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ON THE PARABOLIC CLASS NUMBER OF SOME
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Abstract

In this paper we calculate the parabolic class number of subgroups of Hecke

groups H(
√

2),H(
√

3).
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1. Introduction

By a Funchsian group Λ we will mean a finitely generated discrete subgroup of
PSL(2,R), the group of conformal homeomorphisms of the upper-half plane. The most
general presentation for Λ is

Generators;

a1, b1, . . . , ag, bg (Hyperbolic)
x1, x2, . . . , xr (Elliptic)
p1, p2, . . . , ps (Parabolic)

Relations;

xm1
1 = xm2

2 = · · ·xmrr =
g∏
i=1

[ai, bi]
r∏
j=1

xj

s∏
k=1

pk = 1.

We then say Λ has signature (see [1])

(g,m1, m2, . . . , mr ; s).

Hecke introduced an infinite class of discrete groups H(λq) of linear fractional trans-

formation proserving the upper-half plane. H(λq) is the group generated by

S(z) = z + λq, T (z) =
−1
z
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where λq = 2 cos(π/q), q is an integer, q ≥ 3. When q = 3 we have the modular group

Γ. When q = 4 or 6 the resulting group are H(
√

2), H(
√

3). These two groups are of
particular interest since they are the only Hecke groups, aside from the modular group,
whose elements are completely known.

It is well known ([2], [3]) that H(
√
m), m = 2, 3, consists of the mappings of all the

following two types.

i) T (z) =
az + b

√
m

c
√
mz + d

, a, b, c, d ∈ Z, ad− bcm = 1,

ii) T (z) =
a
√
mz + b

cz + d
√
m
, a, b, c, d ∈ Z, adm− bc = 1.

2. Parabolic Class Number

From now on, m will stand for 2 or 3

Lemma 1. H(
√
m) act transitively on

√
mQ̂ = { r

s

√
m : r

s
∈ Q} ∪ {∞}.

√
mQ is the largest subset of R on which H(

√
m) acts transitively.

Proof. Let x
y

√
m ∈

√
mQ̂ \ {∞} with (x, y) = 1. Then m|y or m - y. Since (x, y) = 1,

we can find a, b ∈ Z such that xa− yb = 1. If m|y, then we take

T (z) =
xz + b

√
m

x
m

√
mz + a

,

so, we have T (∞) = x
y

√
m.

Let m - y. In this case (mx, y) = 1, and thus there exist some, a, b ∈ Z such that
mxa − yb = 1. Similarly, if we take

S(z) =
x
√
mz + b

yz +
√
ma

,

then S(∞) = x
y

√
m.

Let n ∈ N. Define

Hm
0 (n) = {T ∈ H(

√
m) : c ≡ 0(mod n)}.

Then Hm
0 (n) is a subgroup of H(

√
m). 2

Let Γ be the modular group, and Γ0(n) be the subgroup of Γ such that c ≡ 0(mod n).
Then,
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Lemma 2. [5] |Γ : Γ0(n)| = n
∏
p|n

(
1 +

1
p

)
.

Lemma 3. If (m, n) = 1, then |H(
√
m) : Hm

0 (n)| = n
∏
p|n

(
1 +

1
p

)
, if (m, n) = m,

then |H(
√
m) : Hm

0 (n)| = 2n
∏
p|n

(
1 +

1
p

)
where p 6= m.

Proof. We will give the proof in case where (m, n) = m.
Let

H =
{
T ∈ H(

√
m) : T (z) =

az + b
√
m

c
√
mz + d

}
.

As m|n, Hm
0 (n) ⊂ H ⊂ H(

√
m). It is obvious that |H(

√
m) : H | = 2. Let θ be the

mapping from H to Γ0(m) defined as follows. If

T (z) =
az + b

√
m

c
√
mz + d

,

then

θ(T )(z) =
az + b

cmz + d
.

It can be shown that θ is an isomorphism, and θ(Hm
0 (n)) = Γ0(mn).

On the other hand, Γ0(mn) ⊂ Γ0(m) ⊂ Γ. Therefore,

|H(
√
m) : Hm

0 (n)| = |H(
√
m) : H | |H : Hm

0 (n)| = 2|Γ0(m) : Γ(mn)|

= 2
|Γ : Γ0(mn)|
|Γ : Γ0(m)| = 2n

∏
p|n

(
1 +

1
p

)
where p 6= m.

If (m, n) = 1, the proof can be done in a similar way. 2

We now give the following lemmas without proof. Proofs are similar to those for the
modular group Γ in [4].

Lemma 4. Let Λ be a subgroup of finite index in H(
√
m). Then, the parabolic class

number of Λ is the number of orbits of Λ on
√
mQ̂.
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Lemma 5. Let Λ be a subgroup of finite index in H(
√
m). Then, the parabolic class

number s of Λ satisfies 1 ≤ s ≤ N, where N is the index |H(
√
m) : Λ|; in particular s is

finite.

We now give our main theorems.

Theorem 1. If (m, n) = 1, then the parabolic class number of Hm
0 (n) is

∑
d|n

ϕ
((
d,
n

d

))
Before giving the proof we will give some lemmas.

Lemma 6. Let (m, n) = 1, and r
s

√
m ∈

√
mQ̂ with m|s, then we can find some

T ∈ Hm
0 (n) such that T ( rs

√
m) = r1

s1

√
m with (m, s1) = 1 (we represent ∞ as 1

0

√
m).

Proof. Since (m, n) = 1, there exist some a, b ∈ Z such that 1 = ma − nb. Let

T (z) =
a
√
mz + b

nz +
√
m
.

Then T ∈ Hm
0 (0), and

T
(r
s

√
m
)

=
arm+ bs

(rn + s)
√
m

=
ar + bs/m

rn+ s

√
m.

It can be easily shown that (m, rn+ s) = 1. If we take r1 = ar+ bs/m, and s1 = rn+ s,

then T ( rs
√
m) = r1

s1

√
m with (m, s1) = 1. 2

Lemma 7. Let (m, n) = 1, and k
s

√
m ∈

√
mQ̂ with (k, s) = 1. If (m, s) = 1, then there

exist some T ∈ Hm
0 (n) such that

T (
k

s

√
m) =

k1

s1

√
m with s1|n.

Proof. (km, s) = 1 since (k, s) = (m, s) = 1. Let s1 = (s, n). Then s1 = (s, n) =
(s, kmn). Therefore there exist some integers c1, d1 such that

kmn

s1
c1 +

s

s1
d1 = 1.
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Since (d1,
kmn
s1

) = 1, there exists an integer t such that (d1 − kmn
s1

t, mn) = 1. Let

d = d1 − kmn
s1

t and c = c1 + s
s1
t. Then

kmn

s1
c+

s

s1
d = 1.

2

On the other hand, (d, cmn) = 1, since (d,mn) = (d, c) = 1. Hence, we can find some
integers x, y such that xd− ycmn = 1. If we take

T (z) =
xz + y

√
m

cn
√
mz + d

,

then, we have T (ks
√
m) = k1

s1

√
m where k1 = xk + ys and s1 = cnmk + ds.

It is obvious that T ∈ Hm
0 (n). On the other hand, it can be seen that (k1, s1) = 1.

Lemma 8. Let (m, n) = 1. If d1|n and (a1d1) = (a2, d1) = 1, then a1
d1

√
m is conjugate

to a2
d1

√
m under Hm

0 (n) if and only if a1 ≡ a2 (mod t) where t = (d1,
n
d1

).

Proof. Let a1 ≡ a2 (mod t) and n1 = n/d1. Then, t = (d1, n1), and (a1a2, d1), and
(a1a2, d1) = 1. Furthermore, (m, d1) = 1 since (m, n) = 1. Therefore (a1a2m, d1) = 1,
and thus (n1a1a2m, d1) = t. Since t|a1 − a2, mn1a1a2x + d1y = a2 − a1 has a solution.
That is, there exist some integers k, s such that mn1a1a2k + a1 + d1s = a2. Hence, we
obtain aa1 + bd1 = a2. On the other hand, if we take c = n1d1k and d = 1−mn1a1k, we
obtain mca1 + dd1 = d1.

Furthermore,

ad− bcm = a(1−mn1a1k)− bmn1d1k = a− (aa1 + bd1)mn1k = 1.

Let

T (z) =
az + b

√
m

c
√
mz + d

.

Then it is clear that T ∈ Hm
0 (n) and T (a1

d1

√
m) = a2

d1

√
m.

Now let a1
d1

√
m be equivalent to a2

d1

√
m by some T ∈ Hm

0 (n). Then it is easily seen

that

T (z) =
az + b

√
m

cn
√
mz + d

where ad− bcmn = 1.
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Hence, we obtain
aa1 + bd1

cna1m+ dd1

√
m =

a2

d1

√
m,

that is,
aa1 + bd1

cna1m+ dd1
=
a2

d1
.

Since
d(aa1 + bd1)− b(cna1m+ dd1) = a1,

and
a(cna1m+ dd1) − cnm(aa1 + bd1) = d1

we have (aa1 + bd1, cna1m+ dd1) = 1. Therefore, there exists some u = ±1 such that

aa1 + bd1 = ua2,

and
cna1m+ dd1 = ud1.

It can be easily shown that a1 ≡ a2 (mod t). 2

Proof of Theorem 1. It is sufficient to calculate the number of orbits of Hm
0 (n) on

√
mQ̂. Then from Lemma 6, Lemma 7, and Lemma 8, the number of orbits of Hm

0 (n) on
√
mQ̂ is

∑
d|n ϕ((d, nd )) where ϕ is Euler’s function.

We can deduce the following.

Lemma 9. If k
s ∈ Q̂ with (k, s) = 1, then there exists some T ∈ Γ0(n) such that

T (k
s
) = k1

s1
with s1|n where we represent ∞ as 1

0
.

Lemma 10. If d1|n and (a1, d1) = (a2, d1) = 1, then a1
d1

is conjugate to a2
d1

under

Γ0(n) if and only if a1 ≡ a2(mod t) where t = (d1,
n
d1

).

Then it is easily seen that the number of orbits of Γ0(n) on Q̂ is∑
d|n

ϕ
((
d,
n

d

))
,

which is the parabolic class number of Γ0(n).

204



KESKİN

Theorem 2. If m|n, then the parabolic class number of Hm
0 (n) is

∑
d|n

ϕ
((
d,
nm

d

))
.

Proof. If m|n, then

Hm
0 (n) = {T ∈ H : c ≡ 0(modn)}.

We define φ from the set of orbits of Γ0(mn) to the set of orbits of Hm
0 (n) as follows.

φ
(

Γ0(mn)
r

s

)
= Hm

0 (n)
r

s

√
m.

Then φ is well defined one to one and onto function. The proof then follows. 2
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