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ON THE DISCRETE SQUEEZING PROPERTY FOR

SEMILINEAR WAVE EQUATIONS

A.Eden @ V.K.Kalantarov

1. Introduction

We extend the results obtained in our previous paper [2] to the case where the

conditions on the nonlinear term are milder,namely those that are given by the fourth

condition in our basic theorem. The methods used are inspired from the results of

Ladyzhenskaya (see [4], [5]) and can be considered as a direct generalization.

Preliminaries and Notations

In a separable Hilbert space H with the inner product (·, ·) and norm ‖·‖ consider the

following Cauchy problem:

Putt +Qut +Au+ F [u] = h, (1)

ut(0) = u1, u(0) = u0, (2)

where P,Q, and A are linear (not necessarily bounded) , selfadjoint, positive definite

operators, F (.) is a nonlinear operator, and u0, u1, and h are given elements in appro-

priate spaces.

Let us set D1 = D(P 1/2), D2 = D(Q1/2) ,D3 = D(A1/2). We will also denote the

corresponding dual spaces with respect to the inner product in H by D−1, D−2 and D−3 ,

respectively. For notational ease we will use the bracket (u, v) both for the inner product
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in H and the duality pairing between the elements of Di and D−i where i = 1, 2, 3.

From now on we will assume that the following conditions hold:

a) D(A) = D3 ⊆ D(Q) = D2 ⊆ D(P ) = D1,

b) the operator A has a compact inverse,

c) the operators P,Q, and A commute on D(A) = D3,

d) there are positive constants a, b and c such that:

a ‖u‖ ≤
∥∥∥Q 1

2u
∥∥∥ ≤ b ∥∥∥A 1

2u
∥∥∥ , ∀u ∈ D3 (3)∥∥∥P 1

2u
∥∥∥ ≤ c ∥∥∥Q 1

2u
∥∥∥ , ∀u ∈ D2 (4)

e)the nonlinear operator F (·) : D3 → D−2 is continuous, bounded, and it is a

gradient of some functional G(.) : D3 → R1 .Moreover, there exists C ≥ 0 such that

(F (u), u)−G(u) ≥ −C, G(u) ≥ −C, ∀u ∈ D3

We also set:

i) X = D3 ×D1 is a Hilbert space with the inner product:

((u, v), (w, z)) = (A
1
2 u, A

1
2w) + (P

1
2 v, P

1
2 z),

ii)

‖u‖s =
∥∥A s

2u
∥∥ , s ∈ R1.

Definition 1. We will say that the semigroup S(t) : X → X, t ∈ R+, satisfies

the discrete squeezing property on the set M ⊂ X, if there exists t0 > 0 such that the

operator T = S(t0) is Lipschitz continuous on M :

‖Tx− Ty‖X ≤ l ‖x− y‖X , ∀x, y ∈M,

and for some δ ∈ (0, 1√
2
) there exists N0(δ), such that

‖(I − PN0)(Tx − Ty)‖X ≤ δ ‖x− y‖ , ∀x, y ∈M, (5)
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where PN0 is the ortogonal projection on the subspace HN0 ( of the Hilbert space H )

spanned by the first N0 eigenvectors of the operator A .

Definition 2 A set A is said to be the attractor of a semigroup S(t) : X → X, t ∈
R+, if it is the minimal closed set, attracting every bounded set B ⊂ X.

Definition 3 A set M is called an exponential attractor for the solution semigroup

{S(t) : t > 0} on the set B if

(i) A ⊆M ⊆ B ,

(ii) S(t)M ⊆M ,

(iii) M has finite fractal dimension,

(iv) for every x in B , dist (S(t)x,M) ≤ c1 exp{−c2t} where c1 and c2 are universal

constants.

The following theorem is in the spirit of [5].

Theorem 1. Suppose that

1.the conditions a), b), c) and d) are satisfied,

2. the problem (1), (2) generates a continuous semigroup S(t) : X → X, t ∈ R+,

that is for each pair (u0, u1) ∈ X the problem (1), (2) has a unique weak solution (see

[2] for a proof) , which continuosly depends on the initial data in the sense of the norm

of X , and such that

u ∈ C(R+;D3), ut ∈ C(R+;D1),

3.there exists a bounded set B0 ⊂ X such that

S(t)B0 ⊆ B0,∀t ∈ R+,

4. The operator F (.) : D3 → D−2 is Frechet differentiable, and for some γ ∈ (0, 1)

and for each (u, ut), (v, vt) ∈ B0 the following conditions hold

‖ F (u)− F (v) ‖−γ≤M1 ‖ u− v ‖1, (6)

‖ Q−1
2 (F (u)− F (v)) ‖γ≤M2 ‖ u− v ‖1, (7)
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‖ d

dt
(F (u)− F (v)) ‖−γ≤ M̃1(‖ P 1

2 (ut − vt) ‖ + ‖ u− v ‖1), (8)

where M1 = M1(‖ u ‖1, ‖ v ‖1) and M2 = M2(‖ u ‖1, ‖ v ‖1) are some continuous,

positive functions on R+ ×R+ and M̃1 = M̃1(‖ u ‖1, ‖ v ‖1,
‖ P 1

2ut ‖, ‖ P
1
2 vt ‖) is some continuous,positive function on R+ ×R+ ×R+ × R+ .

Then the semigroup S(t) : X → X, t ∈ R+, generated by the problem (1),(2) has the

discrete squeezing property in B0 .

Proof Let w1,w2, ..., wn, ... be the orthonormal system of eigenvectors of the operator

A, which forms a basis of H, and let λ1, λ2, ..., λn, ... be the corresponding system of

eigenvalues of A. Suppose that (u0, u1) and (v0, v1) are two arbitrary elements of B0.

Then for the corresponding solutions u(t) and v(t) of the problem (1),(2) due to the

condition 3. of the Theorem 1 we have:

(u(t), ut(t)), (v(t), vt(t)) ∈ B0, ∀t ∈ R+.

It is clear that z(t) = u(t)− v(t) satifies the equation

Pztt + Qzt +Az + δF = 0, (9)

where δF = F (u)− F (v). Let z∗ = (I − PN)z and µ be some positive parameter,to be

specified later. Multiplying (9) by z∗t + µz∗ , we get:

d

dt
[
∥∥∥∥1

2
P

1
2 z∗t

∥∥∥∥2

+
1
2

∥∥∥A 1
2 z∗
∥∥∥2

+

µ

2

∥∥∥Q 1
2 z∗
∥∥∥2

+ µ(P
1
2 z∗t , P

1
2 z∗) + (δF, z∗)]+

µ
∥∥∥A 1

2 z∗
∥∥∥2

+
∥∥∥Q 1

2 z∗
∥∥∥2

− (
d

dt
δF, z∗) + µ(δF, z∗) = 0. (10)

Consider the functional

E1(z∗, z∗t ) ≡ 1
2

∥∥∥P 1
2 z∗t

∥∥∥2

+
1
2

∥∥∥A 1
2 z∗
∥∥∥2

+
µ

2

∥∥∥Q 1
2 z∗
∥∥∥2

+ µ(P
1
2 z∗t , P

1
2 z∗) + (δF, z∗).

It follows from (10) that

d

dt
E1(z∗, z∗t ) + µ

∥∥∥A 1
2 z∗
∥∥∥2

+
∥∥∥Q 1

2 z∗
∥∥∥2

≤
∣∣∣∣( ddtδF, z∗)

∣∣∣∣+ µ |(δF, z∗)| . (11)
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It is not difficult to see that for each u ∈ D3, the following inequality holds:

‖u∗‖ ≤ λ0

∥∥∥A 1
2u∗,

∥∥∥ (12)

where λ0 = λ
− 1

2 (1−γ)

N+1 and u∗ = (I − PN)u. Taking into account conditions (6)-(8) and

the last inequality we get

d

dt
E1(z∗, z∗t ) + µ

∥∥∥A 1
2 z∗
∥∥∥2

+
∥∥∥Q 1

2 z∗
∥∥∥2

≤ µM1 ‖z‖1 ‖z∗‖γ + M̃1

[
‖ P 1

2 zt ‖ + ‖z‖1
]
‖z∗‖γ ≤

≤
[
µM1 + M̃1

] [
‖ P 1

2 zt ‖ + ‖z‖1
]
λ0

∥∥∥A 1
2 z∗
∥∥∥ ≤

≤ λ0

∥∥∥A 1
2 z∗
∥∥∥2

+ M̃2λ0

[
‖ P 1

2 zt ‖2 +
∥∥∥A 1

2 z
∥∥∥2
]
.

So we have:
d

dt
E1(z∗, z∗t ) +

µ

2

∥∥∥A 1
2 z∗
∥∥∥2

+
∥∥∥Q 1

2 z∗
∥∥∥2

≤

(λ0 −
µ

2
)
∥∥∥A 1

2 z∗
∥∥∥2

+ M̃2λ0

[
‖ P 1

2 zt ‖2 +
∥∥∥A 1

2 z
∥∥∥2
]

(13)

It is not difficult to see that

2E1(z∗, z∗t ) ≥
∥∥∥P 1

2 z∗t

∥∥∥2

+
∥∥∥A 1

2 z∗
∥∥∥2

+ µ
∥∥∥Q 1

2 z∗
∥∥∥2

−

2µ
∥∥∥P 1

2 z∗t

∥∥∥∥∥∥P 1
2 z∗
∥∥∥− 2 ‖δF ‖−γ ‖z∗‖γ (14)

Using the conditions (3),(4), (6) and the inequality (12) we obtain from (14):

2E1(z∗, z∗t ) ≥ (1− µ)
∥∥∥P 1

2 z∗t

∥∥∥2

+ (1− µc2b2)
∥∥∥A 1

2 z∗
∥∥∥2

+ µ
∥∥∥Q 1

2 z∗
∥∥∥2

−

−M1λ0 ‖z‖21 −M1λ0 ‖z∗‖21

Choosing in the last inequality µ < min
{

1, (c2b2)−1
}
, and N1 sufficiently large, we

obtain:

E1(z∗, z∗t ) ≥ C2 ‖{z∗, z∗t }‖
2
X −

1
2
M1λ0 ‖{z, zt}‖2X , ∀N ≥ N1. (15)
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Let us choose N2 so that (µ2 − λ0) > 0 is satisfied ∀N > N2. Then it follows from (13)

that
d

dt
E1(z∗, z∗t ) +

µ

2

∥∥∥A 1
2 z∗
∥∥∥2

+
∥∥∥Q 1

2w
∥∥∥2

≤

≤ M̃2λ0 ‖{z, zt}‖2X , ∀N > N2.

From the inequality (15) and from the last inequality for sufficiently small δ1 > 0 it

follows:
d

dt
E1(z∗, z∗t ) + δ1E1(z∗, z∗t ) ≤ M̃3λ0 ‖{z, zt}‖2X , ∀N > N1 +N2.

This inequality in turn implies that:

E1(z∗(t), z∗t (t)) ≤ e−δ1tE1(z∗(0), z∗t (0)) + M̃3λ0

∫ t

0

‖{z(s), zs(s)}‖2X ds (16)

Taking the inner product of (10) by zt, and using the condition (7) we get:

d

dt

[
1
2

∥∥∥P 1
2 zt

∥∥∥2

+
1
2

∥∥∥A 1
2 z
∥∥∥2
]

+
∥∥∥Q 1

2 z
∥∥∥2

= (δF, zt) =

= (Q−
1
2 δF,Q

1
2 zt) ≤M2 ‖z‖1

∥∥∥Q 1
2 zt

∥∥∥ ≤M2
2

[
1
2

∥∥∥P 1
2 zt

∥∥∥2

+
1
2

∥∥∥A 1
2 z
∥∥∥2
]
.

Therefore we have

‖{z(t), zt(t)}‖2X ≤ exp(M2
2 · t) ‖{z(0), zt(0)}‖2X (17)

Using (7) it is not difficult to prove that

E1(z∗(0), z∗t (0)) ≤M3 ‖{z(0), zt(0)}‖2X (18)

So thanks to (16),(17) and (18) we obtain from (15) the following inequality:

C2 ‖{z∗(t), z∗t (t)}‖2X ≤
{
e−δ1t + λ0

[
M̃3M

−2
2 +

M1

2
exp(M2

2 (.)t)
]}
‖{z(0), zt(0)}‖2X

It follows from the last inequality that, the numbers t0 and N3 ≥ N2 +N1 can be choosen

so that :

‖{z∗(t0), z∗t (t0)}‖2X ≤
1
16
‖{z(0), zt(0)}‖2X , ∀N ≥ N3. (19)

As a closing remark let us mention that the improvement over the previous work stems

basically from the weaker assumtion on the nonlinear term, namely, those given in con-

dition 4 of the theorem, instead of the assuptions (V) and (W) as in [2].
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