ON THE DIFFERENTIAL PRIME RADICAL OF A DIFFERENTIAL RING

D. Khadjiev* \mathfrak{E} F. Çallıalp

Abstract

In this paper we have obtained the following results for a differential ring (associative or nonassociative): (1) For a differential ring (\mathcal{D}-ring) we introduce definitions of a \mathcal{D}-prime \mathcal{D}-ideal, \mathcal{D}-semiprime \mathcal{D}-ideal and a strongly \mathcal{D}-nilpotent element. We define the \mathcal{D}-prime radical as the intersection of all \mathcal{D}-prime \mathcal{D}-ideals. For any \mathcal{D}-ring the \mathcal{D}-prime radical, the intersection of all \mathcal{D}-semiprime \mathcal{D}-semiprime \mathcal{D}-ideals and the set of all strongly \mathcal{D}-nilpotent elements are equal. (2) For a \mathcal{D}-ring we introduce a definition of an s-nilpotent \mathcal{D}-ideal. If a \mathcal{D} ring satisfies the ascending chain condition for \mathcal{D}-ideals then its \mathcal{D}-prime radical is s-nilpotent. (3) Let \mathcal{Q} be a field of rational numbers. If δ is a differentiation of a \mathcal{Q}-algebra R with 1 then $\delta(\operatorname{Pr} \cdot \operatorname{rad}(R)) \subseteq \operatorname{Pr} \cdot \operatorname{rad}(R)$. (4) Let K be a differential ring. Then every radical \mathcal{D}-ideal of K is an intersection of \mathcal{D}-prime \mathcal{D}-ideals.

1. The differential prime radical

This paper is a continuation of our papers [1-3]. Further, we use notions and notations of books [4-6].

[^0]
KHADJİEV, ÇALLIALP

Definition ([7], p.556). A differential ring (\mathcal{D}-ring) is a system (K, \mathcal{D}), where K is a ring (associative or nonassociative) and \mathcal{D} is a set of differentiations of K. A \mathcal{D} subgroup H is an additive subgroup of the ring K such that $d h \in H$ for all $h \in H, d \in$ \mathcal{D}.

Let K be a \mathcal{D}-ring. Denote by $A d(K)$ the set of all \mathcal{D}-subgroups of K. $\operatorname{Ad}(K)$ is a complete lattice with respect to the inclusion relation. Introduce a multiplication operation on it by the following manner ([5], p.12): For $A, B \in A d(K) A \cdot B$ consists of all finite sums $\sum_{i=1}^{n} a_{i} b_{i}$, where $a_{i} \in A, b_{i} \in B$.

Definition ([7], p.556). A differential ideal (D-ideal) of K is an ideal H of K such that $d h \in H$ for all $h \in H, d \in \mathcal{D}$.

Denote by $\operatorname{Id}(K)$ the set of all \mathcal{D}-ideals of $K . \operatorname{Id}(K)$ is a complete lattice with respect to the inclusion relation. If K is associative then $A \cdot B \in \operatorname{Id}(K)$ for all $A, B \in \operatorname{Id}(K)$.

But there is nonassociative \mathcal{D}-ring K and $A, B \in I d(K)$ such that $A \cdot B \notin \operatorname{Id}(K)$.
Therefore for any \mathcal{D}-ring we define a multiplication operation of \mathcal{D}-ideals in the following manner. For $A, B \in I d(K)$ denote by $A \cdot B$ the intersection of all \mathcal{D}-ideals of K containing the set $\{x \in K: x=a \cdot b, a \in A, b \in B\}$.

Proposition 1.1. For any \mathcal{D}-ring K the lattice $\operatorname{Id}(K)$ with above multiplication operation is a complete l-groupoid.

Proof. Let $A, B_{t} \in I d(K), t \in T$. The inequality

$$
A \cdot\left(\vee_{t \in T} B_{t}\right) \geq V_{t \in T}\left(A \cdot B_{t}\right)
$$

is obvious. We now prove the inverse inequality. The \mathcal{D}-ideal $A \cdot\left(\bigvee_{t \in T} B_{t}\right)$ is the smallest \mathcal{D}-ideal containing all elements $a \cdot\left(b_{1}+b_{2}+\ldots+b_{k}\right)$, where $a \in A, b_{i} \in B_{t_{i}}$ From the equality $a \cdot\left(b_{1}+b_{2}+\ldots+b_{k}\right)=a b_{1}+\ldots+a b_{k}$ we obtain that $a \cdot\left(b_{1}+b_{2}+\ldots+b_{k}\right) \in$ $\vee_{t \in T}\left(A \cdot B_{t}\right)$. Therefore

$$
A \cdot\left(\vee_{t \in T} B_{t}\right) \leq \vee_{t \in T}\left(A \cdot B_{t}\right)
$$

A proof of the equality

KHADJİEV, ÇALLIALP

$$
\left(\vee_{t \in T} B_{t}\right) \cdot A=\vee_{t \in T}\left(B_{t} \cdot A\right)
$$

is similar.

Definition $A \mathcal{D}$-ideal P of K is \mathcal{D}-prime if $P \neq K$ and $A \cdot B \subseteq P, A, B \in \operatorname{Id}(K)$, implies that $A \subseteq P$ or $B \subseteq P$.

For $A \in I d(K), A \neq K$, denote by $R(A)$ the intersetion of all $\mathcal{D}_{s^{-}}$semiprime \mathcal{D}-ideals of K containing A. Put $r^{s}(A)=K$ if there are none.

For $A \in I d(K)$, denote by $\langle A>$ the groupoid generated by A. An element of the groupoid $<A>$ will be denoted by $f(A)$.

Definition $A \mathcal{D}$-ideal H of K is \mathcal{D}_{w}-semiprime if $H \neq K$ and $f(A) \subseteq H, A \in \operatorname{Id}(K)$, $f(A) \in<A>$, implies that $A \subseteq H$.

For $A \in I d(K), A \neq K$, denote by $r^{w}(A)$ the intersection of all $\mathcal{D}_{w^{-}}$semiprime \mathcal{D}-ideals of K containing A. Put $r^{w}(A)=K$ if there are none. It is clear $r^{s}(A) \subseteq$ $r^{w}(A) \subseteq R(A)$ for all $A \in I d(K)$.

For $A \in I d(K)$ the \mathcal{D}-ideal $R(A)$ will be called \mathcal{D}-radical of A.

Definition $A \mathcal{D}$-ideal M of K is \mathcal{D}-maximal if $M \neq K$ and $M \subseteq B \subseteq K, B \in \operatorname{Id}(K)$, implies that $M=B$ or $B=K$.

Proposition 1.2 Let K be a \mathcal{D}-ring satisfying the ascending chaim condition for \mathcal{D} ideal. Then every \mathcal{D}-ideal of K is contained in some \mathcal{D}-maximal \mathcal{D}-ideal. In particular, there is a \mathcal{D}-maximal \mathcal{D}-ideal of K.

A proof is standard.

Proposition 1.3. Let K be a \mathcal{D}-ring such that $K^{2}=K$. Then any \mathcal{D}-maximal \mathcal{D}-ideal K is \mathcal{D}-prime.

Proof. Let M be \mathcal{D}-maximal \mathcal{D}-ideal of K. Supporse that $A \cdot B \subseteq M, A, B \in \operatorname{Id}(K)$. If $A \nsubseteq M$, then $A \vee M=K$. Therefore

$$
K \cdot K=(A \vee M) \cdot(B \vee M)=A \cdot B \vee A \cdot M \vee M \cdot B \vee M \cdot M \subseteq M \subseteq K
$$

We obtain $M=K$. This is a contradiction.

Remark The condition of Proposition 1.3 fulfils for \mathcal{D}-rings with 1.

Proposition 1.4 Let K be a \mathcal{D}-ring satisfying the ascending chain condition for \mathcal{D} ideals. Then the following conditions are equivalent:
(1) $K^{2}=K$;
(2) Every \mathcal{D}-maximal \mathcal{D}-ideal of K is \mathcal{D}-prime.

Proof. $(1) \Rightarrow(2)$ follows from proposition 1.3.
$(1) \Rightarrow(2)$: Assume that $K^{2} \neq K$. By proposition 1.2 there exists a \mathcal{D}-maximal M of K such that $K^{2} \subseteq M$. It is contradiction since M is \mathcal{D}-prime.

For an element $a \in K$ denote by [a] the smallest \mathcal{D}-ideal containing a.
Everey sequence $\left\{x_{0}, x_{1}, \ldots, x_{n}, \ldots\right\}$, where $x_{0}, x_{n+1} \in\left[x_{n}\right]^{2}$, will be called a \mathcal{D} sequence of the element a.

Definition $A n$ element $a \in K$ is strongly \mathcal{D}-nilpotent if every its \mathcal{D}-sequence is ultimately zero.

Remark This definition is a generalization of differential rings of the similar definition in ([5], p.55; [1], p.574).

Denote by $n(0)$ the set of all strongly \mathcal{D}-nilpotent elements of K, where 0 is zero ideal of K.

Theorem 1.5 For any \mathcal{D}-ring K the equalities $n(0)=r^{s}(0)=r^{w}(0)=R(0)$ hold.
Proof. First we prove that $n(0) \subseteq r^{s}(0)$. If there are no \mathcal{D}_{s}-semiprime \mathcal{D}-ideals then $r^{s}(0)=K$. Hence $n(0) \subseteq r^{s}(0)$. Assume that there is a \mathcal{D}_{s}-semiprime \mathcal{D}-ideal. Let

KHADJİEV, ÇALLIALP

$a \in n(0)$ and S be and \mathcal{D}_{s}-semiprime \mathcal{D}-ideal. Prove that $a \in S$. Assume that $a \notin S$. Then $\left[x_{0}\right] \nsubseteq S$, where $x_{0}=a$. There exists $x_{1} \in\left[x_{0}\right]^{2}$ such that $x_{1} \notin S$. Continuing in this manner we obtain a \mathcal{D}-sequence $\left\{x_{0}, x_{1}, \ldots, x_{n}, \ldots\right\}$ of the element a such that $x_{n} \notin S$ for all n. But it is a contradiction since every \mathcal{D}-sequence of the element a is ultimetely zero.

Thus $a \in S$ and $a \in r^{s}(0)$ since S is any \mathcal{D}_{s}-semiprime \mathcal{D}-ideal. Hence $n(0) \subseteq$ $r^{s}(0) \subseteq r^{w}(0) \subseteq R(0)$.

Prove that $R(0) \subseteq n(0)$. If $n(0)=K$ then $n(0)=r^{s}(0)=r^{w}(0)=R(0)=K$. Let $n(0) \neq K$. Let $b \in K$ such that $b \notin n(0)$. Then there exists a \mathcal{D}-sequence $X=\left\{x_{0}, x_{1}, \ldots, x_{n}, \ldots\right\}$ of the element b such that $X \cap 0=\emptyset$, where 0 is the zero ideal of K.

Denote by \sum the set of \mathcal{D}-ideals M of K such that $X \cap M=\emptyset$. Then \sum is not empty since $0 \in \sum$. We can apply Zorn's lemma to the set \sum; so there exists a maximal element P of \sum. Show that P is \mathcal{D}-prime.

First, P is proper since $b \in P$. Let $B, C \in \operatorname{Id}(K), B \nsubseteq P, C \nsubseteq P$. Then $P \vee B \neq P$ and $P \vee C \neq P$. By the maximality of P in \sum we have $P \vee B \notin \sum$ and $P \vee C \notin \sum$. Hence there exist $x_{m} \in X, x_{q} \in X$ such that $x_{m} \in P \vee B, x_{q} \in P \vee C$. Then

$$
\left[x_{m}\right] \subseteq P \vee M, \quad\left[x_{q}\right] \subseteq P \vee C
$$

Hence

$$
x_{m+1} \in\left[x_{m}\right]^{2} \subseteq P \vee B, \quad x_{q+1} \in\left[x_{q}\right]^{2} \subseteq P \vee C
$$

Continuing in this manner we find that

$$
x_{m+t} \in P \vee B, \quad x_{q+t} \in P \vee C
$$

for all t. Put $n=\max (m, q)$. Then

$$
x_{n} \in P \vee B, \quad x_{n} \in P \vee C .
$$

KHADJIEV, ÇALLIALP

Hence

$$
x_{n+1} \in\left[x_{n}\right]^{2} \subseteq(P \vee B)(P \vee C) \subseteq P \vee B \cdot C,
$$

by Proposition 1.1. But $x_{n+1} \notin P$. Hence $B \cdot C \nsubseteq P$. Therefore P is \mathcal{D}-prime. Thus there exists a \mathcal{D}-prime \mathcal{D}-ideal P such that $b \notin P$. Then $n(0)=r^{s}(0)=r^{w}(0)=R(0)$.

The \mathcal{D}-ideal $R(0)$ will be called differential prime radical of K and will be denoted by DPr.rad (K).

Definition \mathcal{D}-ideal H of K is \mathcal{D}-radical if $H=R(H)$.
For $A \in I d(K)$ denote by $n(A)$ the set of all elements $x \in K$ that every \mathcal{D} sequence of x meets A.

Corollary 1 For any $A \in \operatorname{Id}(K)$ the following equalities hold:

$$
n(A)=r^{s}(A)=r^{w}(A)=R(A)
$$

In particular, every \mathcal{D}_{s}-semiprime \mathcal{D}-ideal is \mathcal{D}-radical.
Proof. Applying theorem 1.5 to the quotient \mathcal{D}-ring K / A, we obtain $n(A)=r^{s}(A)=$ $r^{w}(A)=R(A)=\mathcal{D P r} . \operatorname{rad}(K / A)$.

Corollary 2. For a \mathcal{D}-ring K the following conditions are equivalent:

1. Every \mathcal{D}-ideal of K is \mathcal{D}-radical;
2. $A \cdot B=A \cap B$ for all $A, B \in I d(K)$;
3. $[a]^{2}=[a]$ for all $a \in K$.

Proof. We use the following lemma:

KHADJİEV, ÇALLIALP

Lemma Let K be a \mathcal{D}-ring. Then

$$
R(A \cdot B)=R(A \cap B)=R(A) \cap R(B)
$$

for any $A, B \in I d(K)$. The proof of this lemma follows from proposition 1.6 in [8],
$(1) \Rightarrow(2):$ If every \mathcal{D}-ideal of K is \mathcal{D}-radical then using the lemma we obtain

$$
A \cdot B=R(A \cdot B)=R(A) \cap R(B)=A \cap B
$$

$(2) \Rightarrow(3):$ Let $A \cdot B=A \cap B$ for any $A, B \in I d(K)$. Then $A^{2}=A$ for any $A \in I d(K)$.
$(3) \Rightarrow(1)$: Prove that every \mathcal{D}-ideal of K is \mathcal{D}_{s}-semiprime. Let A be a \mathcal{D}-ideal of K. Then $A=\vee_{a \in A}[a]$. Using proposition 1.1 we have

$$
\begin{aligned}
A^{2}= & \left(\vee_{a \in A}[a]\right)^{2}=\left(\vee_{a \in A}[a]^{2}\right) \vee\left(\vee_{a, b \in A}[a] \cdot[b]\right)= \\
& \left(\vee_{a \in A}[a]\right) \vee\left(\vee_{a, b \in A}[a] \cdot[b]\right)=\vee_{a \in A}[a]=A,
\end{aligned}
$$

since $[a] \cdot[b] \subseteq[a] \cap[b]$ for any $a, b \in A$. Thus $A^{2}=A$ for any $A \in I d(K)$. Let $B^{2} \subseteq A$, $B \in \operatorname{Id}(K)$. Then $B=B^{2} \subseteq A$. Therefore every \mathcal{D}-ideal A is \mathcal{D}_{s}-semiprime. By Corollary $1 A$ is \mathcal{D}-radical.

Remark This corollary is a generalization of the similar theorem in ([7], ch.4, §5).

$$
\text { Let } A \in I d(K) . \text { Put } A^{(0)}=A, A^{(n+1)}=\left(A^{(n)}\right)^{2} .
$$

Corollary 3 For a \mathcal{D}-ring K the following conditions are equivalent:
(1) $\mathcal{D P r} . r a d(K)=0$
(2) If $A^{(n)}=0, A \in I d(K)$, for some n then $A=0$;
(3) If $A^{2}=0, A \in I d(K)$, then $A=0$.

Proof. $(1) \Rightarrow(2) \Rightarrow(3)$ is obvious.
Prove that $(3) \Rightarrow(1)$. Condition (3) implies that $r^{s}(0)=0$. By theorem 1.5 we see $\operatorname{Pr} \cdot \operatorname{rad}(K)=r^{s}(0)=0$.

KHADJİEV, ÇALLIALP

Definition $A \mathcal{D}$-ideal A of K is s-nilpotent if $A^{(n)}=0$ for some n.
Proposition 1.6 Let K be a \mathcal{D}-rign and $A, B \in \operatorname{Id}(K), A \subseteq B$. If A is s-nilpotent and B / A is s-nilpotent in K / A then B is s-nilpotent in K.
Proof. Since B / A is s-nilpotent the $B^{(n)} \subseteq A$ for some n. Then $B^{(n+m)}=\left(B^{(n)}\right)^{(m)}=$ 0 since A is s-nilpotent.

Theorem 1.7 Let K be a \mathcal{D}-rign satisfying the ascending chain condition for \mathcal{D}-ideals. The $\mathcal{D P r}$.rad (K) is s-nilpotent.

Proof. Denote by \sum the set of s-nilpotent \mathcal{D}-ideals of $K . \sum$ is not empty since $0 \in \sum$. There exists a maximal element P in \sum. By proposition 1.6 the \mathcal{D}-ring K / P have the following property: if $(A / P)^{2}=0, A \in I d(K), P \subseteq A$, then $A / P=0$. By corollary 3 of theorem 1.5 we have $\mathcal{D P r} \cdot \operatorname{rad}(K / P)=0$. Thes means that $\mathcal{D P r}$.rad $(K) \subseteq P$. But $P \subseteq \mathcal{D} \operatorname{Pr} \cdot r a d(K)$ since P is s-nilpotent. Therefore $\mathcal{D} \operatorname{Pr} \cdot \operatorname{rad}(K)=P$.

Corollary Let K be a \mathcal{D}-ring satisfying the ascending chain condition for \mathcal{D}-ideals. Then the followings are equivalent:
(1) $K^{(n)}=0$ for some n.
(2) K has not a \mathcal{D}-prime \mathcal{D}-ideal;
(3) K has not a \mathcal{D}_{s}-semiprime \mathcal{D}-ideal.

Denote by $I d_{r}(K)$ the set all \mathcal{D}-radical \mathcal{D}-ideals of $K . I d_{r}(K)$ is a complete lattice with respect to the inclusion relation. Denote by \vee and \wedge the lattice operations in $I d_{r}(K)$.

Theorem 1.8 Let K be a \mathcal{D}-ring. Then the lattice $I d_{r}(K)$ satisfies the infinte \wedge distributive condition:

$$
A \wedge\left(\vee_{\tau \in T} B_{\tau}\right)=\vee_{\tau \in T}\left(A \wedge B_{\tau}\right)
$$

for any $A, B \in I d_{r}(K)$. In particular, $I d_{r}(K)$ is distributive.
A proof follows from Theorem 1.3 in [8].

KHADJİEV, ÇALLIALP

Theorem 1.9 Let K be a \mathcal{D}-ring satisfying the ascending chain condition for \mathcal{D}-ideals. Then any \mathcal{D}-radical \mathcal{D}-ideal A is an intersection of finite \mathcal{D}-prime \mathcal{D}-ideals and a such representation of A is unique.

Proof. First prove the following.

Lemma $A \in I d_{r}(K)$ is a \mathcal{D}-prime \mathcal{D}-ideal iff A is an \wedge-indecomposable element of the lattice $I d_{r}(K)$.

Proof. Let A be a \mathcal{D}-prime \mathcal{D}-ideal of K and $A=A_{1} \wedge A_{2}, A_{1}, A_{2} \in I d_{r}(K)$. Then

$$
A_{1} \cdot A_{2} \subseteq A_{1} \cap A_{2} \subseteq R\left(A_{1} \cap A_{2}\right)=A_{1} \wedge A_{2}=A
$$

Hence $A_{1} \subseteq A$ or $A_{2} \subseteq A$ since A is \mathcal{D}-prime. Then $A=A_{1}$ or $A=A_{2}$.
Let A be an \wedge-indecomposable element of the lattice $I d_{r}(K)$ and $B \cdot C \subseteq A$, $B, C \in I d_{r}(K)$. Then $R(B \cdot C) \subseteq A$. By lemma 1.6 in [8] we have $R(B) \wedge R(C)=$ $R(B \cdot C) \subseteq A$. We obtain

$$
A=A \vee(R(B) \wedge R(C))=(A \vee R(B)) \wedge(A \vee R(C))
$$

since $I d_{r}(K)$ is distributive. Hence $A=A \vee R(B)$ or $A=A \wedge R(C)$ since A is an \wedge-indecomposable. This means that $B \subseteq R(B) \subseteq A$ or $C \subseteq R(C) \subseteq A$. Thus A is \mathcal{D}-prime. The lemma is proved.

By the lemma and the corollary in ([4], p.183), we obtain the every \mathcal{D}-radical \mathcal{D} ideal of K is an intersection of finite \mathcal{D}-prime \mathcal{D}-ideals of K and such a represantation is unique.

Remark This theorem is a generalization of the similar statement from the theory of associative rings.

Let $A \in I d(K)$. Put $N_{0}(A)=A$. Denote by $N_{1}(A)$ the supremum of all $B \in$ $I d(K)$ such that $B^{(n)} \subseteq A$ for some n (n depends from B). Put $N_{\alpha}(A)=N_{1}\left(N_{\beta}(A)\right.$) for $\alpha=\beta+1$ and $N_{\alpha}(A)=\vee_{\beta<\alpha} N_{\beta}(A)$ for α a limit ordinal

Put $L(K, \mathcal{D})=N_{\alpha}(0)$ for any ordinal α of cardinality $\geq|K|$.

KHADJİEV, ÇALLIALP

Theorem $1.10 L(K, \mathcal{D})=\mathcal{D} \operatorname{Pr} . r a d(K)$ for \mathcal{D}-ring K.
Proof. By theorem 1.5 it is enough to prove that $L(K, \mathcal{D}) r^{s}(0)$.
It is clear that $N_{1}(0) \subseteq r^{s}(0)$. By transfinite induction we obtain $N_{\alpha}(0) \subseteq r^{s}(0)$ for any ordinal α. Hence $L(K, \mathcal{D}) \subseteq r^{s}(0)$.

Prove that $L(K, \mathcal{D})$ is \mathcal{D}_{s}-semiprime. Assume that $B^{2} \subseteq L(K, \mathcal{D})$. Then there exists an ordinal α such that $B^{2} \subseteq N_{\alpha}(0)$. Hence $B \subseteq N_{\alpha+1}(0)$ by definition of $N_{\alpha+1}(0)$. Therefore $B \subseteq L(K, \mathcal{D})$ and $L(K, \mathcal{D})$ is \mathcal{D}_{s}-semiprime.
By the definition of $r^{s}(0)$ we have $L(K, \mathcal{D})=r^{s}(0)$.

2. \mathcal{D}-algebras over the field of rational numbers

Let \mathcal{Q} be the field of rational numbers. Put $\mathcal{D P r} \cdot \operatorname{rad}(K)=\operatorname{Pr} \cdot \operatorname{rad}(K)$ and $L(K, \mathcal{D})=L(K)$ if $\mathcal{D}=\emptyset$.
\mathcal{D}-sequence of $a \in K$ will be called n-sequence of a if $\mathcal{D}=\emptyset$.
For $a \in K$ we denote its n-sequence $\left\{x_{0}(a)=a, x_{1}, \ldots, x_{m}, \ldots\right\}$ in the form:

$$
\left\{x_{0}(a)=a, x_{1}(a), \ldots, x_{m}(a), \ldots\right\} .
$$

If R is associative then every element $x_{m}(a) \in\left[x_{m+1}(a)\right]^{2} \subseteq[a]^{2 m}$ is a finite sum:

$$
x_{m}(a)=\sum f_{1} f_{2} \ldots f_{s}
$$

where $s=2^{m}$ and every f_{i} has the form $f_{i}=r_{1 i} a r_{2 i}$. Thus $x_{m}(a)$ is a homogeneous polynomial of a a degree 2^{m} with coefficients from R.

If R is nonassociative then every element $x_{m}(a)$ is a homogeneous nonassociative polynomial of degree 2^{m} with coefficients from R.

Theorem 2.1 If R is \mathcal{Q}-algebra with 1 and δ is a differentiation of R, then

$$
\delta(\operatorname{Pr} \cdot \operatorname{rad}(R)) \subseteq \operatorname{Pr} \cdot \operatorname{rad}(R)
$$

Proof. Let $a \in \operatorname{Pr} . \operatorname{rad}(R)$. We consider any n-sequence of the element δa :

$$
\begin{gathered}
\text { KHADJİEV, ÇALLIALP } \\
\left\{x_{0}(\delta a)=\delta a, x_{1}(\delta a), \ldots, x_{m}(\delta a), \ldots,\right\} .
\end{gathered}
$$

We have

$$
\delta^{2 m}\left(x_{m}(a)\right) \in q \cdot x_{m}(\delta a)+[a],
$$

where $q \neq 0$ is an integer. Then $x_{m}(\delta a) \in \frac{1}{q} \delta^{2 m}\left(x_{m}(a)\right)+[a]$. Since $a \in \operatorname{Pr} \cdot r a d(R)$ then there exist m_{0} such that $x_{m}(a)=0$ for all $m \geq m_{0}$. Then the following sequence

$$
\left\{y_{0}(a)=a, y_{1}(a), \ldots, y_{k}(a), \ldots\right\}
$$

where $y_{k}(a)=x_{m_{0}+k}(\delta a)$, is an n-sequence of the element a. Therefore there exists k_{0} such that $y_{k}(a)=0$ for all $k \geq k_{0}$. This means that any n-sequence of the form

$$
\left\{x_{0}(\delta a)=\delta a, x_{1}(\delta a), \ldots, x_{m}(\delta a), \ldots,\right\}
$$

of element δa is ultimately zero. Thus $\delta a \in \operatorname{Pr} \cdot \operatorname{rad}(R)$.

Remark This theorem is the Ritt's theorem if R is a commutative associative \mathcal{Q}-algebra ([6], p.12). If R is an associative \mathcal{Q}-algebra then there is only the formulation of this theorem and putline of its prof in ([10], p.207).

Bu this instruction is not correct (the member n in proposition 2.6.28 in ([10], p.207) depends for $r_{1 i}, r_{2 i}$). By this instruction the theorem may be proved for only Noetherian rings.

Further we investigate connections between radical \mathcal{D}-ideals and \mathcal{D}-radical \mathcal{D}-ideals in \mathcal{D}-rings.

If $\mathcal{D}=\emptyset$ then in $\S 1$ we obtain results for usual rings.

Corollary Let K be a differential \mathcal{Q}-algebra with 1 . Then radical of any \mathcal{D}-ideal of K is a \mathcal{D}-ideal of K.

Proof. Let H be a \mathcal{D}-ideal of K. Then by Theorem $2.1 \operatorname{Pr} \cdot \operatorname{rad}(K / H)$ is a \mathcal{D}-ideal. This means that $\operatorname{rad}(H)$ is a \mathcal{D}-ideal of K.

KHADJIEV, ÇALLIALP

Let K be a ring. For $a \in K$ denote by (a) the intersection of all ideals of K containing a.

For ideals A, B of K denote by $A \star B$ the intersection of all ideals of K containing the set $\{x \in K: x=a \cdot b, a \in A, b \in B\}$.

Proposition 2.2 Let K be a ring and B be an ideal of K. Then B is prime iff for every $t_{1}, t_{2} \in K \backslash B$ such that $\in\left(t_{1}\right) \star\left(t_{2}\right)$.

A proof is obvious.

Theorem 2.3 Let H be a radical \mathcal{D}-ideal of a \mathcal{D}-rign K. Then H is an intersection of \mathcal{D}-prime \mathcal{D}-ideals.
Proof. Let $x \notin H$. Then there exists a prime ideal B of K such that $H \subseteq B$ and $x \notin B$.

Denote by \sum the set of \mathcal{D}-ideals A of K such that $H \subseteq A$ and $A \cap(K \backslash B)=\emptyset$. $\sum \neq \emptyset$ since $H \in \sum$. By Zorn's lemma there exists a maximal element P in \sum. Prove that P is a \mathcal{D}-prime \mathcal{D}-ideal. P is proper since $x \notin P$.

Let $A_{1}, A_{2} \in I d(K)$ and $A_{1} \nsubseteq P, A_{2} \nsubseteq P$. Then $P \vee A_{1} \neq P, P \vee A_{2} \neq P$. There exist $t_{1} \in K \backslash B, t_{2} \in K \backslash$ such that $t_{1} \in P \vee A_{1}, t_{2} \in P \vee A_{2}$. Then

$$
\left(t_{1}\right) \subseteq P \vee A_{1}, \quad\left(t_{2}\right) \subset P \vee A_{2}
$$

By proposition 1.1 we have

$$
\left(t_{1}\right) \star\left(t_{2}\right) \subseteq\left(P \vee A_{1}\right) \cdot\left(P \vee A_{2}\right) \subseteq P \vee A_{1} \cdot A_{2}
$$

By proposition 2.2 for $t_{1}, t_{2} \in K \backslash B$ there exists $t \in K \backslash B$ such that $t \in\left(t_{1}\right) \star\left(t_{2}\right)$. Then $t \in P \vee A_{1} \cdot A_{2}$. This means that $A_{1} \cdot A_{2} \nsubseteq P$. Therefore P is a \mathcal{D}-prime \mathcal{D}-ideal and $H \subseteq P$. Thus for any $x \notin H$ there exists a \mathcal{D}-prime \mathcal{D}-ideal P such that $H \subseteq P$ and $x \notin P$. This means that H is an intersection of all \mathcal{D}-prime \mathcal{D}-ideals containing H.

KHADJİEV, ÇALLIALP

Theorem 2.4 Let K be a differential \mathcal{Q}-algebra with 1. Then Pr.rad (K) is an intersection of all \mathcal{D}-prime \mathcal{D}-ideals of K containing Pr rad (K) and $\mathcal{D P r} \operatorname{Prad}(K) \subseteq$ $\operatorname{Pr} . \operatorname{rad}(K)$.

Proof. By theorem 2.1 $\operatorname{Pr} \cdot \operatorname{rad}(K)$ is a \mathcal{D}-ideal of K. By theorem 2.3 $\operatorname{Pr} \cdot \operatorname{rad}(K)$ is an intersection of all \mathcal{D}-prime \mathcal{D}-ideals of K containing Pr.rad (K). Hence $\mathcal{D P r}$ Prad $(K) \subseteq$ $\operatorname{Pr} . \operatorname{rad}(K)$.

Theorem 2.5 Let K be a differential \mathcal{Q}-algebra with 1. Assume that K satisfies the ascending chain condition for ideals. Then $\mathcal{D P r} \cdot \operatorname{rad}(K)=\operatorname{Pr} \cdot \operatorname{rad}(K)$.

Proof. In this case $\operatorname{Pr} . \operatorname{rad}(K)$ is s-nilpotent by theorem $1.7 \mathcal{D}=\emptyset$. Therefore $\operatorname{Pr} \cdot \operatorname{rad}(K))^{(n)}=0$ for some n. Since $\operatorname{Pr} . \operatorname{rad}(K)$ is a \mathcal{D}-ideal $[\operatorname{Pr} . \operatorname{rad}(K)]^{(r)}=$ $(\operatorname{Pr} . \operatorname{rad}(K))^{(n)}=0$. Then by theorem 1.10 Pr.rad $(K) \subseteq \mathcal{D P r} . \operatorname{rad}(K)$. Thus $\mathcal{D P r} . r a d(K)=$ $\operatorname{Pr} . \operatorname{rad}(K)$.

Corollary Let K be a differential \mathcal{Q}-algebra with 1. Assume that K satisfies the ascending chain condition for ideals. Then every \mathcal{D}-radical \mathcal{D}-ideal of K is radical.

Proof. The statement follows from theorem 2.5.

Remark Theorems 2.3-2.5 are known for commutative differential rings [1].

References

[1] Khadjiev D., Çallıalp F.: On a differential analog of the prime-radical and properties of the lattice of the radical differential ideals in associative differential rings. Tr. J. of Math., 20, no.4, 571-582, (1996).
[2] Khadjiev D., Çallıalp F.: On the prime radical of a ring and a groupoid. Marmara Univ. Fen Dergisi, no.13, 1997.
[3] Khadjiev D., Çallıalp F.: On the prime radical of a nonassociative ring. (It is publishing).

KHADJİEV, ÇALLIALP

[4] Birkhoff G.: Lattice Theory, Providence, Rhode island. 1967.
[5] Lambek J.: Lectures on Rings and Modules, Blaisdell Publ. Comp., Waltham-London, 1966.
[6] Kaplansky I.: Remeslennikov V. N., Romankov V. a., Skorniakov L. A. Shestakov I.P.: General algebra. V. 1, Moscow, Nauka, (1990).
[7] Khadjiev Dj., Shamilev T. M.: Complete ℓ-groupoids and thei prime spectrums. Algebra i Logica, 86, no.3, 341-355, (1997).
[8] Andrunakievich V. A., Ryabuhin Y. M.: Radicals of Algebras and a Strcture Theory. Moscow, Nauka, (1979).
[9] Rowen L. H: Ring Theory, V. 1, Acad. Press., INC., Boston, (1988).

Djavvat KHADJIEV
Received 02.02.1998
Tashkent State University
Mech. Math. Fac.
700095 Tashkent-UZBEKİSTAN
Fethi ÇALLIALP
Tech. University of İstanbul
Faculty of Arts and Sciences
Department of Math. İstanbul-TURKEY

[^0]: * Supported by a grant from the TUBITAK-NATO CP-B Program.

