ON THE PARABOLIC CLASS NUMBER OF SOME SUBGROUPS OF HECKE GROUPS

Refik Keskin

Abstract

In this paper we calculate the parabolic class number of subgroups of Hecke groups $H(\sqrt{2}), H(\sqrt{3})$. Subject Classification: 20 G-H Keywords: Parabolic class number, orbit Fuchsian group.

1. Introduction

By a Funchsian group Λ we will mean a finitely generated discrete subgroup of $PSL(2, \mathbb{R})$, the group of conformal homeomorphisms of the upper-half plane. The most general presentation for Λ is

Generators;

$$\begin{array}{ll} a_1, b_1, \dots, a_g, b_g & (\text{Hyperbolic}) \\ x_1, x_2, \dots, x_r & (\text{Elliptic}) \\ p_1, p_2, \dots, p_s & (\text{Parabolic}) \end{array}$$

Relations;

$$x_1^{m_1} = x_2^{m_2} = \cdots x_r^{m_r} = \prod_{i=1}^g [a_i, b_i] \prod_{j=1}^r x_j \prod_{k=1}^s p_k = 1.$$

We then say Λ has signature (see [1])

$$(g, m_1, m_2, \ldots, m_r; s).$$

Hecke introduced an infinite class of discrete groups $H(\lambda_q)$ of linear fractional transformation proserving the upper-half plane. $H(\lambda_q)$ is the group generated by

$$S(z) = z + \lambda_q, \quad T(z) = \frac{-1}{z}$$

where $\lambda_q = 2\cos(\pi/q)$, q is an integer, $q \ge 3$. When q = 3 we have the modular group Γ . When q = 4 or 6 the resulting group are $H(\sqrt{2}), H(\sqrt{3})$. These two groups are of particular interest since they are the only Hecke groups, aside from the modular group, whose elements are completely known.

It is well known ([2], [3]) that $H(\sqrt{m}), m = 2, 3$, consists of the mappings of all the following two types.

i)
$$T(z) = \frac{az + b\sqrt{m}}{c\sqrt{m}z + d}$$
, $a, b, c, d \in \mathbb{Z}$, $ad - bcm = 1$,
ii) $T(z) = \frac{a\sqrt{m}z + b}{cz + d\sqrt{m}}$, $a, b, c, d \in \mathbb{Z}$, $adm - bc = 1$.

2. Parabolic Class Number

From now on, m will stand for 2 or 3

Lemma 1. $H(\sqrt{m})$ act transitively on $\sqrt{m}\hat{\mathbb{Q}} = \{\frac{r}{s}\sqrt{m} : \frac{r}{s} \in \mathbb{Q}\} \cup \{\infty\}.$ $\sqrt{m}\mathbb{Q}$ is the largest subset of \mathbb{R} on which $H(\sqrt{m})$ acts transitively.

Proof. Let $\frac{x}{y}\sqrt{m} \in \sqrt{m}\hat{\mathbb{Q}} \setminus \{\infty\}$ with (x, y) = 1. Then m|y or $m \nmid y$. Since (x, y) = 1, we can find $a, b \in \mathbb{Z}$ such that xa - yb = 1. If m|y, then we take

$$T(z) = \frac{xz + b\sqrt{m}}{\frac{x}{m}\sqrt{m}z + a},$$

so, we have $T(\infty) = \frac{x}{y}\sqrt{m}$.

Let $m \nmid y$. In this case (mx, y) = 1, and thus there exist some, $a, b \in \mathbb{Z}$ such that mxa - yb = 1. Similarly, if we take

$$S(z) = \frac{x\sqrt{m}z + b}{yz + \sqrt{m}a},$$

then $S(\infty) = \frac{x}{y}\sqrt{m}$.

Let $n \in \mathbb{N}$. Define

$$H_0^m(n) = \{T \in H(\sqrt{m}) : c \equiv 0 \pmod{n}\}.$$

Then $H_0^m(n)$ is a subgroup of $H(\sqrt{m})$.

Let Γ be the modular group, and $\Gamma_0(n)$ be the subgroup of Γ such that $c \equiv 0 \pmod{n}$. Then,

Lemma 2. [5]
$$|\Gamma : \Gamma_0(n)| = n \prod_{p|n} \left(1 + \frac{1}{p}\right)$$

Lemma 3. If (m,n) = 1, then $|H(\sqrt{m}) : H_0^m(n)| = n \prod_{p|n} \left(1 + \frac{1}{p}\right)$, if (m,n) = m,

then $|H(\sqrt{m}): H_0^m(n)| = 2n \prod_{p|n} \left(1 + \frac{1}{p}\right)$ where $p \neq m$.

Proof. We will give the proof in case where (m, n) = m. Let

$$H = \left\{ T \in H(\sqrt{m}) : T(z) = \frac{az + b\sqrt{m}}{c\sqrt{m}z + d} \right\}.$$

As $m|n, H_0^m(n) \subset H \subset H(\sqrt{m})$. It is obvious that $|H(\sqrt{m}) : H| = 2$. Let θ be the mapping from H to $\Gamma_0(m)$ defined as follows. If

$$T(z) = \frac{az + b\sqrt{m}}{c\sqrt{m}z + d},$$

then

$$\theta(T)(z) = \frac{az+b}{cmz+d}.$$

It can be shown that θ is an isomorphism, and $\theta(H_0^m(n)) = \Gamma_0(mn)$.

On the other hand, $\Gamma_0(mn) \subset \Gamma_0(m) \subset \Gamma$. Therefore,

$$\begin{split} |H(\sqrt{m}): H_0^m(n)| &= |H(\sqrt{m}): H| \, |H: H_0^m(n)| = 2|\Gamma_0(m): \Gamma(mn)| \\ &= 2\frac{|\Gamma: \Gamma_0(mn)|}{|\Gamma: \Gamma_0(m)|} = 2n \prod_{p|n} \left(1 + \frac{1}{p}\right) \text{ where } p \neq m. \end{split}$$

If (m, n) = 1, the proof can be done in a similar way.

We now give the following lemmas without proof. Proofs are similar to those for the modular group Γ in [4].

Lemma 4. Let Λ be a subgroup of finite index in $H(\sqrt{m})$. Then, the parabolic class number of Λ is the number of orbits of Λ on $\sqrt{m}\hat{\mathbb{Q}}$.

201

Lemma 5. Let Λ be a subgroup of finite index in $H(\sqrt{m})$. Then, the parabolic class number s of Λ satisfies $1 \leq s \leq N$, where N is the index $|H(\sqrt{m}) : \Lambda|$; in particular s is finite.

We now give our main theorems.

Theorem 1. If (m, n) = 1, then the parabolic class number of $H_0^m(n)$ is

$$\sum_{d|n} \varphi\left(\left(d, \frac{n}{d}\right)\right)$$

Before giving the proof we will give some lemmas.

Lemma 6. Let (m,n) = 1, and $\frac{r}{s}\sqrt{m} \in \sqrt{m}\hat{\mathbb{Q}}$ with m|s, then we can find some $T \in H_0^m(n)$ such that $T(\frac{r}{s}\sqrt{m}) = \frac{r_1}{s_1}\sqrt{m}$ with $(m,s_1) = 1$ (we represent ∞ as $\frac{1}{0}\sqrt{m}$). **Proof.** Since (m,n) = 1, there exist some $a, b \in \mathbb{Z}$ such that 1 = ma - nb. Let

$$T(z) = \frac{a\sqrt{m}z + b}{nz + \sqrt{m}}.$$

Then $T \in H_0^m(0)$, and

$$T\left(\frac{r}{s}\sqrt{m}\right) = \frac{arm + bs}{(rn + s)\sqrt{m}} = \frac{ar + bs/m}{rn + s}\sqrt{m}.$$

It can be easily shown that (m, rn + s) = 1. If we take $r_1 = ar + bs/m$, and $s_1 = rn + s$, then $T(\frac{r}{s}\sqrt{m}) = \frac{r_1}{s_1}\sqrt{m}$ with $(m, s_1) = 1$.

Lemma 7. Let (m, n) = 1, and $\frac{k}{s}\sqrt{m} \in \sqrt{m}\hat{\mathbb{Q}}$ with (k, s) = 1. If (m, s) = 1, then there exist some $T \in H_0^m(n)$ such that

$$T(\frac{k}{s}\sqrt{m}) = \frac{k_1}{s_1}\sqrt{m}$$
 with $s_1|n$

Proof. (km, s) = 1 since (k, s) = (m, s) = 1. Let $s_1 = (s, n)$. Then $s_1 = (s, n) = (s, kmn)$. Therefore there exist some integers c_1, d_1 such that

$$\frac{kmn}{s_1}c_1 + \frac{s}{s_1}d_1 = 1.$$

Since $(d_1, \frac{kmn}{s_1}) = 1$, there exists an integer t such that $(d_1 - \frac{kmn}{s_1}t, mn) = 1$. Let $d = d_1 - \frac{kmn}{s_1}t$ and $c = c_1 + \frac{s}{s_1}t$. Then

$$\frac{kmn}{s_1}c + \frac{s}{s_1}d = 1.$$

On the other hand, (d, cmn) = 1, since (d, mn) = (d, c) = 1. Hence, we can find some integers x, y such that xd - ycmn = 1. If we take

$$T(z) = \frac{xz + y\sqrt{m}}{cn\sqrt{m}z + d},$$

then, we have $T(\frac{k}{s}\sqrt{m}) = \frac{k_1}{s_1}\sqrt{m}$ where $k_1 = xk + ys$ and $s_1 = cnmk + ds$.

It is obvious that $T \in H_0^m(n)$. On the other hand, it can be seen that $(k_1, s_1) = 1$.

Lemma 8. Let (m, n) = 1. If $d_1 | n$ and $(a_1 d_1) = (a_2, d_1) = 1$, then $\frac{a_1}{d_1} \sqrt{m}$ is conjugate to $\frac{a_2}{d_1} \sqrt{m}$ under $H_0^m(n)$ if and only if $a_1 \equiv a_2 \pmod{t}$ where $t = (d_1, \frac{n}{d_1})$.

Proof. Let $a_1 \equiv a_2 \pmod{t}$ and $n_1 = n/d_1$. Then, $t = (d_1, n_1)$, and (a_1a_2, d_1) , and $(a_1a_2, d_1) = 1$. Furthermore, $(m, d_1) = 1$ since (m, n) = 1. Therefore $(a_1a_2m, d_1) = 1$, and thus $(n_1a_1a_2m, d_1) = t$. Since $t|a_1 - a_2, mn_1a_1a_2x + d_1y = a_2 - a_1$ has a solution. That is, there exist some integers k, s such that $mn_1a_1a_2k + a_1 + d_1s = a_2$. Hence, we obtain $aa_1 + bd_1 = a_2$. On the other hand, if we take $c = n_1d_1k$ and $d = 1 - mn_1a_1k$, we obtain $mca_1 + dd_1 = d_1$.

Furthermore,

$$ad - bcm = a(1 - mn_1a_1k) - bmn_1d_1k = a - (aa_1 + bd_1)mn_1k = 1.$$

Let

$$T(z) = \frac{az + b\sqrt{m}}{c\sqrt{m}z + d}.$$

Then it is clear that $T \in H_0^m(n)$ and $T(\frac{a_1}{d_1}\sqrt{m}) = \frac{a_2}{d_1}\sqrt{m}$.

Now let $\frac{a_1}{d_1}\sqrt{m}$ be equivalent to $\frac{a_2}{d_1}\sqrt{m}$ by some $T \in H_0^m(n)$. Then it is easily seen that

$$T(z) = \frac{az + b\sqrt{m}}{cn\sqrt{m}z + d}$$
 where $ad - bcmn = 1$.

Hence, we obtain

$$\frac{aa_1+bd_1}{cna_1m+dd_1}\sqrt{m} = \frac{a_2}{d_1}\sqrt{m},$$

that is,

$$\frac{aa_1 + bd_1}{cna_1m + dd_1} = \frac{a_2}{d_1}$$

Since

$$d(aa_1 + bd_1) - b(cna_1m + dd_1) = a_1,$$

and

$$a(cna_1m + dd_1) - cnm(aa_1 + bd_1) = d_1$$

we have $(aa_1 + bd_1, cna_1m + dd_1) = 1$. Therefore, there exists some $u = \pm 1$ such that

$$aa_1 + bd_1 = ua_2,$$

and

$$cna_1m + dd_1 = ud_1.$$

It can be easily shown that $a_1 \equiv a_2 \pmod{t}$.

Proof of Theorem 1. It is sufficient to calculate the number of orbits of $H_0^m(n)$ on $\sqrt{m}\hat{\mathbb{Q}}$. Then from Lemma 6, Lemma 7, and Lemma 8, the number of orbits of $H_0^m(n)$ on $\sqrt{m}\hat{\mathbb{Q}}$ is $\sum_{d|n} \varphi((d, \frac{n}{d}))$ where φ is Euler's function.

We can deduce the following.

Lemma 9. If $\frac{k}{s} \in \hat{\mathbb{Q}}$ with (k, s) = 1, then there exists some $T \in \Gamma_0(n)$ such that $T(\frac{k}{s}) = \frac{k_1}{s_1}$ with $s_1 | n$ where we represent ∞ as $\frac{1}{0}$.

Lemma 10. If $d_1|n$ and $(a_1, d_1) = (a_2, d_1) = 1$, then $\frac{a_1}{d_1}$ is conjugate to $\frac{a_2}{d_1}$ under $\Gamma_0(n)$ if and only if $a_1 \equiv a_2 \pmod{t}$ where $t = (d_1, \frac{n}{d_1})$.

Then it is easily seen that the number of orbits of $\Gamma_0(n)$ on $\hat{\mathbb{Q}}$ is

$$\sum_{d|n} \varphi\left(\left(d, \frac{n}{d}\right)\right),\,$$

which is the parabolic class number of $\Gamma_0(n)$.

204

Theorem 2. If m|n, then the parabolic class number of $H_0^m(n)$ is

$$\sum_{d|n} \varphi\left(\left(d, \frac{nm}{d}\right)\right).$$

Proof. If m|n, then

$$H_0^m(n) = \{T \in H : c \equiv 0 \pmod{n}\}$$

We define ϕ from the set of orbits of $\Gamma_0(mn)$ to the set of orbits of $H_0^m(n)$ as follows.

$$\phi\left(\Gamma_0(mn)\frac{r}{s}\right) = H_0^m(n)\frac{r}{s}\sqrt{m}.$$

Then ϕ is well defined one to one and onto function. The proof then follows.

References

- [1] Singerman, D.: Subgroups of Fuchsian groups and finite permutation groups, Bulletin London Math. Soc., 2, 319-323 (1970).
- [2] Hutchinson, J. I.: On a class of automorphic functions, Trans. Amer. Math. Soc., 5, 1-11 (1902).
- [3] Young, J.: On the group belonging to the sign $(0, 3; 2, 4, \infty)$ and the functions belonging to it. Trans. Amer. Math. Soc., 5, 81-104 (1904).
- [4] Jones, G. A., and Singerman, D.: Complex Functions: an algebraic and geometric viewpoint. Cambridge, Cambridge University Press, 1987.
- [5] Schoeneberg, B.: Elliptic Modular Functions. Berlin, Heidelberg, New York, Springer Verlag 1974.
- [6] Miyake, T.: Modular Forms. Springer Verlag 1989.
- [7] Akbaş, M.: The Normalizer of Modular Subgroups. Ph. D. Thesis, Southampton University.

Received 16.04.1997

Refik KESKİN Karadeniz Technical University Department of Mathematics 61080 Trabzon-TURKEY