Tr. J. of Mathematics22 (1998) , 273 - 281.© TÜBİTAK

PULLBACKS OF CROSSED MODULES AND CAT¹-GROUPS

Murat Alp

Abstract

In this paper, wer define the pullback cat¹-groups and we showed that the category of bullback cat¹-group is equivalent to the category of pullback crossed modules.

1991 A. M. S. C.: 13D99, 16A99, 17B99, 18D35.

Keywords: Crossed modules, cat¹-groups, pullback.

1. Introduction

Crossed modules are usefully regarded as 2-dimensional forms of groups. They were introduced by J. H. C. Whitehead in [8], and have powerful topological applications [3, 4, 5, 9]. Loday in [5] showed that the category of crossed modules is equivalent to that of cat¹-groups. We implemented crossed modules and cat¹-groups structures to the computed using the group theory language GAP [6] as a package in [7]. We also enumerated cat¹-groups of low order and group order 41-47 in [2] and [1] using this program package XMOD.

Our aim is to define pullback cat^1 -groups and to show that the equivalence between cat^1 -groups and crossed modules due to Loday [5] takes pullback cat^1 -groups to the pullback crossed modules defined by Brown and Higgins in [3].

2. Crossed Modules and Cat¹-Groups

In this section we recall the descriptions of two equivalent categories: The category of crossed modules and their morphisms; and the category of cat1-groups and their morphisms.

A crossed module $\chi = (\partial : S \to R)$ consists of a group homomorphism ∂ , called the boundary of χ , together with an action $\alpha : R \to Aut(S)$ satisfying, for all $s, s' \in S$ and $r \in R$,

$$\begin{aligned} \mathbf{XM1}: \quad \partial(s^r) &= r^{-1}(\partial s)r \\ \mathbf{XM2}: \quad s^{\partial s'} &= s'^{-1}ss'. \end{aligned}$$

The standard examples of crossed modules are:

- 1. Any homomorphism $\partial: S \to R$ of abelian groups with R acting trivially on S may be regarded as a crossed module.
- 2. A conjugation crossed module is an inclusion of a normal subgroup $S \leq R$, where R acts on S by conjugation.
- 3. A central extension crossed module has as boundary a surjection $\partial : \partial^{-1}r$.
- 4. An automorphism crossed module has as its range a subgroup R of the automorphism group Aut (S) of S which contains the inner automorphism group of S. The boundary maps $S \in S$ to the inner automorphism of S by s.
- 5. An R-Module crossed module has an R-module as source and ∂ as the zero map.
- 6. The direct product $\chi_1 \times \chi_2$ of two crossed modules has source $S_1 \times S_2$, range $R_1 \times R_2$ and boundary $\partial_1 \times \partial_2$, with R_1, R_2 acting trivially on S_2, S_1 respectively.
- 7. An important motivating topological example of crossed module due to Whitehead [8] is the boundary $\partial : \pi_2(X, A, x) \to \pi_1(A, x)$ from the second relative homotopy group of a based pair (X, A, x) of topological spaces, with the usual action of the fundamental group $\pi_1(A, x)$.

ALP

A morphism between two crossed modules $\chi = (\partial : S \to R)$ and $\chi' = (\partial' : S' \to R')$ is a pair (σ, ρ) , where $\sigma : S \to S'$ and $\rho : R \to R'$ are homomorphisms satisfying

$$\partial'\sigma=\rho\partial,\ \delta(s^\tau)=(\delta s)^{\rho\tau}.$$

In [5], Loday reformulated the notion of a crossed modules as a cat¹-group, namely a group G with a pair of homomorphisms $t, h : G \to G$ having a common image R and satisfying certain axioms. We find it convenient to define a cat¹-group $C = (e; t, h : G \to R)$ as a group G with two surjections $t, h : G \to R$ and an embedding $e : R \to G$ satisfying:

CAT1:
$$te = he = id_R$$

CAT2: $[kert, kerh] = \{1_G\}.$

The maps t, h are often called to as the source and target, but we choose to call them tail and head of C, because source is the GAP term for the domain of a function. A morphism $C \to C'$ of cat¹-groups is a pair (γ, ρ) where $\gamma: G \to G'$ and $\rho: R \to R'$ are homomorphisms satisfying

$$h'\gamma = \rho h, t'\gamma = \rho t, e'\rho = \gamma e.$$

3. Pullback crossed modules

Let $\chi = (\partial : S \to R)$ be a crossed R-module and $i : Q \to R$ be a morphism of groups. Then $i^*\chi = (\partial^{\bullet} : iS \to Q)$ is the pullback of χ by i, where $i^*S = \{(q,s) | \in Q \times S | iq = \partial_s\}$ and $\partial^{\bullet}(q,s) = q$. The action of Q on $i^{**}S$ is given by

$$(q_1, s)^q = (q^{-1}q_1q, s^{iq}). (0.1)$$

The verification of the crossed module axioms is given in [4] as follows XM1

$$\partial^{\bullet}((q,s)^{q\prime}) = \partial^{\bullet}(q^{q\prime},s^{iq'})$$

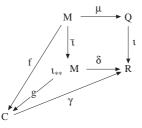
= $q^{q\prime}$

$$= q'^{-1}qq'$$
$$= q'^{-1}\partial^{\bullet}(q,s)q'$$

XM2

where $(q,s), (q',s') \in i^*S$.

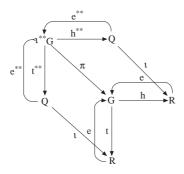
The universal property of induced crossed modules is the following: Let $\chi = (\mu : M \to Q)$ be a crossed module and let $i^{**}\chi = (\delta : i_{**}M \to R)$ be induced by the homomorphism $i: Q \to R$. In the diagram



the pair $(\bar{\imath}, \imath)$ is a morphism of crossed modules such that for any crossed R-module $\mathcal{Y} = (\gamma : C \to R)$ and any morphism of crossed modules $(f, \imath) : \chi \to \mathcal{Y}$, there is a unique morphism $(g, 1) : \imath_{**}\chi \to \mathcal{Y}$ of crossed R-modules such that $g\bar{\imath} = f$.

4. Pullback Cat¹-groups

A pullback cat^1 -group is defined as follows.



Let $C = (e; t, h : G \to R)$ be a cat¹-group and let $i : Q \to R$ be a group homomorphism. Define $e^{**}; t^{**}, h^{**}: i^{**}G \to Q$ to be the pullback of G where

$$i^{**}G = \{ (q_1, g, q_2) \in Q \times G \times | iq_1 = tg, iq_2 = hg \},\$$

 $t^{**}(q_1, g, q_2) = q_1, h^{**}(q_1, g, q_2) = q_2$ and $e^{**}(q) = (q, eiq, q)$. Multiplication in $i^{**}G$ is componentwise. The pair (π, i) is a morphism of cat^1 -groups where $\pi : i^{**}G \to G, (q_1, g, q_2) \mapsto g$.

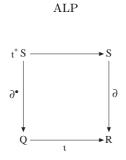
We now verify the cat^1 -group axioms:

$$\begin{split} t^{**}e^{**}(q) &= t^{**}(q,e\imath q,q) = q, \\ h^{**}e^{**}(q) &= h^{**}(q,e\imath q,q) = q. \end{split}$$

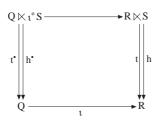
So $t^{**}e^{**} = h^{**}e^{**} = id_q$ and CAT1 is satisfied.

To prove CAT2, suppose $a = (q'_1, g_1, q_1) \in ker t^{**}, b = (q_2, g_2, q'_2) \in ker h^{**}$. Then $q'_1, = q'_2 = 1$ so, by the definition of i^{**} , we have $g_1 \in ker t, g_2 \in ker h$. Then $[a, b] = (1_Q, [g_1g_2], 1_Q) = (1_Q, 1_G, 1_Q)$.

Proposition 4.1 If $i^*\chi$ is the pullback of the crossed module χ over $i: Q \to R$ and if \mathcal{C}, \mathcal{D} are the cat¹-groups obtained from $\chi, i^*\chi$ respectively, then $\mathcal{D} \cong i^{**}\mathcal{C}$. **Proof.**

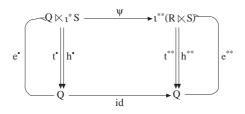


Starting with the pullback crossed module $i^*\chi = (\partial^{\bullet} : i^*S \to Q)$, the source group of \mathcal{D} is defined as the semi-direct product $Q \times i^*S$.



The tail, head and embedding of \mathcal{D} are respectively given by

We define an isomorphism of cat¹-groups ψ , $id_Q : \mathcal{D} \to i^{**}\mathcal{C}$,



where

278

$$\psi(q',(q,s))=(q',(\imath q',s),q'q).$$
 First note that $\psi(q',(q,s))\in \imath^{**}(R\times S).$ Because

$$t(\imath q',s)=\imath q'$$

and

$$h(\imath q', s) = (\imath q')(\partial s) = (\imath q')(\imath q) = t(q'q).$$

We verify that ψ is a homomorphism as follows:

$$\begin{split} \psi((q'_1, s_1))((q'_2, (q_2, s_2) &= \psi(q'_1q'_2, (q^{q'_2}q_2, s^{\imath q'_2}s_2)) \\ &= \psi(q'_1q'_2, (\imath(q'_1q'_2), s^{\imath q'_1}s_2), q'_1q_1q'_2q_2) \\ \psi(q'_1, (q'_1, s_1))\psi(q'_2, (q'_2, s_2)) &= (q'_1, (\imath q'_1, s_2), q'_1q_1)(q'_2, (\imath q'_2, s_2), q'_2q_1) \\ &= (q'_1q'_2, (\imath q'_1, s_2)(\imath q'_2, s_2), q'_1q_1q'_2q_2) \\ &= (q'_1q'_2, ((\imath q'_1)(\imath q'_2), s^{\imath q'_2}s_2), q'_1q_1q'_2q_2) \end{split}$$

The inverse of ψ is given by $\psi^{-1}(q_1,(r,s),q_2)=(q_1,(q_1^{-1}q_2,s))\,.$ Then

$$t^{**}\psi(q', (q, s)) = t^{**}(q', (uq', s), q'q)$$

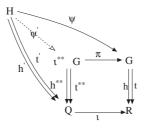
= q'
= t[•](q', (q, s)),
$$h^{**}\phi(q', (q, s)) = h^{**}(q', (uq', s), q'q)$$

= q'q
= h[•](q', (q, s)),
$$\psi e^{\bullet}(q) = \psi(q, (1_Q, 1_S))$$

= (q, (uq, 1_s), q)
= e^{**}(q),

so the diagram commutes and the proof is complete.

The universal property of induced cat^1 -group is the following. Let $\mathcal{C} = (e;t,h: G \to R)$ be a cat^1 -group and let $i^{**}\mathcal{C} = (e^{**};t^{**},h^{**}:i^{**}G \to Q)$ be induced by the homomorphism $i: Q \to R$ is given by the diagram



the pair (π, i) is a morphism of cat¹-group such that for any cat¹-group $\mathcal{H} = (e'; t', h': H \to Q)$ and any morphism of cat¹-group $(\phi, i) : \mathcal{C} \to \mathcal{H}$ there is a unique morphism $((\psi', 1) : i^{**}\mathcal{C} \to \mathcal{H})$ of cat¹-groups such that $\pi\psi' = \psi$.

References

- Alp, M., Enumeration of Cat¹-groups of group order 41-47, anadolu Üniversitesi Fen Fakültesi Dergisi, 1997, Sayı 3 79-90.
- [2] Alp, M. and Wensley, C. D., Enumeration of Cat¹-groups of low order, U. W. B. preprint, 96.05, 15pp.
- [3] Brown, R. and Higgins, P. J., On the connection between the second relative homotopy groups of some related space, Proc. London Math. Soc., (3) 36 (1978) 193-212.
- [4] Brown, R. and Wensley, C. D., On finite induced crossed modules, and the homotopy 2-type of mapping cones, Theory and Applications of Categories, 1 (3) (1995) 179-202.
- [5] Schönert, M. et al, Gap: groups, Algorithms, and Programming, Lehrstuhl D f
 ür Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, third edition, 1993.

- [6] Wensley, C. D., and Alp. M., XMOD, Crossed modules and Cat¹-groups in GAP, version 1.3 Manual for the XMOD share package, (1996).
- [7] Whitehead, J. H. C., On adding relations to homotopy groups, Ann Math., 47 (1946) 806-810.
- [8] Whitehead, J. H. C., Combinatorial homotopy II, Bull. A. M. S., 55 (1949) 453-496.

Murat ALP School of Mathematics University of Wales, Bangor Gwynedd, LL57 1UT, UK. email: map006@bangor.ac.uk Received 13.10.1997