Tr. J. of Mathematics
22 (1998) , 343 - 348.
© TÜBİTAK

THE DUAL OF THE BOCHNER SPACE $L^p(\mu, E)$ FOR ARBİTRARY μ

B. Cengiz

Abstract

Let μ be a finite measure, E a Banach space, and $1 \leq p < \infty$, $1 < q \leq \infty$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. It is known that $L^p(\mu, E)^* \simeq L^q(\mu, E^*)$ if, and only if, E^* has the Radon-Nikodým property with respect to μ . The aim of this article is to generalize the above result to arbitrary measures.

Let $(\Omega, \mathcal{A}, \mu)$ be a positive^{*} measure space, and E a Banach space. If there is no possibility of ambiguity about the underlying measurable space (Ω, \mathcal{A}) , for any $1 \ge p \ge \infty$, $L^p(\mu, E)$ will denote the Bochner space $L^p(\Omega, \mathcal{A}, \mu, E)$. For denfinitions and properties of these spaces we refer to [4]. For two Banach spaces E and $F, E \simeq F$ will mean that they are linearly isometric. E^* will denote the topological dual of E.

Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space, E a Banach space, and let $1 \leq p < \infty, 1 < q \leq \infty$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. Then for any $f \in L^p(\mu, E)$ and $g \in L^p(\mu, E^*)$, the function $\langle f, g \rangle$ defined on Ω by

$$\langle f,g\rangle(\omega) = \langle f(\omega),g(\omega)\rangle = g(\omega)(f(\omega)), \qquad \omega \in \Omega,$$

is integrable, and for any fixed $g \in L^q(\mu, E^*)$ the mappin ϕ_g defined on $L^p(\mu, E)$ by

$$\phi_g(f) = \int_{\Omega} \langle f, g \rangle d\mu, \quad f \in L^p(\mu, E),$$

 $^{^{\}ast}$ Throughout this article all scallar-valued measures are assumed to be positive.

is a bounded functional of $L^p(\mu, E)$ with norm equals $||g||_q$. Thus, the mapping $g \to \phi_g$ is a linear isometry from $L^p(\mu, E^*)$ into $L^p(\mu, E)^*$.

It is known that the above mentioned isometry $g \to \phi_g$ is surjective if, and only if, E^* has the Radon-Nikodým property with respect to μ , that is, each μ -continuous, E^* -valued measure of bounded variation on \mathcal{A} to E^* can be represented (via integral) by an E^* -valued μ -integrable function. (This theorem is due to Bochner and Taylor [1] for the Lebesgue measure on the interval [0,1]. It was generalized to σ -finite measures by Gretsky and Uhl[5]. An eqcellent proof of it can be found in [4, pp. 98-100].)

In [3], Cengiz proves that the preceding theorem can be generalized to *arbitrary* measures, but at a price. It is proved that for an arbitrary measure μ , if E^* is separable (hence has the Radon-Nikodým property with respect to μ [4, p. 79]), then $L^p(\mu, E)^* \simeq L^q(\mu, E^*)$ still holds for 1 . However, it may fail for <math>p = 1 even in the scalar case (see [6, p. 349]). Instead, we have $L^1(\mu, E)^* \simeq L^\infty(\nu, E^*)$ for some *perfect* measure ν on an extremally disconnected locally compact Hausdorff space.

In this article we shall replace the separability condition on E^* by the Radon-Nikodým proprty with respect to μ . But first, we give some details about the perfect measure ν mentioned above.

We recall that a Borel measure μ on an extremally disconnected locally compact Hausdorff space is *perfect* if every nonempty open set has positive measure, every nowhere dense Borel set has measure zero, and every nonempty open set contains another nonempty open set with finite measure (see [2]).

It is proved in [3] that any arbitrary measure space (T, \sum, λ) can be replaced by a perfect measure space $(\Omega, \mathcal{A}, \nu)$ in the sense that $L^p(\lambda, E) \simeq L^p(\nu, E)$ for every $1 \leq p < \infty$ and every Banach space E. But $L^{\infty}(\nu, E)$ may be *enlarged*, that is, $L^{\infty}(\lambda, E)$ is isometric to a subspace of $L^{\infty}(\nu, E)$.

Some other additional nice properties of this new measure space $(\Omega, \mathcal{A}, \nu)$ are as follows:

i) Ω is the topological direct sum of a family {Ω_i : i ∈ I} of extremally disconnected compact Hausdorff spaces Ω_i, that is, Ω = ∑_i ⊕Ω_i, the spaces Ω_i are mutually disjoint and the topology on Ω is the weakest topology containing the topologies of Ω_i, i ∈ I.

344

- ii) The algebra \mathcal{A} contains the Borel algebra. A set A belongs to \mathcal{A} if, and only if, $A \cap \Omega_i$ belongs to \mathcal{A} for all $i \in I$.
- iii) The restriction of ν to each Ω_i is a regular Borel measure on Ω_i .
- iv) Each σ -finite measurable set is contained a.e. in the union of a countable subfamily of $\{\Omega_i : i \in I\}$.
- **v**) $\nu(A) = \sum_{i} \nu(A \cap \Omega_i)$ for all $A \in \mathcal{A}$. Thus every locally null set is actually null.

In view of the above discussion we may, and will assume that the given measure space $(\Omega, \mathcal{A}, \mu)$ is perfect and prove the following theorem.

Theorem Let $(\Omega, \mathcal{A}, \mu)$ be a perfect measure space and E and Banach space. Then, for any $1 \leq p < \infty$, $1 < q \leq \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$, $L^p(\mu, E)^* \simeq L^q(\mu, E^*)$ if, and only if E^* has the Radon-Mikodým property with respect to μ ; the isometry being the mapping $g \to \phi_g$, $g \in L^q(\mu, E^*)$.

Proof. Let us assume that E^* has the Radon-Nikodým property with respect to μ , and write $\Omega = \sum_i \oplus \Omega_i$. Then, since the theorem is true for finite measures, for each $i \in I, L^p(\Omega_i, E)^* \simeq L^q(\Omega_i, E^*)$. Now let $\psi \in L^p(\mu, E)^*$. Then for each $i \in I$, there is a $g_i \in L^q(\Omega_i, E^*)$ such that

$$\psi_i(f) = \int_{\Omega} \langle f, g_i \rangle d\mu \quad \text{for all} \quad f \in L^p(\Omega_i, E)$$

and $\|\psi_i\| = \|g_i\|_q$, where ψ_i denotes the restriction of ψ to the subspace $L^p(\Omega_i, E)$ of $L^p(\mu, E)$.

for any finite subset J of I let

$$\Omega_J = \bigcup_{j \in J} \Omega_j \text{ and } g_j = \sum_{j \in J} g_i.$$

Since the functions g_i have disjoint supports, it follows that

$$\psi_J(f) = \int_{\Omega} \langle f, g_j \rangle d\mu$$
 for $f \in L^p(\Omega_J, E)$

where ψ_J denotes the restriction of ψ to $L^p(\Omega_J, E)$.

If p = 1, then $g = \sum_{i} g_{i}$ is locally measurable, (i.e., its restriction to each measurable set of finite measure is measurable), and

$$\parallel g \parallel_{\infty} = \sup \parallel g_i \parallel_{\infty} \le \parallel \psi \parallel$$

which means that $g \in L^{\infty}(\mu, E^*)$.

For p > 1, we have

$$\sum_{j \in J} \| g_j \|_j^j = \| g_J \|_q^q = \| \psi \|^q \le \| \psi \|^q,$$

which shows that all but a countable number of the functions g_i are zero almost everywhere, and therefore, for the sake of simplicity, we may assume that $I = \{1, 2, 3, ...\}$. Consequently, $g = \sum_i g_i$ is measurable, and

$$\parallel g \parallel_q^q = \sum_i \parallel g_i \parallel_q^q \le \parallel \psi \parallel^q,$$

which proves that $g \in L^q(\mu, E^*)$.

Next we show that

$$\psi(f) = \int_{\Omega} \langle f, g \rangle d\mu$$
 for all $f \in L^p(\mu, E)$

Let $f \in L^p(\mu, E)$ and write $f = \sum_i f_i$, where, for each $i \in I$, $f_i = f$ on Ω_i and zero outside Ω_i . Since the support of an integrable function is σ -finite, and since each of σ -finite measurable set is contained in the union of a countable subfamily of $\{\Omega_i : i \in I\}$, we may again assume that $I = \{1, 2, 3, \ldots\}$.

For each n = 1, 2, 3, ..., let $h_n = \sum_{i=1}^n f_i$. Then, by the dominated convergence theorem, the sequence $\langle h_n \rangle$ converges to f in $L^p(\mu, E)$. It is clear that for each n,

$$\psi(h_n) = \int_{\Omega} \left(\sum_{i=1}^n \langle f_i, g_i \rangle \right) d\mu$$

and, since f_i 's as well as g_i 's have disjoint supports, it is also clear that

346

$$\left|\sum_{i=1}^{n} \langle f_i(x), g_i(x) \rangle\right| \le \parallel f(x) \parallel \parallel g(x) \parallel$$

for all $x \in \Omega$ and n = 1, 2, 3, ... Therefore, by the dominated convergence theorem, and the fact that the ψ is continuous on $L^p(\mu, E)$, we have

$$\int_{\Omega} \langle f, g \rangle d\mu = \lim_{n} \int_{\Omega} \left(\sum_{i=1}^{n} \langle f_i, g_i \rangle \right) d\mu$$
$$= \lim_{n} \psi(h_n) = \psi(f)$$

for all $f \in L^p(\mu, E)$, proving our claim.

Conversely, we now assume that $L^p(\mu, E)^* \simeq L^q(\mu, E^*)$ for some $1 \leq p < \infty$, and show that E^* has the Radon-Nikodým property with respect to μ . To this end we let $\lambda : \mathcal{A} \to E^*$ be a μ -continuous vector measure of bounded variation. Since $L^p(\Omega_i, E)^* \simeq L^q(\Omega_i E^*)$ forall $i \in I$, and the theorem holds for finite measures, for each $i \in I$, there is an integrable function $g_i : \Omega \to E^*$ that vanishes outside Ω_i and such that

$$\lambda(A_i) = \int_{A_i} g_i d\mu$$
 for all $A_i \in \mathcal{A}_i$

where \mathcal{A}_i is the trace of \mathcal{A} on Ω_i . Let $g = \sum_i g_i$. Obviously g is locally measurable, but we want to show that it is indeed measurable (i.e., μ -essentially separably valued). Since λ is of bounded variation, $|\lambda|(\Omega)$ is finite which implies that $|\lambda|(\Omega) = 0$ for all but countably many $i \in I$, where $|\lambda|$ denotes the total variation of λ . Thus, here again we may assume that $I = \{1, 2, 3, \ldots\}$, which implies that g is measurable, and since $|\lambda|(\Omega) = \int_{\Omega} ||g(\cdot)|| d\mu < \infty$, we conclude that g is integrable.

Since I is countable, now by the dominated convergence theorem, it follows that

$$\lambda(A) = \int_A g d\mu$$

for all $A \in \mathcal{A}$ completing the proof.

Since reflexive Banach spaces have the Radon-Nikodým property with respect to any finite measure [4, p. 76], and the preceding proof can be used to conclude that this

property with respect to any perfect measure, we have the following corollary.

Corollary. For any measure μ and reflexive Banach space $E, L^p(\mu, E)^* \simeq L^q(\mu, E^*)$ where $1 \leq p < \infty$, $1 < q \leq \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$.

References

- S. Bochner and R. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math. (2), 39 (1938), 913-944.
- [2] M. Cambern and P. Greim, The dual of a space of vector measures, Math. Z., 180 (1982), 373-378.
- [3] B. Cengiz, On the duals of Lebesgue-Bochner L^p spaces, Proc. Amer. Math. Soc., 114 (1992), 923-926.
- [4] J. Diestel and J. Uhl. Jr., Vector Measures, Mathematical Surveys no. 15, Amer. Math. Soc., Providence, R. I., 1977.
- [5] N. E. gretsky and J. J. Uhl. Jr., Bounded linear operators on Banach function spaces of vector-valued functions, Trans. Amer. Math. Soc. 167 (1972), 263-277.
- [6] E. Hewitt and K. Stromberg, Real and Abstract analysis, Springer-Verlag, New York, 1965.

Bahaettin CENGİZ Department of Mathematical Sciences King Fahd University of Petroleum and Minerals Dhahran 31261, Saudi Arabia Received 29.07.1998