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Abstract

In this paper, we will give a description of the functor from the category of crossed

n-cubes to that of simplicial commutative algebras and study a commutative algebra

version of Loday’s theorem on n-types of simplicial groups.

Introduction

Simplicial commutative algebras are involved in homological algebra, homotopy

theory, algebraic K-theory and algebraic geometry. In each theory, their own internal

structure has been studied relatively little. The first author and T. Porter (cf. [5] and

[4]) have recently worked on the n-types of simplicial algebras.

Combining earlier work [6] of the first author with our joint papers [7], one starts

to see how a study of the links between simplicial commutative algebras and classical

constructions of homological algebra can be strengthened by interposing crossed algebraic

models for the homotopy types of simplicial algebras. In this paper, we continue this

process using these methods to give a description of the functor from the category of

crossed n-cubes to that of simplicial commutative algebras. The main result of this

paper will be devoted to proving the following theorem:

Theorem: The functor

M : SimpAlg −→ Simp(IncCrsn)
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ARAVASİ, KOÇAK, ALP

induces an equivalence of categories,

Hon(SimpAlg) −→ Ho(Simp(IncCrsn)).

The situation can be summarised in the following diagram

Simp(IncCrsn)

�
�
�
�
�

M
�

	�
�
�
�
�

Q

I@
@
@
@
@

E

@
@
@
@
@

π0

R
SimpAlg �

H

M
- Crsn

together with the information:

(i) Tn] ⊂SimpAlg is a reflexive subcategory with reflection tn] and tn] is an

n-equivalence (Proposition 2.2 in [7]).

(ii) M = π0M by definition

(iii) QM ∼=Id (before Proposition 2.2)

(iv) There is a natural trivial fibration HM→ tn].

(v) π0E ∼=Id (Proposition 3.2)

(vi) QE ∼= H (Lemma 3.4).

(vii) There is a functor H :Simp(IncCrsn)→Simp(IncCrsn) with natural

transformations
δ : H → Id

δ′ : H → Eπ0

so that δ and δ′ induce isomorphismss on π0, (Proposition 4.3) thus QHM(E, n) ' E

and QHM(E, n) 'HM(E, n) if E ∈ Tn].

The history of the interactions of algebraic topology and homological algebra

indicates that with each significant new model for homotopy types, there should be a

potential application in homological algebra. Crossed modules have occured many times

in parts of algebra other than group theory, and their significance was always linked

to non-Abelian aspects of the subject, giving finer detail than more usually used chain

complexes. A problem in attempting a general non Abelian homological or homotopical

algebraic version of Loday’s classification theorem for n-types is his almost exlusive use of

244
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topological methods. T. Porter (cf. [22]) gave a reasonably self contained and algebraic

proof of Loday’s results proving that the category of (n + 1)-types is equivalent to a

quotient category of catn -groups or crossed n-cubes. The advantage of a purely algebraic

proof is that it enables analogous results for simplicial commutative algebras. This may

provide new methods in homological algebra.

1. Definitions and preliminaries

All algebras will be commutative and will be over the same fixed but unspecified

ground ring.

A simplicial (commutative) algebra E consists of a family of algebras {En} together

with face and degeneracy maps di = dni : En → En−1, 0 ≤ i ≤ n , (n 6= 0) and

si = sni : En → En+1 , 0 ≤ i ≤ n , satisfying the usual simplicial identities given

in André [1] or Illusie [18] for example. It can be completely described as a functor

E : ∆op →CommAlgk where ∆ is the category of finite ordinals [n] = {0 < 1 < · · · < n}
and increasing maps.

Recall that given a simplicial algebra E, the Moore complex (NE, ∂) of E is the

chain complex defined by

(NE)n =
n−1⋂
i=0

Kerdni

with ∂n : NEn → NEn−1 induced from dnn by restriction.

We say that the Moore complex NE of a simplicial algebra is of length k if NEn = 0

for all n ≥ k + 1 so that a Moore complex is of length k also of length r for r ≥ k.

The nth homotopy module πn (E) of E is the n th homology of the Moore complex

of E, i.e.,

πn(E) ∼= Hn(NE, ∂) =
n⋂
i=0

Kerdni /dn+1
n+1(

n⋂
i=0

Kerdn+1
i ).

A simplicial map f : E→ E′ is called a n- equivalence if it induces isomorphisms

πn(E) ∼= πn(E′) for n ≥ 0.

Two simplicial algebras E and E′ are said to be have the same n-type if there is a

chain of n-equivalences linking them. A simplicial commutative algebra E is an n-type

if πi(E) = 0 for i > n.
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We recall the classifying functor B constructed as follows:

Consider an algebra E as a category with one object. The nerve Ner(C) of a smal

category, C, is the simplicial set consisting of all composable n-triples of arrows, so in

this case NerE is just En. the face and degeneracy maps are induced by composition

and insertion of identities respectively. The classifying BE of E is a K(E, 0); namely

the constant simplicial algebra of E generated by the vertices, i.e., π1(K(E, 0)) = E,

πi(K(E, 0)) = 0 for i 6= 1.

The Semidirect Decomposition of a Simplicial Algebra

The fundamental idea behind this can be found in Conduché [12]. A detailed

investigation of it for the case of a simplicial group is given in Carrasco and Cegarra [11].

The algebra case of that structure is also given in Carrasco’s thesis [10].

Proposition 1.1 If E is a simplicial algebra, then for any n ≥ 0

En
∼= (. . . (NEn o sn−1NEn−1)o . . .o sn−2 . . . s0NE1)o

(. . . (sn−2NEn−1 o sn−1sn−2NEn−2) o . . .o sn−1sn−2 . . . s0NE0).

Proof: This is by repeated use of the following lemma. 2

Lemma 1.2 Let E be a simplicial algebra. Then En can be decomposed as a semidirect

product:

En
∼= Kerdnn o sn−1

n−1(En−1).

Crossed Modules of Commutative Algebras

Recall from [20] the notion of a crossed module of commutative algebras. A crossed

module of commutative algebras, (C, R, ∂), is an R -algebra C, together with an action

of R on C and an R -algebra morphism ∂ : C → R, such that for all c, c′ ∈ C, r ∈ R, i)

∂(r · c) = r∂c and ii) ∂c · c′ = cc′. The second condition is called the Peiffer identity.

For example: if M is R -module, the trivial map 0 : M → R that maps everting to

0 in R, is a crossed module. Conversely the kernel of any crossed module is R -module.

Truncations

By an ideal chain complex of algebras, (X, d) we mean one in which each Imdi+1

is an ideal of Xi . Given any ideal chain complex (X, d) of algebras and an integer n the
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truncation, tn]X, of X at level n will be defined by

(tn]X)i =


Xi if i < n

Xi/Imdn+1 if i = n

0 if i > n.

The differential d of tn]X is that of X for i < n, dn is induced from the nth differential

of X and all others are zero. (For more on information see Illusie [18]). Truncation is of

course functorial.

The following results are due to [6].

Proposition 1.3 There is a truncation functor tn] :SimpAlg→SimpAlg such that

there is a natural isomorphism

tn]N ∼= Ntn]

where N is the Moore complex functor from SimpAlg to the category of chain complexes

of algebras.

1.1. Catn -algebras and crossed n-cubes

Ellis & Steiner (cf. [16]) have since shown that catn -groups are equivalent to

crossed n-cubes. The other algebraic settings such as commutative algebras, Lie algebras,

Jordan algebras of this construction are due to Ellis [15].

A catn -algebra A is an (commutative) algebra A together with 2n endomorphisms

si, ti:A→ A (1 ≤ i ≤ n) such that

tisi = si siti = ti

sisj = sjsi titj = tjti, sitj = tjsi for i 6= j

aa′ = 0 for a ∈ Kersi, a′ ∈ Kerti.

A morphism of catn -algebras φ : A → A′ is an algebra homomorphism φ : A → A′

which preserve the si and ti.

T. Porter (cf.[21]) shows that a cat1 -algebra is equivalent to a crossed module and

also to an internal category within the category of algebras. In section 2 we will recall

this equivalence.
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A crossed n-cube of commutative algebras is a family of commutative algebras,

MA for A ⊆< n >= {1, ..., n} together with homomorphisms µi : MA → MA−{i} for

i ∈< n > and for A, B ⊆< n > , functions

h : MA ×MB −→MA∪B

such that for all k ∈ k, a, a′ ∈MA, b, b′ ∈MB , c ∈ MC , i, j ∈< n > and A ⊆ B

1) µia = a if i 6∈ A

2) µiµja = µjµia

3) µih(a, b) = h(µia, µib)

4) h(a, b) = h(µia, b) = h(a, µib) if i ∈ A ∩B

5) h(a, a′) = aa′

6) h(a, b) = h(b, a)

7) h(a + a′, b) = h(a, b) + h(a′, b)

8) h(a, b + b′) = h(a, b) + h(a, b′)

9) k · h(a, b) = h(k · a, b) = h(a, k · b)
10) h(h(a, b), c) = h(a, h(b, c)) = h(b, h(b, c)).

A morphism of crossed n-cubes is defined in the obvious way: It is a family of

commutative algebra homomorphisms, for A ⊆< n >, fA : MA −→ M ′
A commuting

with the µi ’s and h ’s. We thus obtain a category of crossed n-cubes denoted by Crsn .

For example, crossed modules are 1-crossed cube and several examples of crossed

n-cubes can be found in [6].

Lemma 1.4 Let M = {MA : A ⊆< n >, {µi} , h} be a crossed n-cubes of algebras and

let i ∈< n > . Let M1 denote the restriction of M to those A with i ∈ A and M0,

the restricition to those A with i /∈ A. Then M1 and M0 are crossed (n − 1)-cubes of

algebras and µi :M1 →M0 is a morphism of crossed (n− 1)-cubes of algebras.

The proof is quite simple and so will be omitted.

By an ideal (n + 1)-ad will be meant an algebra with n selected ideals (possibly

with repeats), (R; I1, . . . , In).
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Let R be an algebra with ideals I1, . . . , In of R . Let MA =
⋂
{Ii : i ∈ A} and

A ⊆< n > . If i ∈< n >, then MA is an ideal of MA−{i}. Define µi : MA →MA−{i} to

be the inclusion. If A, B ⊆< n > , then MA∪B = MA ∩MB , let h : MA ×MB →MA∪B

given by the multiplication as MAMB ⊆ MA ∩ MB , where a ∈ MA, b ∈ MB . Then

{MA : A ⊆< n >, µi, h} is a crossed n-cube, called the inclusion crossed n-cube given

by the ideal (n + 1)-ad of commutative algebras (R; I1, . . . , In).

The following result is due to [6].

Proposition 1.5 Let (E; I1, . . . , In) be a simplicial ideal (n + 1)-ad of algebras and

define for A ⊆< n >, MA = π0(∩i∈AIi) with homomorphisms µi : MA → MA−{i}

and h-maps induced by the corresponding maps in the simplicial inclusion crossed n-cube,

constructed by applying the previous example to each level. Then {MA : A ⊆< n >

, µi, h} is a crossed n-cube.

Up to isomorphism, all crossed n-cubes arise in this way. In fact any crossed n-

cube can be realised (up to isomorphism) as a π0 of a simplicial inclusion crossed n-cube

coming from a simplicial ideal (n + 1)-ad in which π0 is a non-trivial homotopy module.

In [6], we proved that for a simplicial algebra E, there is a functor

M(−, n) : SimpAlg −→ Crsn,

which is given by π0(DecE; Kerδ0, . . . , Kerδn−1). Also it was shown that the following

equality

π0(M(E, n)) = M(E, n)

where

SimpAlg M−→ Simp(IncCrsn) π0−→ Crsn

and the décalage functor forgets the last face operator at each level of a simplicial algebra

E and moves everything down one level. It is denoted by Dec. Thus (DecE)n = En+1.

The construction of the above functors have been omitted as it was given in [6].
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2. From Crsn to SimpAlg

In this section our aim is to give a reasonably self contained and algebraic proof

of Loday’s result p roving that the category of (n + 1)-types is equivalent to a quotient

category of catn -algebras or crossed n-cubes. The advantage of a purely algebraic proof

is that it enables analogous results for simplicial Lie algebras.

2.1. The diagonal of the multinerve

Loday’s original idea in [19] of constructing a functor from spaces to catn -groups

failed to work for technical reasons.

An important part is played in Loday’s theory by a classifying space functor B

from catn -groups to spaces. As we are using algebraic methods rather than topological

ones, the role played by this functor B has to be filled by an algebraic analogue. We start

as usual in low dimension for simplicial algebras.

One of the tools needed will be the multinerve of a crossed n-cube. The idea is to

use the construction H(M) in the n-independent directions of the crossed n-cube thus

giving us a n-simplicial algebra. We will also recall facts in this paper when they are

needed.

Let M = (∂ : C → R) be a crossed module (i.e. crossed 1-cube) the corresponding

cat1 -alg is as follows:

We form the k -algebra S = C oR, the semidirect product algebra with multipli-

cation

(c, r)(c′, r′) = (rc′ + r′c + c′c, rr′).

There are two morphisms

S
d0 -

d1

- R

given d0(c, r) = r and d1(c, r) = r + ∂c (cf. T. Porter [20]). Also an obvious morphism

s : R→ S, s(r) = (0, r). We think of S as being the arrows or morphism of the category,

R the objects and d0 and d1 domain and codomain maps, then s assigns the identity map

to each object. To make this into an internal category, we need to define a composition,
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◦, on pairs ((c, r), (c′, r′)) where d1(c, r) = d0(c′, r′). This is done by setting

(c, r) ◦ (c′, r + ∂c) = (c + c′, r).

The order of composition is illustrated by

r
(c, r)- r + ∂c

(c′, r + ∂c)- r + ∂(c + c′).

All of these structure maps are k -algebra morphisms so we have constructed an internal

category in Algk, the category of k -algebras. We can form the nerve of this category in

the usual way. Its collection of vertices is the algebra of objects of the category, namely

the algebra R, and its n-simplicies are n-tuples of composable arrows. It is easily checked

that all the face and degeneracy maps are algebra homomorphisms and that this nerve

is a simplicial algebra. (In other words, since Alg has finite limits, given any internal

category in Alg, one can form its nerve by working the whole time within Alg. The

result then naturally is a simplicial object in Alg). We denote this simplicial algebra

H(M) = (Hn, di, sj). In terms of the initially given crossed module M = (C, R, ∂), its

structure is given by

Hn = C o (C o (. . . (C oR) . . .)) n copies of C

d0(cn, . . . , c1, r) = (cn, . . . , c2, r + ∂c1)

di(cn, . . . , c1, r) = (cn, . . . , ci+1, ci, . . . , c1, r) if 0 < i < n

dn(cn, . . . , c1, r) = (cn−1, . . . , c1, r)

sj(cn−1, . . . , c1, r) = (cn−1, . . . , 0, . . . , c1, r) 0 ≤ j ≤ n− 1,

where the identity element of M is inserted in the (j + 1)st position.

If M is a crossed n-cube, one can use the n-independent category structures of its

associated catn -algebra to obtain a n-simplicial algebra; to obtain a simplicial algebra

we use the usual process, namely the diagonal functor. We write H(n) (or often just H)

for the resulting functor from Crsn to SimpAlg.

To provide some insight into the behaviour of this nerve functor, we will look at

some simple examples. In each case M = (∂ : C → R) is a crossed module .

(i) If C = 0, so that M is merely the algebra R, then the associated internal

category is discrete and H(M) is the constant simplicial algebra, K(R, 0), having R in

all dimensions with all face and degeneracy maps being the identity morphism on R.
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(ii) If R = 0, then M is the module C and H(M) is given in dimension n by an

n-fold sum of copies of C. An inspection of the Moore complex shows that H(M) is a

K(C, 0), i.e. one has π1(H(M)) ∼= C and π1(H(M)) = 0 for i 6= 1.

Before looking at other examples we note that if

0→M0 →M1 →M2 → 0

is an exact sequence of crossed n-cubes, then

0→ H(n)(M0)→ H(n)(M1)→ H(n)(M2)→ 0

is an exact sequence of simplicial algebras. (As simplicial fibrations of simplicial algebras

are precisely epimorphisms, short exact sequences and fibration sequences are just two

views of the same thing.)

(iii) If ∂ : C → R is the inclusion of an ideal then as

C
= - C - 0

C

=

?
- R

∂

?
- R/C

?

is an exact sequence, we find H(M) projects down onto a K(R/C, 0) with fibre H(C, C,=).

This latter simplicial algebra has an “extra degeneracy” given by

s−1(cn−1, . . . , c1, c0) = (cn−1, . . . , c1, c0, 0)

which acts as a contraction. Thus H(M) is naturally homotopy equivalent to K(R/C, 0),

(i.e. H(M)→ K(R/C, 0) is a trivial fibration).

(This example is perhaps prettiest when ∂ is a split inclusion, i.e. R ∼= CoQ where

Q = R/C. In this case it is a simple matter to give a simplicial algebra homomorphism

from K(Q, 0) to H(M) which is a natural homotopy inverse to the quotient map (trivial

fibration) going in the other direction. In general one should not expect the homotopy

inverse to be a simplicial algebra morphism.)
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Using these examples, we can gain information on the homotopy type of H(M) in

general. We use the short exact sequence

Ker∂ - C - Im∂

0
?

- R

∂

?
- R
?

which gives the short exact sequence

H(M0)→ H(M)→ H(M2)

where M0 = (Ker∂ → 0 ), M2 = (Im∂ → R ). Our calculations tell us that H(M0) ∼=
K(Ker∂, 0 ) whilst H(M2) ' K(R/Im∂, 0 ). Both the homotopy equivalences and the

isomorphisms are natural.

There are analogues for commutative algebras of examples given by Loday. To gain

some insight into H(2), we look at crossed square

M =



L
λ - M

N

λ′

?

ν
- R

µ

?


.

Using the nerve functor in the two directions gives a bisimplicial algebra (Hp,q) with

Hp,q
∼= (Lp oN)q o (Mp o R)

where we have written Lp for L o Lo · · ·o L p-times, etc., the actions being via that

of R on L.

This bisimplicial algebra has H(2)(M) as its diagonal. One could thus use spectral

sequence techniques to investigate the homotopy modules of H(2)(M). These methods,

however, are not really fine enough here and the fibration sequence/exact sequence meth-

ods that we have seen in the one dimensional case will turn out to be more useful.

We now have functors

M(−, n) : SimpAlg→ Crsn and H : Crsn → SimpAlg.
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We clearly would hope that these were quasi-inverse to each other or at least were so “up

to n-type”. The following proposition does half of this; we will have occasion to prove

this result twice and also to look at a strengthened version. The second proof gives more

information, but the first one is fairly direct and helps with the understanding of what

HM looks like. (The opposite comparison will take a lot more work.)

Proposition 2.1 (First version) If E is any simplicial algebra and any n ≥ 0, then there

is an epimorphism

HM(E, n) −→ tn]E

with contractible kernel.

Proof: For n = 0 this is trivial, HM(E, 0) ∼= π0(E) ∼= t0]E.

For n = 1, there is again no problem

M(E, 1) =
(

Kerd1
0

Kerd1
0Kerd1

1

d1
1−→ E0

)
whilst (t1]E)1

∼= NE1
d2NE2

o s0(E0). (Fore More details see [4] ). Thus in this case there is

an isomorphism from HM(E, 1) to t1]E, since the evident isomorphism in dimension 0

and 1 extends via the degeneracies to higher order. 2

For future use we note that M(E, 1) can be split up, as in Lemma 1.4, as a crossed

module of “crossed 0-cubes”, namely

µ1 : M(t0]K, 0) −→M(t0]DecE, 0).

Taking H(0) gives us back our crossed module. This is, in fact, just another way of noting

that M(E, 1) or M(E, n) in general is π0 M(E, n). This will be needed several times in

what follows, seen each time from a slightly different viewpoint. Here we need the general

case

µn : M(K, n− 1) −→M(DecE, n− 1) (1)

The inductive hypothesis will therefore be the existence of a natural epimorphism

H(n−1)M(E, n − 1) −→ tn−1]E

having a contractible kernel and which is compatible with crossed module structures.

Again for n = 1 this is trivial.
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Applying H(n−1) to the situation in (1) gives us the diagram

H(n−1)M(K, n− 1)
'- tn−1]K

H(n−1)M(DecE, n− 1)
?

'
- tn−1]DecE

?

in which the horizontal maps are level wise trivial fibrations (epimorphisms that are

homotopy equivalence) whilst the vertical ones level wise crossed modules.

Next take the nerve of these crossed module structures. This gives a map of

bisimplicial algebras. On the left the diagonal gives us back E(n)M(E, n). On the right

the bisimplicial algebra one gets is as follows (in low dimensions)

---- K2 oK2 o E3

???? --- K2 o E3

????
-- E3

????

---- K1 oK1 o E2

??? --- K1 o E2

???
-- E2

???

---- K1 oK1 o E1

?? --- K0 o E1

??
-- E1

??

The decomposition En
∼= Kn−1 o En−1 may be substituted into this and on taking the

diagonal of the result, one obtains

---- K2 oK2 oK2 o E2

--- K1 oK1 oE1
-- K0 oE0

(again we only give this in low dimensions). It is easy to give explicit descriptions of

all the di and sj and to find a split epimorphism from this simplicial algebra to tn]E

(which we recall is isomorphic to tn−1]K o tn−1]DecE). The kernel of this epimorphism

is the subsimplicial algebra that in dimension n consists of all (kn, . . . , k0, 0) with all
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ki ∈ Kn. The “extra degeneracy” s−1(kn, . . . , k0, 0) = (s0kn, . . . , s0k0, 0, 0) acts as a

natural contraction on this kernel.

Combining this epimorphism with the one induced from the inductive hypothesis

completes the proof except to note that it clearly respects crossed module structures.

There is a similar result for the functor

Mn : SimpAlg −→ Simp(IncCrsn).

In fact we noted in [6] that there is a functor

Q : Simp(IncCrsn) −→SimpAlg

such that QMn
∼=Id. Using H(n) : Crsn →SimpAlg yields (by simplicial extension

dimension) wise followed by restriction)

sH(n) : Simp(IncCrsn) −→ BiSimpAlg

and hence a functor D(n) =diagsH(n) on composing with the diagonal functor from

bisimplicial algebras to simplicial algebras (cf. [2]). The strengthened version of the

following proposition compares D(n) with Q.

Proposition 2.2 There is a natural epimorphism

D(n) −→ Q

such that for any simplicial inclusion of crossed n-cube M,

D(n)M−→ QM

has a contractible kernel. In particular, D(n)Mn(E) is homotopy equivalent to E for any

simplicial algebra E.

Proof: For n = 0, there is nothing to prove. For n = 1, the main point to note

is that we have already proved that if C is an ideal of R with ∂ : C → R the inclusion

H(C, R, ∂) fits into the exact sequence

H(C, C, =) −→ H(C, R, ∂) ϕ−→ H(0→ R/C).
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So ϕ is an epimorphism with contractible kernel. Applying this to a simplicial inclusion

crossed module M gives an epimorphism of bisimplicial algebras

H(M) −→ H(0→ Q(C)).

As H(0→ R/C) is a constant simplicial algebra with value the algebra R/C, D(n)(0→
Q(C)) ∼= Q(C). The kernel of ϕ is constractible in one of its two directions and, therefore,

yields a contractible simplicial algebra on applying “diag”. The result for n = 1 follows.

As for weaker version of this result, we next suppose the result for n− 1. If M is

a simplicial inclusion crossed n-cube, then considering the nth direction crossed module

µn :M1 −→M0

we can form up an exact sequence as before

M1
= - M1

- 0

M1

=

? µn- M0

µn

?
- Cokerµn

?

As H(n) is exact, so is D(n), so

D(n)(C)→ D(n)(0→ Cokerµn)

is an epimorphism with naturally contractible kernel. However

D(n)(0→ Cokerµn) ∼= D(n−1)(Cokerµn)

and Cokerµn is a simplicial inclusion crossed (n− 1)-cube having Q(M) as its quotient.

By hypothesis, the natural map from D(n−1)(Cokerµn) to Q(M) is an epimorphism with

naturally contractible kernel hence the composite from D(n)(M) to Q(M) is also one.

As Q(Mn(E)) ∼= E, there is noting left to prove. 2
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3. Loday’s Γ-construction.

In [6], we saw that applying π0 to any simplicial crossed n-cube results in a crossed

n-cube. One of the neatest types of crossed n-cube is that which comes from an ideal

(n + 1)-ad of algebras.

Loday in his fundamental paper [19] linked up catn -groups with cubes of fibrations.

In [22] T.Porter interpreted some of Loday’s ideas into the context of simplicial groups

and crossed n-cubes. The analogue here of Loday’s construction of the cube of fibrations

associated with a catn -groups is what will be called Loday’s Γ-construction, since the

basic idea is already apparent in [19]. This enables us to do analogous results for

commutative algebras

Suppose M = (C, R, ∂) is a crossed module, then there is a short exact sequence

0 - C
= - C

C
? ε- CoR

µ

? t - R

∂

?

of crossed modules, where ε(c) = (−c, ∂(c)), µ(c) = (c, 0) and t(c, r) = ∂(c)+ r, so is the

“target map” of the category structure of the cat1 -algebra of M. Applying H to each

term gives a short exact sequence of simplicial algebras. If we write Γ<1>M = (0, C, 0),

and Γ∅M = (C, C oR, ∂) then the corresponding exact sequence is

HΓ<1>M
ε∗−→ HΓ∅M−→ HM

Our previous calculations shows that Γ<1>M ' K(C, 0), Γ∅M ' K(R, 0) and

that

(π0HΓ<1>M
π0ε∗−→ π0HΓ∅M) ∼= (C ∂−→ R).

We note that (HΓ<1>M, HΓ∅M, ε∗) is a simplicial inclusion crossed module, i.e. is

derived from a simplicial ideal 2-ad and we have incidently proved.

Proposition 3.1 (dimension 1).

Any crossed module is isomorphic to π0 of a simplicial inclusion crossed module

all of whose simplicial algebras have trivial homotopy modules in dimension ≥ 1.
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The idea behind the proof of the corresponding result for crossed n-cubes of

algebras is to use the Γ-operation in each direction in turn. For this purpose we relabel

them Γ1 and Γ0 respectively, (i.e. Γ1 is the old Γ<1>, etc.). These are two functors

from crossed modules to themselves and ε : Γ1 −→ Γ0 is a natural transformation.

If we apply these Γ’s to a crossed square M =

(
L M

N R

)
, then we can do so

in two directions as there are two crossed module structures. This gives four different

crossed squares:

Γ1
1(M) =

(
0 L

0 N

)
Γ2

1(M) =

(
0 0

L M

)

Γ1
0(M) =

(
L L oM

N N o R

)
Γ2

1(M) =

(
L M

LoN M o R

)

and with the ε ’s yields an inclusion crossed 4-cube.

Similarly, of course, Γ0 and Γ1 can be applied independently to the n-different

directions of a crossed n-cube giving 2n different operations. Γim, i ∈< n > , m = 0 or

1. If i 6= j, for any l, m, ΓilΓ
j
m = ΓjmΓil , hence if M = (MA) is any crossed n-cube , we

can define a crossed n-cube Γ∗M of crossed n-cubes by

if A ⊆< n >, ΓAM = Γnα(n) · · ·Γ1
α(1)M

where

Γiα(i) =

{
Γi1, if i ∈ A

Γi0, if i /∈ A.

If i ∈ A, µi : ΓAM−→ ΓA−{i}M is given by

µi = Γnα(n) · · ·Γi+1
α(i+1)ε

iΓi−1
α(i−1) · · ·Γ

1
α(1)M

where εi : Γi1 −→ Γi0 in the ε-maps, sending m to (m,µi(m)), in the ith direction if i /∈
A, µi is the identity.

As all the µi ’s are inclusions, we can take h-maps to be multiplications.

Since each of the original Γ-operations gave K(π, 0)’s, it is clear that for any

A ⊆< n >, H(n)ΓAM ' K(MA, 0). In fact, a simple inductive proof gives
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Proposition 3.2 (General case)

For any crossed n-cube M, there is a simplicial inclusion crossed n-cube, E(M) =

(H(n)ΓAM), all of whose simplicial algebras have the homotopy types of K(π, 0) ’s, such

that π0E(M) ∼=M.

Thus π0E is naturally isomorphic to the identity (E is an embedding of Crsn as

a retract of Simp(IncCrsn).) The next result gives information on the other composite

Eπ0.

Proposition 3.3 There is a functor

H : Simp(IncCrsn) −→ Simp(IncCrsn)

with natural transformations

Id
δ−→ H δ′−→ Eπ0

such that for each B ⊆< n > and simplicial inclusion crossed n-cube, M, δ(M)B and

δ′(M)B induce isomorphisms on π0.

Proof: Let M be in Simp(IncCrsn). Applying H(n)Γ to each level of M gives

a bisimplicial inclusion crossed n-cube. There are two different directions in which we

can take π0. These give H(n)Γπ0M and M itself.

This implies that the induced maps

δ : diagH(n)ΓM −→M

δ : H(n)ΓM −→ H(n)Γπ0M

are as required by statement of the proposition. We therefore can take H(M) =diagH(n)ΓM.

2

In [6], the functor Q : Simp(Inc, Crsn) −→ SimpAlg was introduced. Restrict-

ing initially to the case n = 1, we have

Q(F −→ E) = E/F
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In particular, we can start with M = (C, R, ∂) forming up to exact sequence

0 - C
= - C

C
? ε- CoR

µ

? t - R

∂

?

then taking H, we obtain the short exact sequence

H(0, C, 0) −→ H(C, C o R, µ) −→ H(M)

i.e. QHΓM = H(M). This example extends easily to higher dimensions since both Q
and Γ can be defined iteratively. We thus have the following lemma

Lemma 3.4 The functors E and Q satisfy QE ∼= H.

4. The composite MQ

So far we have the diagram

Simp(IncCrsn)
π0-�
E

Crsn

SimpAlg

M
6

Q

? � H

M
- Crsn

=

?

and a reflexive subcategory Tn] of SimpAlg. These functors satisfy: QM ∼=Id, π0E ∼=Id,

QE = H and M = π0M is an embedding when restricted to Tn]. There is also a functor

H : Simp(IncCrsn) −→ Simp(IncCrsn)

together with a natural transformations

Id←−H −→ Eπ0

so that if E is in Tn]

M(E) '←− HM(E) '−→ Eπ0M(E)
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ARAVASİ, KOÇAK, ALP

and thus on applying Q

E '←− QHM(E) '−→ EM(E, n).

To complete the list of information it is necessary to gain some insight into the

composite MH. Experiments in low dimensions show it to be closely connected with

H′Γ, i.e. with the result of applying the diagonal of the multinerve H(n) in the “other”

n-directions of Γ (E = HΓ was formed using half of the 2n directions). In this connection,

although “there”, is clearly difficult to pin down and as there is an elementary alternative

approach that attacks not MH directly but MQ, it seems preferable to attack MH by

this second route. We know QM ∼=Id and the identity on Simp(Inc.Crsn), then we

can hope to use the equations: MH = π0MQE and π0E ∼=Id to extend that comparison

to one between MH and the identity on Crsn.

We start with a lemma that was suggested by the work of Conduché. In [12], he

introduced a notion of a 2-crossed module (module crosié généralisé de longuer 2). His

unpublished work determines that there exists an equivalence (up to homotopy) between

the category of crossed squares and that of 2-crossed modules of groups. The first author

proved in [3] that this result is true for the algebra case. The outline of the proof is as

follows: for any crossed square

L
λ - M

N

λ′

?

ϑ
- R

µ

?

the chain complex

L
(−λ,λ)→ M oN

µ+ϑ→ R

is a 2-crossed module. In a 2-crossed module

C2→
β

C1→
α

C0

the crossed multiplication, cd − α(c) · d for c, d ∈ C1, for which if α was a crossed

module would be zero, is required to be the image of an element {c, d} ∈ C2. The idea
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of Conduché’s proof is that the h-map from M × N to L is used to construct such a

lifting of crossed multiplications. This suggests (and in fact implies) that in the case of a

crossed square
M oN

Im(−λ, λ′)
−→ R

should be a crossed module. We need a particular case of this result. As Conduché’s

verification is, for the general case, quite long, it is convenient that for inclusion crossed

squares the result is more or less trivial as it is a consequence of the “Isomorphism

Theorems” of elementary algebra theory.

Lemma 4.1 Let

M ∩N
λ - M

N

λ′

?

ϑ
- R

µ

?

be an inclusion crossed square. Let 4 : M ∩N→M oN be the twisted diagonal 4(m) =

(−m, m). Then Im4 is a normal subalgebra of M oN and the morphisms µ, ν induce

an inclusion crossed module
M oN

Im4
∂−→ R

where ∂(m, n)+Im4 = µ(m) + ν(n).

Proof: The map ∂′ : M oN→R giving by ∂(m, n) = µ(m) + ν(n) is an algebra

homomorphism as is easily checked. Its kernel is subalgebra consisting of those (m, n)

such that µ(m) = −ν(n) but µ and ν are inclusions so this is precisely Im4, hence ∂

is a monomorphism. Its image is clearly M + N which is ideal in R. 2

We next look at the homotopy type of this crossed module.
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Lemma 4.2 (Noether Isomorphism Theorem)

If

M ∩N
λ - M

N

λ′

?

ϑ
- R

µ

?

is as before an inclusion crossed square and

∂ : M + N→R

is the inclusion crossed module formed from it, then there is a natural map of crossed

modules

M + N
∂ - R

N/M ∩N
ϑ
-

q

?
R/M

given by the obvious quotient and H of the kernel of q is contractible.

As suggested above, this is a direct consequence of the natural isomorphisms:

N/M ∩ N ∼= (M + N)/M. The kernel is thus isomorphic to the identity map crossed

module (M, M,Id) and H applied to this gives a contractible simplicial algebra. (We say

q is a crossed module equivalence.)

We note that in fact there are two crossed module equivalences

M/M ∩N M + N M/M ∩N

� q1 q2 -

R/M

ϑ

?
R
?

R/N

µ

?

Crossed module equivalences induce isomorphisms on π1 and π0 i.e. on kernels and cok-

ernels, but here the fact that the quotient crossed modules ν and µ are monomorphisms
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means that π1 in both cases is trivial, whilst the result on π0 ’s is merely that q1 and

q2 both induce the identity homomorphisms on P/M + N. However even though the

immediate consequence of these two results may appear trivial, they themselves can be

applied at each level in a simplicial inclusion crossed square to get useful information.

Suppose

0→M ∂→ P→ Q→ 0

is an exact sequence of simplicial algebras. In the context of this section, we think of

(M, P, ∂) as a simplicial inclusion crossed module N with Q as Q(N ) and we wish the

compare (M, P, ∂) and M1(Q).

We use M1 : SimpAlg → Simp(IncCrs1) applying it to both M and P . This

gives a diagram of simplicial algebras

KerδM0 - KerδP0 - KerδQ0

Dec1M
?

- Dec1P
?

- Dec1Q
?

M
? ∂ - P

?
- Q
?

in which all rows and columns are exact. The top left hand square is a simplicial inclusion

crossed square and so we can apply the last two previous lemmas at each level to construct

a simplicial inclusion crossed module, which for simplicity we denote

R→ Dec1P

(so R =(Dec1M) + (KerδP0 )). There are quotient maps
M

↓
P

 q1←−


R

↓
Dec1P

 q2−→


KerδQ0
↓

Dec1P

 =M1(Q)

whose kernels are both contractible at each level. Thus if we apply H in each level and

then take diagonal of the resulting bisimplicial algebras we find q1 and q2 induce trivial
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fibriations with explicit natural constractions on the fibers. In particular if (M, P, ∂) is

a resolution of crossed module (M, R, ∂), then applying M to the nerve of (M, R, ∂)

produce an equivalent simplicial inclusion crossed module.

We suppose that M. = (MA) is a simplicial inclusion crossed n-cube. As usual,

we write Q(M) for the quotient simplicial algebra. As the process we will use will take n-

steps, it will help to denote by Q1, Q2, · · · the effect of using the 1-dimensional quotienting

operation in direction 1,2 etc. Thus, for example, in an inclusion crossed square we have

M<2>
µ1- M{1}

q1- M{1}/M<2>

M{2}

µ2

?
- M∅

µ2

?
- M∅/M{2}

µ2

?

M{2}/M<2>

q2

?
- M∅/M{1}

q2

? q1- M∅/M{1}M{2}

q2

?

Q1(M) is the crossed module (M{1}/M<2>, M∅/M{2}, µ2) whilst Q2Q1(M) is the alge-

bra M{1}/M{1}M{2} which is Q(M).

We will consider an inclusion crossed n-cube M to be both an n-dimentional

resolution of Q(M) and a crossed resolution of any of the Qi(M) which are its quotient

crossed (n− 1)-cubes.

We first apply our previous result to (n− 1)-cube of exact sequences of simplicial

inclusion crossed modules

(MA
µn−→MA−{n}

qn−→ Qn(M)A−{n})

where A ⊆< n > is such that n ∈ A.

We find that there is a simplicial inclusion crossed n-cube Rn = (rn : Rn,A →Dec1MA−{n})
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and maps

MA Rn,A−{n} Kerδ0

� - =M1(Qn(M))

MA−{n}
?

Dec1MA−{n}

?
Dec1Qn(M)A−{n}

?

which have contractible kernels, i.e. the H(n) -functor applied to the kernels gives con-

tractible simplicial algebras. We repeat this using direction n−1 starting with the right-

hand simplicial crossed n-cube. This second stage produces a new simplicial inclusion

crossed n-cube

Rn−1 = (rn−1 : Rn−1,B−{n−1}→ Dec2Qn(M)B−{n−1})

with maps

M1(Qn(M))← Rn−1 →M1(Qn−1(M1(Qn(M))))

which induce trivial fibrations (as before) on applying H(n) . The simplicial inclusion

crossed n-cube M1(Qn(M)) has one direction in the form of an image of a (one dimen-

sional) M functor; the result of the repeated process has this structure in two directions

and is isomorphic to M2
1(Qn−1Qn(M)) (by the third isomorphism theorem for algebras!).

However, for any simplicial algebra, applying, M1, i.e. the functor from SimpAlg to

Simp(IncCrs1) twice yields M2 :SimpAlg→Simp(IncCrs2) so we can string the

two diagrams together to connect M by a chain with M2(Qn−1Qn(M)). Continuing

like this in direction (n− 2) and so on, gives

M← Rn →M1QnM← Rn−1 →M2Qn−1QnM← · · · →Mn−1Q2 · · ·QnM← R1MnQM.

Each of the maps in this “zigzag” has the property that in each simplicial dimension

its kernel yields a naturally contractible simplicial algebra on application of H(n) . Now

this latter property will be preserved at connected component level; more precisely if we

look at the image of the zigzag under π0, we find that each kernel again has a trivial

crossed module structure (M, M,Id) in at least direction and H(n) of that kernel will be

contractible.
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It is now the moment to introduce the notion of quasi-isomorphism for crossed

n-cubes. We start with basic observation that has been used many times already.

Any map f : M → N of crossed n-cubes that is an epimorphism at each corner of

the n-cube induces an epimorphism (and hence a fibration) of the simplicial algebras,

H(n)f : H(n)M → H(n)N. We will say f is a trivial epimorphism if H(n)f is a

trivial fibriation, i.e. if KerH(n)f is contractible. We write
∑

for the class of trivial

epimorphisms in Crsn and Ho(Crsn) or Crsn(
∑−1) for corresponding category of

fractions. A map f in Crsn will be called a quasi-isomorphism if the corresponding map

[f ] in Ho(Crsn) is an isomorphism. We can thus summarise the discussion above as

follows.

Proposition 4.3 Given any simplicial inclusion crossed n-cube χ there is a zigzag of

quasi-isomorphism between π0(χ) and π0Mn(Q(χ)), i.e. π0(χ) and π0Mn(Q(χ)) are

isomorphic in Ho(Crsn). In particular for any crossed n-cube M, M is isomorphic to

M(H(M), n) in Ho(Crsn).

One can equally well use the above discussion to prove a result purely within

Simp(IncCrsn). If we say an epimorphism f in Simp(IncCrsn) is a trivial fibration

if Kerf is contractible (by which we mean DnKerf =diagH(n) Kerf is contractible),

then again one has a class
∑

of trivial fibrations and can formally invert them to form

Ho(Simp(IncCrsn)). We have proved above that any χ in Simp(IncCrsn) is quasi

isomorphic (i.e. isomorphic within Ho(Simp(IncCrsn))) to MnQ(χ)).

To complete the analysis of the functor H and M(−, n) it is necessary to check

what they do to quasi-isomorphisms and homotopy equivalences. Firstly by definition

H sends trivial fibrations to trivial fibrations and hence sends quasi-isomorphisms to

homotopy equivalences. Now assume f : E → F is homotopy equivalence of simplicial

algebras and that E and F are both in Tn] . Then f factors within SimpAlg as jf if

where if is a trivial fibration and jf is a splitting of a trivial fibration, pf . The usual

construction is via the mapping cocylinder, Mf . This is homotopically equivalent to X

via the projection pf : Mf → X. This simplicial algebra Mf is not necessarily in Tn],

but tn]M
f is and pf and the other map, if : Mf → Y, both factor via Mf → tn]M

f .

Thus the factorisation of f as a composite of trivial fibration and a splitting of a trivial
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fibration can be made within Tn].

If f is already a trivial fibriation, the diagram

H(M(E, n))
' - E

H(M(F, n))

H(M(f))

? ' - F

' f

?

shows that M(f) is a trivial fibriation in Crsn. As in general M(f) = M(jf )+M(if), we

get that if f is a homotopy equivalence, [M(f)] = [M(if)]− [M(pf)] is an isomorphism,

hence that M(f) is a quasi-isomorphism.

This argument relied on E and F being n-truncated, if they are not, then we can

try for a result using Mn rather than M( , n). We can again reduce to the case that f

is a trivial fibriation.

We want to show that Mn(f) is a quasi-isomorphism in Simp(Inc.Crsn) i.e.

that DnMn(f) is a homotopy equivalence in SimpAlg. Using Proposition 7 (strong

version), this is simple. We have the diagram

D(n)Mn(E)
' - E

D(n)Mn(F)

D(n)Mn(f)

? ' - F

' f

?

and by construction D(n)Mn(f) is an epimorphism. It follows that it is a trivial fibration.

We thus have the following theorem

Theorem 4.4 The functors Mn and D(n) induce an equivalence between Hon(SimpAlg

) and Ho(Simp(IncCrsn)).

Thus “entire connected homotopy types can be encoded” in this manner, but one

has information about the m-types for m > n still in mixed simplicial algebraic gadget.

In the second part of this paper we will consider how one may obtain information in all

dimensions with an algebraic model, namely the homotopy systems/crossed complexes of

Whitehead [23] more recently studied in depth by Brown and Higgins, (cf. [8]).
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