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Abstract

The method of multiple scales is used to derive separable nonlinear Schrödinger

equations as amplitude equation from three component 2D nonlinear Klein-Gordon

Equation. We further discuss the integrability of the derived separable amplitude

equations and reduce them into finite dimensional Hamiltonian systems. Finally we

give first integrals for the reduced systems.
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1. Introduction

In [1, 2] Fordy and Gibbons introduced a three component 2D nonlinear Klein-

Gordon equations in laboratory coordinates as a system of equations:

utt − uxx = −eu cosh v + e−u coshw,

vtt − vxx = −eu sinh v,

wtt − wxx = −e−u sinhw,

(1)
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where subscript indicate partial differentiation with respect to some variables. They

derived a linear spectral problem for the above system and thus proved its complete

integrability.

There are various restrictions that one can make to this system which make sense;

either or both of v and w may be suppressed. If w is suppressed, we get

utt − uxx = e−u − eu cosh v,

vtt − vxx = −eu sinh v,
(2)

or if w and v are suppressed, we get

utt − uxx = e−u − eu. (3)

It is well known that a multiple scales analysis of the Sinh-Gordon equation (and,

indeed many other equations) leads to the NLS equation for the modulated amplitude

[6, 9, 8]. In this paper, we use the method of multiple scales [5] to derive separable NLS

equations from the system (1) and give the corresponding spectral problem to show their

integrability. We also reduce the derived separable systems into a Hamiltonian system

of six-degrees of freedom. Then we prove its complete integrability by a perturbation

method [6, 7].

In section 2 we present the multiple scales method to derive separable NLS equa-

tions. We then discuss the integrability of the derived decoupled equations. Sections 3

and 4 are respectively concerned with the related integrable finite Hamiltonian systems

and their integrals of motion.

2. A Multiple Scales Analysis

In this section the method of multiple scales is used to derive integrable de-

coupled nonlinear Schrödinger equations as amplitude equations from integrable systems

of three component 2D nonlinear Klein-Gordon equation (1) in laboratory coordinates.

We first take the Taylor series expansion of right hand side functions at zero. We

then seek a solution for system (1) in the series form

u(x, t) =
∞∑
n=1

εn un(t, ξ, τ), (4)
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and define the scaling parameter ε dependence as

ξ = εx, τ = ε2t, (5)

in order to use the multiple scales method.

2.1. The Derivation

Inserting the expansion (4) with (5) and u = (u, v, w) into (1) and using

the Taylor series expansions of the right hand side functions at zero, and then equating

to zero coefficients of like powers of ε we find the following:

u1tt + 2u1 = 0,

v1tt + v1 = 0,

w1tt + w1 = 0;

(6)

u2tt + 2u2 = 1
2(−v2

1 + w2
1),

v2tt + v2 = −u1v1,

w2tt +w2 = u1w1;

(7)

u3tt + 2u3 = u1ξξ − 2u1tτ − 1
3u

3
1 − 1

2(u1v
2
1 + u1w

2
1)− v1v2 + w1w2,

v3tt + v3 = v1ξξ − 2v1tτ − 1
6v

3
1 − 1

2v1u
2
1 − v1u2 − u1v2,

w3tt +w3 = w1ξξ − 2w1tτ − 1
6w

3
1 −w1u

2
1 − w1u2 − u1w2,

(8)

and so on. The general solutions of the system (6) are

u1 = ei
√

2 tA + e−i
√

2 t A∗,

v1 = eitB + e−i tB∗,

w1 = eitC + e−i t C∗,

(9)

where A ≡ A(ξ, τ), B ≡ B(ξ, τ), C ≡ C(ξ, τ) and A∗, B∗, C∗ are respectively the

complex conjugates of A,B, C .

Inserting these into (7), we respectively find the second solutions in the form:

u2 = 1
4
e2it

(
B2 −C2

)
+ c.c.− 1

2
(BB∗ − C C∗),

v2 = −1
2

((
−1 +

√
2
)
eit+i

√
2tAB −

(
1 +
√

2
)
eit−i

√
2tA∗B + c.c.

)
,

w2 = 1
2

((
1−
√

2
)
eit+i

√
2tAC +

(
1 +
√

2
)
eit−i

√
2tA∗C + c.c.

)
,

(10)

311
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where c.c. denotes complex conjugates. Inserting (9) and (10) into (8), the secular terms

are eliminated by taking

Aτ = − i

2
3
2

(
−A2A∗ +Aξξ

)
,

Bτ = − i
8

(
−B2 B∗ +B∗C2 − 2BC C∗ + 4Bξξ

)
,

Cτ = − i
8

(
−2B B∗C + B2 C∗ −C2 C∗ + 4Cξξ

)
,

(11)

with their complex conjugate. Then we find the third order solutions as:

u3 = e3i
√

2t u31 + e2it+i
√

2t u33 + e2it−i
√

2t u35 + c.c.

v3 = e3it v31 + eit+i2
3
2 t v33 + e−it+i2

3
2 t v35 + c.c.

w3 = e3itw31 + eit+i2
3
2 tw33 + e−it+i2

3
2 tw35 + c.c.

(12)

where
u31 = 1

48 A
3, u33 = 1

8

(
2B2 −

√
2B2 + 2C2 −

√
2C2

)
A,

u35 = 1
8

(
2B2 +

√
2B2 + 2C2 +

√
2C2

)
A∗.

(13)

v31 = 1
96 (5B2 − 3C2)B, v33 = −1

8

(
1−
√

2
)
A2B,

v35 = −1
8

(
1 +
√

2
)
A2 B∗.

(14)

w31 = 1
96(−3B2 + 5C2)C, w33 = −1

8

(
1−
√

2
)
A2C,

w35 = −1
8

(
1 +
√

2
)
A2C∗.

(15)

Let us now define the functions

A =
√

2 p, B = 2
√

2 q, C = 2
√

2 r, (16)

in order to find a system of nonlinear Schrödinger equations from (11) as a system of

following amplitude equations:

2
√

2ipτ = pξξ − 2p | p |2,
2iqτ = qξξ − 2q(| q |2 +2 | r |2) + 2r2 q∗,

2irτ = rξξ − 2r(| r |2 +2 | q |2) + 2q2 r∗.

(17)

Note that the first component p has decoupled, so this system gives the scalar NLS

equation

ipτ = pξξ − 2p | p |2, (18)
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and the system of NLS equations

iqτ = qξξ − 2q(| q |2 +2 | r |2) + 2r2 q∗,

irτ = rξξ − 2r(| r |2 +2 | q |2) + 2q2 r∗.
(19)

by choosing a suitable change of variable for the slow time τ. It is shown that these

equations are integrable by inverse scattering method [4, 6, 7, 9].

3. Related Finite Dimensional Hamiltonian Systems

We consider solutions of the above NLS equations of the form:

q(ξ, τ) = eiω
2
1τU(ξ), r(ξ, τ) = eiω

2
2τV (ξ), . . . , etc. (20)

We then consider the system of real equations satisfied by the real and imaginary parts

of U, V, . . . . We now present this reduction for the system (17) as an example.

3.1. Six Degrees of Freedom

We consider the system of NLS equations (17) and assume separable solu-

tions in the following form:

p(ξ, τ) = ei(ω
2
1/2
√

2)τU(ξ), q(ξ, τ) = ei(ω
2
2/2)τV (ξ),

r(ξ, τ) = ei(ω
2
3/2)τW (ξ),

(21)

to find : (
Uξξ + ω2

1U − 2U | U |2
)
eiτ(ω2

1/2
√

2) = 0,(
Vξξ + ω2

2V − 2V (| V |2 +2 |W |2)
)
eiτ(ω2

2/2)

+2V ∗W 2eiτ(2ω2
3−ω2

2)/2 = 0,(
Wξξ + ω2

3W − 2W (|W |2 +2 | V |2)
)
eiτω

2
3/2

+2W ∗V 2eiτ(2ω2
2−ω

2
3)/2 = 0.

(22)

For nontrivial V and W we must have ω2 = ω3 . Defining

U(ξ) = q1(ξ) + iq2(ξ), V (ξ) = q3(ξ) + iq4(ξ),

W (ξ) = q5(ξ) + iq6(ξ),
(23)
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the real and imaginary parts are:

q̈1 + ω2
1q1 − 2q1(q2

1 + q2
2) = 0,

q̈2 + ω2
1q2 − 2q2(q2

1 + q2
2) = 0,

q̈3 + ω2
2q3 − 2q3(q2

3 + q2
4 + q2

5 + 3q2
6) + 4q5q6q4 = 0,

q̈4 + ω2
2q4 − 2q4(q2

3 + q2
4 + 3q2

5 + q2
6) + 4q5q6q3 = 0,

q̈5 + ω2
2q5 − 2q5(q2

5 + q2
6 + q2

3 + 3q2
4) + 4q3q6q4 = 0,

q̈6 + ω2
2q6 − 2q6(q2

6 + q2
5 + 3q2

3 + q4
6) + 4q5q4q3 = 0,

(24)

with the Hamiltonian H = H0 + H2 :

H0 = 1
2 (p1

2 + p2
2 + ω2

1(q1
2 + q2

2) + p3
2 + p4

2+

p5
2 + p6

2 + ω2
2(q3

2 + q4
2 + q5

2 + q6
2)),

H2 = −1
2

(
(q1

2 + q2
2)2 + (q3

2 + q4
2 + q5

2 + q6
2)2+

4 (q3q6 − q4 q5)2

)
,

(25)

where pj = qjξ for j=1, . . . , 6. Note that the six degrees of freedom system (24) and its

Hamiltonian (25),which is a generalisation of Garnier’s system, are trivially separable in

(q1, q2) and (q3, q4, q5, q6) components. Hence following [6, 7], we can write the resulting

first integrals for ω1 = ω2 = 1 as follows:

k1 = q1 p2 − q2 p1,

k2 = q3 p4 + q5 p6 − q4 p3 − q6 p5,

k3 = q3 p5 + q4 p6 − q5 p3 − q6 p4,

k4 = H0(p1, p2, q1, q2) + H2(p1, p2, q1, q2),

k5 = H0(p3, p4, p5, p6, q3, q4, q5, q6) +H2(p3, p4, p5, p6, q3, q4, q5, q6),

k6 = p4 p5 + q4 q5 − p3 p6 − q3 q6 − (p3 p5 − p4 p6) (q3 q4 − q5 q6)−
(p3 p4 − p5 p6) (q3 q5 − q4 q6) − 2(q4 q5 − q3 q6)(q3

2 + q4
2 + q5

2 + q6
2))−

q3 q6(p4
2 + p5

2) + q4 q5(p3
2 + p6

2) + p4 p5(q5
2 + q6

2)− p3 p6(q4
2 + q5

2),

(26)
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where

H0(p1, p2, q1, q2) = 1
2 (p1

2 + p2
2 + q1

2 + q2
2),

H2(p1, p2, q1, q2) = −1
2 (q1

2 + q2
2)2,

H0(p3, p4, p5, p6, q3, q4, q5, q6) = 1
2

6∑
j=3

(pj2 + qj
2),

H2(p3, p4, p5, p6, q3, q4, q5, q6) = −1
2

( 6∑
j=3

qj
2

2

+ 4(q3 q6 − q4 q5)2

)
.

(27)

Here these integrals of motion are in involution with respect to the canonical Poisson

bracket.

4. Real Reduction

We now use real reductions:

U∗ = U = q1, V ∗ = V = q2, etc. (28)

in order to find simple finite dimensional Hamiltonian systems with quartic potentials.

Thus from the system of equations (22) we derive the following system:

q̈1 + ω2
1q1 − 2q1

3 = 0,

q̈2 + ω2
2q2 − 2q2(q2

2 + q3
2) = 0,

q̈3 + ω2
2q3 − 2q3(q3

2 + q2
2) = 0.

(29)

Note that the last system and its Hamiltonian separate into q1 and (q2, q3) com-

ponents. The first equation is known as Duffing equation, which is also a Hamiltonian

system with the quartic potential:

H =
1
2

(
p2

1 + ω2
1q

2
1 − q4

1

)
. (30)

The remaining equations are also a Hamiltonian system with quartic potential:

H =
1
2

(
p2

2 + p2
3 + ω2

2q
2
2 + ω2

2q3 − (q2
2 + q2

3)2)
)
, (31)

where pj = qjξ for j=2,3. Here again this system has rotational symmetry, with Noether’s

constant

k = q2 p3 − q3 p2, (32)

which is the second integral.
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5. Conclusion

We have used the multiple scales method to derive a separable system of NLS

equations and discuss the integrability. The starting point was the three-component 2D

nonlinear Klein-Gordon equation. We also reduce the separable system of NLS equations

to a Hamiltonian system of six-degrees of freedom and give first integrals of this system

[6, 7]. We finally consider the real reduction for the separable system.
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Commun. Math. Phys. 89 (1983) 427-443.
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