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ON THE PARABOLIC CLASS NUMBER OF SOME
SUBGROUPS OF HECKE GROUPS
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Abstract
In this paper we calculate the parabolic class number of subgroups of Hecke

groups H(v/2), H(V/3).
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1. Introduction
By a Funchsian group A we will mean a finitely generated discrete subgroup of
PSL(2,R), the group of conformal homeomorphisms of the upper-half plane. The most

general presentation for A is

Generators;

ai, b1, ..., a0y (Hyperbolic)

L1, X0,y Ly (Elliptic)

P1D25 -5 Ps (Parabolic)
Relations;

g T s
e = aps = o = [Jlowbd [ o [T oo =1
i=1 j=1 k=1

We then say A has signature (see [1])

(g,m1,ma,...,m.;8).
Hecke introduced an infinite class of discrete groups H(),) of linear fractional trans-

formation proserving the upper-half plane. H(),;) is the group generated by

S(z) =2+ Aq, T(z):_71
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where A, = 2cos(7/q), ¢ is an integer, ¢ > 3. When ¢ = 3 we have the modular group

I'. When ¢ = 4 or 6 the resulting group are H(v/2), H(v/3). These two groups are of

particular interest since they are the only Hecke groups, aside from the modular group,
whose elements are completely known.

It is well known ([2], [3]) that H(y/m), m = 2,3, consists of the mappings of all the

following two types.

b
) T(z) = az + W,a,b,c,de Z, ad — bem =1,

ey/mz+d

. a/mz +b
R Nk

a,b,c,d € Z, adm — bc = 1.

2. Parabolic Class Number

From now on, m will stand for 2 or 3

Lemma 1. H(y/m) act transitively on /mQ = {Zy/m: L e Q}U{oo}.

vmQ is the largest subset of R on which H(y/m) acts transitively.
Proof. Let {ym € vmQ \ {oo} with (z,y) = 1. Then mly or m ty. Since (z,y) = 1,
we can find a,b € Z such that xa — yb = 1. If m|y, then we take

T(z) = zz + by/m

Lymz+a’
so, we have T'(00) = £v/m.

Let m { y. In this case (mz,y) = 1, and thus there exist some, a,b € Z such that

mza — yb = 1. Similarly, if we take

b
5() = LD
yz + /ma
then S(c0) = £v/m.
Let n € N. Define

H{*(n) ={T € H(v/m) : ¢ = 0(mod n)}.

Then H{(n) is a subgroup of H(y/m). O

Let T' be the modular group, and I'g(n) be the subgroup of I' such that ¢ = 0(mod n).
Then,
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Lemma 2. [5] |T':To(n |—nH<1+>

pln

Lemma 3. If (m,n) = 1, then |H(y/m) : n)| = nH (1 + > ,n) = m,

pln
then |H(y/m) : H*(n)| = QnH (1 + > where p # m.
pln

Proof. We will give the proof in case where (m,n) = m.
Let

H:{TeH(ﬁ):T(z):%}.

As min, H*(n) C H C H(y/m). It is obvious that |H(y/m) : H| = 2. Let 6 be the
mapping from H to T'o(m) defined as follows. If

az + by/m
T =
(2) c/mz+d’

then
az+b

0(T)(z) = pe—

It can be shown that ¢ is an isomorphism, and 0(H{*(n)) = To(mn).
On the other hand, T'g(mn) C I'o(m) C I'. Therefore,

(H(/m) By (n)| = |H(v/m) : H| |H : HE(n)] = 2|To(m) : T(mn)|

T':To(mn)
2||F I?O =2n H(l—i— > where p # m.
pln

If (m,n) = 1, the proof can be done in a similar way. O

We now give the following lemmas without proof. Proofs are similar to those for the
modular group I in [4].

Lemma 4. Let A be a subgroup of finite index in H(y/m). Then, the parabolic class
number of A is the number of orbits of A on /mQ.
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Lemma 5. Let A be a subgroup of finite index in H(y/m). Then, the parabolic class
number s of A satisfies 1 < s < N, where N is the index |H(\/m) : A|; in particular s is
finite.

We now give our main theorems.

Theorem 1. If (m,n) =1, then the parabolic class number of H*(n) is

(CH)

d|n

Before giving the proof we will give some lemmas.
Lemma 6. Let (m,n) = 1, and Z/m € VmQ with m|s, then we can find some
T € Hi'(n) such that T(%y/m) = Ty/m with (m, s1) =1 (we represent co as svm).

Proof. Since (m,n) = 1, there exist some a,b € Z such that 1 = ma — nb. Let

T(2) = a\/Ez—i—b.
nz ++/m
Then T € H{(0), and

r arm + bs ar + bs/m
T —1/ = = \/ .
(s m) (rn +s)y/m m+s vV

It can be easily shown that (m,rn + s) = 1. If we take r; = ar +bs/m, and s; = rn+ s,
then T'(%y/m) = t-/m with (m, s1) = 1. O

Lemma 7.  Let (m,n) =1, and £\/m € VmQ with (k,s) = 1. If (m, s) = 1, then there
exist some T € H"(n) such that

k
Vm) = —lﬁ with s1|n.

S1
Proof.  (km,s) = 1 since (k,s) = (m,s) = 1. Let 51 = (s,n). Then s; = (s,n) =

(s, kmn). Therefore there exist some integers c1,d; such that

kmn

S
c1+—dy =1.
S1 S1
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Since (dy, k:z") = 1, there exists an integer ¢ such that (dy — kznt,mn) = 1. Let

d=d; — ¥2¢ and ¢ = ¢; + it Then

S1

kmn

c+ icl: 1.
S1 S1

On the other hand, (d,cmn) =1, since (d, mn) = (d,c) = 1. Hence, we can find some

integers x,y such that d — yemn = 1. If we take

xz + yym

T(z) = cny/mz +d’

then, we have T'(£,/m) = %ﬁ where k1 = xk + ys and s; = cnmk + ds.
It is obvious that T' € H{*(n). On the other hand, it can be seen that (k1,s1) = 1.

Lemma 8.  Let (m,n) = 1. If di|n and (a1d1) = (az,d1) = 1, then G-\/m is conjugate
to +/m under Hy"(n) if and only if a1 = ay (mod t) where t = (d1, 7-).

Proof. Let a; = az (mod t) and ny = n/dy. Then, t = (d1,n1), and (ajag,d;), and
(ara2,d1) = 1. Furthermore, (m,d;) = 1 since (m,n) = 1. Therefore (ajaam,d;) = 1,
and thus (niajaem,dy) = t. Since t|la; — ag, mniajasx + d1y = ag — a1 has a solution.

That is, there exist some integers k, s such that mniaijask + a1 + dis = as. Hence, we
obtain aay + bdy = as. On the other hand, if we take ¢ = nidik and d = 1 — mnyiark, we
obtain mca; + dd; = d;.

Furthermore,

ad — bem = a(l — mnyark) — bmnidik = a — (aay + bdy)mni k = 1.

Let
T(z) = %.
Then it is clear that T' € Hg*(n) and T(F-v/m) = $2/m.
Now let ¢*/m be equivalent to $*/m by some T € Hy"(n). Then it is easily seen
that

T(z) = az + by/m

= m where ad — bemn = 1.
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Hence, we obtain

aay + bdy a2
cnaym + ddy Vm = dy vm,
that is,
aay + bdy _ a2
cnaim —+ ddl N dl '
Since
d(aay + bdy) — b(cnaym + ddy) = as,
and

a(enaym + ddy) — enm(aay + bdy) = dy

we have (aay + bdy, cnaym + ddy) = 1. Therefore, there exists some u = +1 such that

aay + bdy = uas,

and
cnaim + ddy = udy.

It can be easily shown that a; = az (mod t). O

Proof of Theorem 1. It is sufficient to calculate the number of orbits of HJ*(n) on
\/E@ Then from Lemma 6, Lemma 7, and Lemma 8, the number of orbits of H*(n) on
VmQ is > p((d, 7)) where ¢ is Euler’s function.

We can deduce the following.

Lemma 9. If% € Q with (k,s) = 1, then there exists some T € To(n) such that

T(E) = B with s|n where we represent oo as L.
s s1 0

Lemma 10. If di|n and (a1,d1) = (a2,d1) = 1, then % is conjugate to ;—f under
Lo(n) if and only if a1 = az(modt) where t = (d1, 7-).

Then it is easily seen that the number of orbits of T'g(n) on Qis

>e((*3)

d|n

which is the parabolic class number of T'y(n).
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Theorem 2.  If m|n, then the parabolic class number of Hi*(n) is

>e((457))

d|n

Proof. If m|n, then

H"(n)={T € H : ¢ = 0(modn)}.

We define ¢ from the set of orbits of I'g(mn) to the set of orbits of H{*(n) as follows.

(1]

2l

3l

(4]

(5]

(6]

(7l

¢ (Do(mn) =) = Hy' (n)=v/m.

Then ¢ is well defined one to one and onto function. The proof then follows. O
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