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Abstract

In this paper, wer define the pullback cat1 -groups and we showed that the

category of bullback cat1 -group is equivalent to the category of pullback crossed

modules.
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1. Introduction

Crossed modules are usefully regarded as 2-dimensional forms of groups. They

were introduced by J. H. C. Whitehead in [8], and have powerful topological applications

[3, 4, 5, 9]. Loday in [5] showed that the category of crossed modules is equivalent to

that of cat1 -groups. We implemented crossed modules and cat1 -groups structures to

the computed using the group theory language GAP [6] as a package in [7]. We also

enumerated cat1 -groups of low order and group order 41-47 in [2] and [1] using this

program package XMOD.

Our aim is to define pullback cat1 -groups and to show that the equivalence between

cat1 -groups and crossed modules due to Loday [5] takes pullback cat1 -groups to the

pullback crossed modules defined by Brown and Higgins in [3].
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2. Crossed Modules and Cat1 -Groups

In this section we recall the descriptions of two equivalent categories: The category

of crossed modules and their morphisms; and the category of cat1-groups and their

morphisms.

A crossed module χ = (∂ : S → R) consists of a group homomorphism ∂ , called

the boundary of χ , together with an action α : R → Aut(S) satisfying, for all s, s′ ∈ S
and r ∈ R ,

XM1 : ∂(sr) = r−1(∂s)r

XM2 : s∂s
′

= s′−1ss′.

The standard examples of crossed modules are:

1. Any homomorphism ∂ : S → R of abelian groups with R acting trivially on S may

be regarded as a crossed module.

2. A conjugation crossed module is an inclusion of a normal subgroup S E R , where

R acts on S by conjugation.

3. A central extension crossed module has as boundary a surjection ∂ : ∂−1r .

4. An automorphism crossed module has as its range a subgroup R of the automor-

phism group Aut (S) of S which contains the inner automorphism group of S . The

boundary maps S ∈ S to the inner automorphism of S by s.

5. An R-Module crossed module has an R -module as source and ∂ as the zero map.

6. The direct product χ1×χ2 of two crossed modules has source S1×S2 , range R1×R2

and boundary ∂1 × ∂2 , with R1, R2 acting trivially on S2, S1 respectively.

7. An important motivating topological example of crossed module due to Whitehead

[8] is the boundary ∂ : π2(X,A, x) → π1(A, x) from the second relative homotopy

group of a based pair (X,A, x) of topological spaces, with the usual action of the

fundamental group π1(A, x) .
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A morphism between two crossed modules χ = (∂ : S → R) and χ′ = (∂′ : S′ → R′)

is a pair (σ, ρ) , where σ : S → S′ and ρ : R→ R′ are homomorphisms satisfying

∂′σ = ρ∂, δ(sτ ) = (δs)ρτ .

In [5], Loday reformulated the notion of a crossed modules as a cat1 -group, namely a group

G with a pair of homomorphisms t, h : G→ G having a common image R and satisfying

certain axioms. We find it convenient to define a cat1 -group C = (e; t, h : G → R) as a

group G with two surjections t, h : G→ R and an embedding e : R→ G satisfying:

CAT1 : te = he = idR

CAT2 : [ker t, kerh] = {1G}.

The maps t, h are often called to as the source and target, but we choose to call them

tail and head of C , because source is the GAP term for the domain of a function. A

morphism C → C′ of cat1 -groups is a pair (γ, ρ) where γ : G→ G′ and ρ : R → R′ are

homomorphisms satisfying

h′γ = ρh, t′γ = ρt, e′ρ = γe.

3. Pullback crossed modules

Let χ = (∂ : S → R) be a crossed R-module and ı : Q → R be a morphism of

groups. Then ı∗χ = (∂• : ıS → Q) is the pullback of χ by ı, where ı∗S = {(q, s)| ∈
Q× S|ıq = ∂s} and ∂•(q, s) = q . The action of Q on ı∗∗S is given by

(q1, s)q = (q−1q1q, s
ıq). (0.1)

The verification of the crossed module axioms is given in [4] as follows

XM1

∂•((q, s)q′) = ∂•(qq′, sıq
′
)

= qq′
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= q′−1qq′

= q′−1∂•(q, s)q′

XM2

(q′, s′)−1(q, s)(q′, s′) = (q′−1, s′−1(q, s)(q′, s′)

= (q′−1qq′, s′−1ss′)

= (qq′, s∂s
′
)

= (q, s)q
′

=
(

(q, s)∂
•q′ , s′

)
where (q, s), (q′, s′) ∈ ı∗S .

The universal property of induced crossed modules is the following: Let χ = (µ :

M → Q) be a crossed module and let ı∗∗χ = (δ : ı∗∗M → R) be induced by the

homomorphism ı : Q→ R . In the diagram

M Q

RM
f

µ

δ

γ

ι

ι∗∗

g

C

ι−

the pair (̄ı, ı) is a morphism of crossed modules such that for any crossed R-module

Y = (γ : C → R) and any morphism of crossed modules (f, ı) : χ→ Y , there is a unique

morphism (g, 1) : ı∗∗χ→ Y of crossed R- modules such that gı̄ = f .
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4. Pullback Cat1 -groups

A pullback cat1 -group is defined as follows.

** G Q

G RQ

R

ι

ι

ι

e** t**

e**

h**

π

h

e

e t

Let C = (e; t, h : G→ R) be a cat1 -group and let ı : Q→ R be a group homomorphism.

Define e∗∗; t∗∗, h∗∗ : ı∗∗G→ Q to be the pullback of G where

ı∗∗G = {(q1, g, q2) ∈ Q×G× |ıq1 = tg, ıq2 = hg},

t∗∗(q1, g, q2) = q1, h
∗∗(q1, g, q2) = q2 and e∗∗(q) = (q, eıq, q) . Multiplication in ı∗∗G

is componentwise. The pair (π, ı) is a morphism of cat1 -groups where π : ı∗∗G →
G, (q1, g, q2) 7→ g .

We now verify the cat1 -group axioms:

t∗∗e∗∗(q) = t∗∗(q, eıq, q) = q,

h∗∗e∗∗(q) = h∗∗(q, eıq, q) = q.

So t∗∗e∗∗ = h∗∗e∗∗ = idq and CAT1 is satisfied.

To prove CAT2, suppose a = (q′1, g1, q1) ∈ ker t∗∗, b = (q2, g2, q
′
2) ∈ ker h∗∗ .

Then q′1,= q′2 = 1 so, by the definition of ı∗∗ , we have g1 ∈ ker t, g2 ∈ ker h . Then

[a, b] = (1Q, [g1g2], 1Q) = (1Q, 1G, 1Q) .

Proposition 4.1 If ı∗χ is the pullback of the crossed module χ over ı : Q → R and if

C,D are the cat1 -groups obtained from χ, ı∗χ respectively, then D ∼= ı∗∗C .

Proof.
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S S

Q R

t*

ι

∂• ∂

Starting with the pullback crossed module ı∗χ = (∂• : ı∗S → Q), the source group

of D is defined as the semi-direct product Q× ı∗S .

RQ ι

t• h• t h

R SSQ ι∗

The tail, head and embedding of D are respectively given by

t•(q′, (q, s)) = q′

h•(q′, (q, s)) = q′∂•(q, s)

= q′q

e•(q) = (q, (1Q, 1S))

We define an isomorphism of cat1 -groups ψ, idQ : D → ı∗∗C ,

SQ ι∗

QQ

t• h• t** h** e**

ι**

e•

ψ

id

R S( )

where

278



ALP

ψ(q′, (q, s)) = (q′, (ıq′, s), q′q).

First note that ψ(q′, (q, s)) ∈ ı∗∗(R× S). Because

t(ıq′, s) = ıq′

and

h(ıq′, s) = (ıq′)(∂s) = (ıq′)(ıq) = t(q′q).

We verify that ψ is a homomorphism as follows:

ψ((q′1, s1))((q′2, (q2, s2 = ψ(q′1q
′
2, (q

q′2q2, s
ıq′2s2))

= ψ(q′1q
′
2, (ı(q

′
1q
′
2), sıq

′
1s2), q′1q1q

′
2q2)

ψ(q′1, (q
′
1, s1))ψ(q′2, (q

′
2, s2)) = (q′1, (ıq

′
1, s2), q′1q1)(q′2, (ıq

′
2, s2), q′2q1)

= (q′1q
′
2, (ıq

′
1, s2)(ıq′2, s2), q′1q1q

′
2q2)

= (q′1q
′
2, ((ıq

′
1)(ıq′2), sıq

′
2s2), q′1q1q

′
2q2)

The inverse of ψ is given by ψ−1(q1, (r, s), q2) = (q1, (q−1
1 q2, s)).

Then

t∗∗ψ(q′, (q, s)) = t∗∗(q′, (ıq′, s), q′q)

= q′

= t•(q′, (q, s)),

h∗∗φ(q′, (q, s)) = h∗∗(q′, (ıq′, s), q′q)

= q′q

= h•(q′, (q, s)),

ψe•(q) = ψ(q, (1Q, 1S))

= (q, (ıq, 1s), q)

= e∗∗(q),
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so the diagram commutes and the proof is complete. 2

The universal property of induced cat1 -group is the following. Let C = (e; t, h :

G → R) be a cat1 -group and let ı∗∗C = (e∗∗; t∗∗, h∗∗ : ı∗∗G → Q) be induced by the

homomorphism ı : Q→ R is given by the diagram

ψ

h** t** h t

π

ι

ι**

ψ'

h'
t'

H

G G

RQ

the pair (π, ı) is a morphism of cat1 -group such that for any cat1 -group H = (e′; t′, h′ :

H → Q) and any morphism of cat1 -group (φ, ı) : C → H there is a unique morphism

((ψ′, 1) : ı∗∗C → H) of cat1 -groups such that πψ′ = ψ .
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