → G/H and a trival microbundle over G/H.

Proof. If Φ is the product action on Ui = Rn × (i − ε, i + ε)(i = 0, 1, ε > 0) then

G ×ϕi Ui = (G×ϕi Rn) × (i− ε, i + ε)→ G/H are equivalent to G×Φ R
n+1 → G/H as

microbundles and they are clearly the direct sum of the bundle G×ϕi Rn → G/H and a

trivial microbundle. 2

Now we can state:

Theorem 3.3. Let G be a Lie group, H a closed subgroup, ϕ0 and ϕ1 two actions of

H on Rn such that their restriction to some maximal torus T are concordant. Then the

topological Pontryagin classes of G×ϕi/T Rn → G/T are equal. Hence, if ϕ0/T is linear,

then the topological B-H Formula holds for ϕ1.

Proof. Let Φ be a concordance between ϕi|T (i = 0, 1).ξi : G ×ϕi Rn → G/H. Then

the pull-back bundles π!(ξ) are the bundles G ×ϕi|T Rn → G/T defined by the action

restricted to T by Proposition 3.2, the fiber bundles π!(ξi) : G ×ϕi|T Rn → G/T are

submicrobundles of ξ : G ×Φ Rn+1 → G/T with trivial normal microbundle. Thus we

have

196
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P (π!(ξ1)) = P (ξ) = P (π!(ξ0)).

Hence

π∗(P (ξ1)) = P (π!(ξ1)) = P (π!(ξ0)) = j∗(
∏
ω∈Ω+

(1 + ω2)),

since ϕ0|T is assumed to be linear, where Ω′ is the common geometric weight systems of

ϕ0 and ϕ1. 2
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