ON THE PARABOLIC CLASS NUMBER OF SOME subgroups of hecke groups

Refik Keskin

Abstract
In this paper we calculate the parabolic class number of subgroups of Hecke groups $H(\sqrt{2}), H(\sqrt{3})$.
Subject Classification: 20 G-H
Keywords: Parabolic class number, orbit Fuchsian group.

1. Introduction

By a Funchsian group Λ we will mean a finitely generated discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$, the group of conformal homeomorphisms of the upper-half plane. The most general presentation for Λ is

Generators;

$$
\begin{array}{ll}
a_{1}, b_{1}, \ldots, a_{g}, b_{g} & \text { (Hyperbolic) } \\
x_{1}, x_{2}, \ldots, x_{r} & \text { (Elliptic) } \\
p_{1}, p_{2}, \ldots, p_{s} & \text { (Parabolic) }
\end{array}
$$

Relations;

$$
x_{1}^{m_{1}}=x_{2}^{m_{2}}=\cdots x_{r}^{m_{r}}=\prod_{i=1}^{g}\left[a_{i}, b_{i}\right] \prod_{j=1}^{r} x_{j} \prod_{k=1}^{s} p_{k}=1 .
$$

We then say Λ has signature (see [1])

$$
\left(g, m_{1}, m_{2}, \ldots, m_{r} ; s\right) .
$$

Hecke introduced an infinite class of discrete groups $H\left(\lambda_{q}\right)$ of linear fractional transformation proserving the upper-half plane. $H\left(\lambda_{q}\right)$ is the group generated by

$$
S(z)=z+\lambda_{q}, \quad T(z)=\frac{-1}{z}
$$

KESKİN

where $\lambda_{q}=2 \cos (\pi / q), q$ is an integer, $q \geq 3$. When $q=3$ we have the modular group Γ. When $q=4$ or 6 the resulting group are $H(\sqrt{2}), H(\sqrt{3})$. These two groups are of particular interest since they are the only Hecke groups, aside from the modular group, whose elements are completely known.

It is well known $([2],[3])$ that $H(\sqrt{m}), m=2,3$, consists of the mappings of all the following two types.
i) $T(z)=\frac{a z+b \sqrt{m}}{c \sqrt{m} z+d}, a, b, c, d \in \mathbb{Z}, a d-b c m=1$,
ii) $T(z)=\frac{a \sqrt{m} z+b}{c z+d \sqrt{m}}, a, b, c, d \in \mathbb{Z}, a d m-b c=1$.

2. Parabolic Class Number

From now on, m will stand for 2 or 3
Lemma 1. $\quad H(\sqrt{m})$ act transitively on $\sqrt{m} \hat{\mathbb{Q}}=\left\{\frac{r}{s} \sqrt{m}: \frac{r}{s} \in \mathbb{Q}\right\} \cup\{\infty\}$.
$\sqrt{m} \mathbb{Q}$ is the largest subset of \mathbb{R} on which $H(\sqrt{m})$ acts transitively.
Proof. Let $\frac{x}{y} \sqrt{m} \in \sqrt{m} \hat{\mathbb{Q}} \backslash\{\infty\}$ with $(x, y)=1$. Then $m \mid y$ or $m \nmid y$. Since $(x, y)=1$, we can find $a, b \in \mathbb{Z}$ such that $x a-y b=1$. If $m \mid y$, then we take

$$
T(z)=\frac{x z+b \sqrt{m}}{\frac{x}{m} \sqrt{m} z+a}
$$

so, we have $T(\infty)=\frac{x}{y} \sqrt{m}$.
Let $m \nmid y$. In this case $(m x, y)=1$, and thus there exist some, $a, b \in \mathbb{Z}$ such that $m x a-y b=1$. Similarly, if we take

$$
S(z)=\frac{x \sqrt{m} z+b}{y z+\sqrt{m} a}
$$

then $S(\infty)=\frac{x}{y} \sqrt{m}$.
Let $n \in \mathbb{N}$. Define

$$
H_{0}^{m}(n)=\{T \in H(\sqrt{m}): c \equiv 0(\bmod n)\} .
$$

Then $H_{0}^{m}(n)$ is a subgroup of $H(\sqrt{m})$.

Let Γ be the modular group, and $\Gamma_{0}(n)$ be the subgroup of Γ such that $c \equiv 0(\bmod n)$. Then,

KESKİN

Lemma 2. $\quad[5]\left|\Gamma: \Gamma_{0}(n)\right|=n \prod_{p \mid n}\left(1+\frac{1}{p}\right)$.

Lemma 3. If $(m, n)=1$, then $\left|H(\sqrt{m}): H_{0}^{m}(n)\right|=n \prod_{p \mid n}\left(1+\frac{1}{p}\right)$, if $(m, n)=m$, then $\left|H(\sqrt{m}): H_{0}^{m}(n)\right|=2 n \prod_{p \mid n}\left(1+\frac{1}{p}\right)$ where $p \neq m$.

Proof. We will give the proof in case where $(m, n)=m$.
Let

$$
H=\left\{T \in H(\sqrt{m}): T(z)=\frac{a z+b \sqrt{m}}{c \sqrt{m} z+d}\right\} .
$$

As $m \mid n, H_{0}^{m}(n) \subset H \subset H(\sqrt{m})$. It is obvious that $|H(\sqrt{m}): H|=2$. Let θ be the mapping from H to $\Gamma_{0}(m)$ defined as follows. If

$$
T(z)=\frac{a z+b \sqrt{m}}{c \sqrt{m} z+d}
$$

then

$$
\theta(T)(z)=\frac{a z+b}{c m z+d} .
$$

It can be shown that θ is an isomorphism, and $\theta\left(H_{0}^{m}(n)\right)=\Gamma_{0}(m n)$.
On the other hand, $\Gamma_{0}(m n) \subset \Gamma_{0}(m) \subset \Gamma$. Therefore,

$$
\begin{aligned}
\left|H(\sqrt{m}): H_{0}^{m}(n)\right| & =|H(\sqrt{m}): H|\left|H: H_{0}^{m}(n)\right|=2\left|\Gamma_{0}(m): \Gamma(m n)\right| \\
& =2 \frac{\left|\Gamma: \Gamma_{0}(m n)\right|}{\left|\Gamma: \Gamma_{0}(m)\right|}=2 n \prod_{p \mid n}\left(1+\frac{1}{p}\right) \text { where } p \neq m .
\end{aligned}
$$

If $(m, n)=1$, the proof can be done in a similar way.

We now give the following lemmas without proof. Proofs are similar to those for the modular group Γ in [4].

Lemma 4. Let Λ be a subgroup of finite index in $H(\sqrt{m})$. Then, the parabolic class number of Λ is the number of orbits of Λ on $\sqrt{m} \widehat{\mathbb{Q}}$.

KESKİN

Lemma 5. Let Λ be a subgroup of finite index in $H(\sqrt{m})$. Then, the parabolic class number s of Λ satisfies $1 \leq s \leq N$, where N is the index $|H(\sqrt{m}): \Lambda|$; in particular s is finite.

We now give our main theorems.
Theorem 1. If $(m, n)=1$, then the parabolic class number of $H_{0}^{m}(n)$ is

$$
\sum_{d \mid n} \varphi\left(\left(d, \frac{n}{d}\right)\right)
$$

Before giving the proof we will give some lemmas.

Lemma 6. Let $(m, n)=1$, and $\frac{r}{s} \sqrt{m} \in \sqrt{m} \hat{\mathbb{Q}}$ with $m \mid s$, then we can find some $T \in H_{0}^{m}(n)$ such that $T\left(\frac{r}{s} \sqrt{m}\right)=\frac{r_{1}}{s_{1}} \sqrt{m}$ with $\left(m, s_{1}\right)=1$ (we represent ∞ as $\frac{1}{0} \sqrt{m}$).

Proof. Since $(m, n)=1$, there exist some $a, b \in \mathbb{Z}$ such that $1=m a-n b$. Let

$$
T(z)=\frac{a \sqrt{m} z+b}{n z+\sqrt{m}}
$$

Then $T \in H_{0}^{m}(0)$, and

$$
T\left(\frac{r}{s} \sqrt{m}\right)=\frac{a r m+b s}{(r n+s) \sqrt{m}}=\frac{a r+b s / m}{r n+s} \sqrt{m}
$$

It can be easily shown that $(m, r n+s)=1$. If we take $r_{1}=a r+b s / m$, and $s_{1}=r n+s$, then $T\left(\frac{r}{s} \sqrt{m}\right)=\frac{r_{1}}{s_{1}} \sqrt{m}$ with $\left(m, s_{1}\right)=1$.

Lemma 7. Let $(m, n)=1$, and $\frac{k}{s} \sqrt{m} \in \sqrt{m} \hat{\mathbb{Q}}$ with $(k, s)=1$. If $(m, s)=1$, then there exist some $T \in H_{0}^{m}(n)$ such that

$$
T\left(\frac{k}{s} \sqrt{m}\right)=\frac{k_{1}}{s_{1}} \sqrt{m} \text { with } s_{1} \mid n .
$$

Proof. $\quad(k m, s)=1 \operatorname{since}(k, s)=(m, s)=1$. Let $s_{1}=(s, n)$. Then $s_{1}=(s, n)=$ $(s, k m n)$. Therefore there exist some integers c_{1}, d_{1} such that

$$
\frac{k m n}{s_{1}} c_{1}+\frac{s}{s_{1}} d_{1}=1
$$

KESKİN

Since $\left(d_{1}, \frac{k m n}{s_{1}}\right)=1$, there exists an integer t such that $\left(d_{1}-\frac{k m n}{s_{1}} t, m n\right)=1$. Let $d=d_{1}-\frac{k m n}{s_{1}} t$ and $c=c_{1}+\frac{s}{s_{1}} t$. Then

$$
\frac{k m n}{s_{1}} c+\frac{s}{s_{1}} d=1
$$

On the other hand, $(d, c m n)=1$, since $(d, m n)=(d, c)=1$. Hence, we can find some integers x, y such that $x d-y c m n=1$. If we take

$$
T(z)=\frac{x z+y \sqrt{m}}{c n \sqrt{m} z+d},
$$

then, we have $T\left(\frac{k}{s} \sqrt{m}\right)=\frac{k_{1}}{s_{1}} \sqrt{m}$ where $k_{1}=x k+y s$ and $s_{1}=c n m k+d s$.
It is obvious that $T \in H_{0}^{m}(n)$. On the other hand, it can be seen that $\left(k_{1}, s_{1}\right)=1$.
Lemma 8. Let $(m, n)=1$. If $d_{1} \mid n$ and $\left(a_{1} d_{1}\right)=\left(a_{2}, d_{1}\right)=1$, then $\frac{a_{1}}{d_{1}} \sqrt{m}$ is conjugate to $\frac{a_{2}}{d_{1}} \sqrt{m}$ under $H_{0}^{m}(n)$ if and only if $a_{1} \equiv a_{2}(\bmod t)$ where $t=\left(d_{1}, \frac{n}{d_{1}}\right)$.
Proof. Let $a_{1} \equiv a_{2}(\bmod t)$ and $n_{1}=n / d_{1}$. Then, $t=\left(d_{1}, n_{1}\right)$, and $\left(a_{1} a_{2}, d_{1}\right)$, and $\left(a_{1} a_{2}, d_{1}\right)=1$. Furthermore, $\left(m, d_{1}\right)=1$ since $(m, n)=1$. Therefore $\left(a_{1} a_{2} m, d_{1}\right)=1$, and thus $\left(n_{1} a_{1} a_{2} m, d_{1}\right)=t$. Since $t \mid a_{1}-a_{2}, m n_{1} a_{1} a_{2} x+d_{1} y=a_{2}-a_{1}$ has a solution. That is, there exist some integers k, s such that $m n_{1} a_{1} a_{2} k+a_{1}+d_{1} s=a_{2}$. Hence, we obtain $a a_{1}+b d_{1}=a_{2}$. On the other hand, if we take $c=n_{1} d_{1} k$ and $d=1-m n_{1} a_{1} k$, we obtain $m c a_{1}+d d_{1}=d_{1}$.

Furthermore,

$$
a d-b c m=a\left(1-m n_{1} a_{1} k\right)-b m n_{1} d_{1} k=a-\left(a a_{1}+b d_{1}\right) m n_{1} k=1
$$

Let

$$
T(z)=\frac{a z+b \sqrt{m}}{c \sqrt{m} z+d}
$$

Then it is clear that $T \in H_{0}^{m}(n)$ and $T\left(\frac{a_{1}}{d_{1}} \sqrt{m}\right)=\frac{a_{2}}{d_{1}} \sqrt{m}$.
Now let $\frac{a_{1}}{d_{1}} \sqrt{m}$ be equivalent to $\frac{a_{2}}{d_{1}} \sqrt{m}$ by some $T \in H_{0}^{m}(n)$. Then it is easily seen that

$$
T(z)=\frac{a z+b \sqrt{m}}{c n \sqrt{m} z+d} \text { where } a d-b c m n=1
$$

KESKİN

Hence, we obtain

$$
\frac{a a_{1}+b d_{1}}{c n a_{1} m+d d_{1}} \sqrt{m}=\frac{a_{2}}{d_{1}} \sqrt{m}
$$

that is,

$$
\frac{a a_{1}+b d_{1}}{c n a_{1} m+d d_{1}}=\frac{a_{2}}{d_{1}}
$$

Since

$$
d\left(a a_{1}+b d_{1}\right)-b\left(c n a_{1} m+d d_{1}\right)=a_{1},
$$

and

$$
a\left(c n a_{1} m+d d_{1}\right)-c n m\left(a a_{1}+b d_{1}\right)=d_{1}
$$

we have $\left(a a_{1}+b d_{1}, c n a_{1} m+d d_{1}\right)=1$. Therefore, there exists some $u= \pm 1$ such that

$$
a a_{1}+b d_{1}=u a_{2}
$$

and

$$
c n a_{1} m+d d_{1}=u d_{1} .
$$

It can be easily shown that $a_{1} \equiv a_{2}(\bmod t)$.

Proof of Theorem 1. It is sufficient to calculate the number of orbits of $H_{0}^{m}(n)$ on $\sqrt{m} \hat{\mathbb{Q}}$. Then from Lemma 6 , Lemma 7, and Lemma 8, the number of orbits of $H_{0}^{m}(n)$ on $\sqrt{m} \hat{\mathbb{Q}}$ is $\sum_{d \mid n} \varphi\left(\left(d, \frac{n}{d}\right)\right)$ where φ is Euler's function.

We can deduce the following.

Lemma 9. If $\frac{k}{s} \in \hat{\mathbb{Q}}$ with $(k, s)=1$, then there exists some $T \in \Gamma_{0}(n)$ such that $T\left(\frac{k}{s}\right)=\frac{k_{1}}{s_{1}}$ with $s_{1} \mid n$ where we represent ∞ as $\frac{1}{0}$.

Lemma 10. If $d_{1} \mid n$ and $\left(a_{1}, d_{1}\right)=\left(a_{2}, d_{1}\right)=1$, then $\frac{a_{1}}{d_{1}}$ is conjugate to $\frac{a_{2}}{d_{1}}$ under $\Gamma_{0}(n)$ if and only if $a_{1} \equiv a_{2}(\bmod t)$ where $t=\left(d_{1}, \frac{n}{d_{1}}\right)$.

Then it is easily seen that the number of orbits of $\Gamma_{0}(n)$ on $\hat{\mathbb{Q}}$ is

$$
\sum_{d \mid n} \varphi\left(\left(d, \frac{n}{d}\right)\right)
$$

which is the parabolic class number of $\Gamma_{0}(n)$.

KESKİN

Theorem 2. If $m \mid n$, then the parabolic class number of $H_{0}^{m}(n)$ is

$$
\sum_{d \mid n} \varphi\left(\left(d, \frac{n m}{d}\right)\right)
$$

Proof. If $m \mid n$, then

$$
H_{0}^{m}(n)=\{T \in H: c \equiv 0(\bmod n)\} .
$$

We define ϕ from the set of orbits of $\Gamma_{0}(m n)$ to the set of orbits of $H_{0}^{m}(n)$ as follows.

$$
\phi\left(\Gamma_{0}(m n) \frac{r}{s}\right)=H_{0}^{m}(n) \frac{r}{s} \sqrt{m} .
$$

Then ϕ is well defined one to one and onto function. The proof then follows.

References

[1] Singerman, D.: Subgroups of Fuchsian groups and finite permutation groups, Bulletin London Math. Soc., 2, 319-323 (1970).
[2] Hutchinson, J. I.: On a class of automorphic functions, Trans. Amer. Math. Soc., 5, 1-11 (1902).
[3] Young, J.: On the group belonging to the sign (0,$3 ; 2,4, \infty$) and the functions belonging to it. Trans. Amer. Math. Soc., 5, 81-104 (1904).
[4] Jones, G. A., and Singerman, D.: Complex Functions: an algebraic and geometric viewpoint. Cambridge, Cambridge University Press, 1987.
[5] Schoeneberg, B.: Elliptic Modular Functions. Berlin, Heidelberg, New York, Springer Verlag 1974.
[6] Miyake, T.: Modular Forms. Springer Verlag 1989.
[7] Akbaş, M.: The Normalizer of Modular Subgroups. Ph. D. Thesis, Southampton University.

