NORMAL SUBGROUPS OF HECKE GROUPS ON SPHERE AND TORUS*

İsmail Naci Cangül \mathcal{G} Osman Bizim

Abstract

We use regular map theory to obtain all normal subgroups of Hecke groups of genus 0 and 1 . The existence of a regular map corresponding uniquely to every normal subgroup of Hecke groups $H\left(\lambda_{q}\right)$ is a result of Jones and Singerman, and it is frequently used here to obtain normal subgroups. It is found that when q is even, $H\left(\lambda_{q}\right)$ has infinitely many normal subgroups on the sphere, while for odd q, this number is finite. The total number of normal subgroups of $H\left(\lambda_{q}\right)$ on a torus is found to be either 0 or infinite. The latter case appears iff q is a multiple of 4 . Finally, a result of Rosenberger and Kern-Isberner is reproved here.

Keywords: Hecke groups, genus, regular maps

1. Introduction

Hecke groups $H\left(\lambda_{q}\right)$ are the discrete subgroups of $\operatorname{PSL}(2, \mathbf{R})$ generated by two linear fractional transformations $R(z)=-1 / z$ and $T(z)=z+\lambda_{q}$, where $\lambda_{q}=2 \cos (\pi / q), q \in$ $\mathbf{N}, q \geq 3$. Let $\mathrm{S}(\mathrm{z})=\mathrm{RT}(\mathrm{z})$. Then R and S are elliptic elements (rotations) of orders 2 and q, respectively, and T is parabolic. $H\left(\lambda_{q}\right)$ is a Fuchsian group of the first kind with signature $(0 ; 2, \mathrm{q}, \infty)$, and therefore can be considered as a triangle group with a parabolic generator.

[^0]
CANGÜL, BİZİM

The study of subgroups of Hecke groups, specially, of those which are normal, has been done in [1]. One of the ways of studying them is to make use of regular map theory. A map M is an embedding (without crossings) of a finite connected graph G into a compact connected surface S without boundary such that $S-G$ is a union of 2-cells. If m and n are the $\ell . c . m . s$ of the valencies of the faces and vertices, respectively, we then say M has type $\{m, n\}$. An automorphism of M is an orientation-preserving homeomorphism of S preserving the incidence relations. If the set of automorphisms of M is transitive on the set of edges, then M is called regular. All regular maps of genus ≤ 7 are known (see [2], [3] and [4]).

In [5], Jones and Singerman proved the existence of a $1: 1$ correspondence between regular maps and normal subgroups of certain triangle groups including Hecke groups. If N is a normal subgroup of $H\left(\lambda_{q}\right)$ corresponding to a regular map of type $\{\mathrm{m}, \mathrm{n}\}$, then n corresponds to the level of N , i.e. the least positive integer so that $T^{n} \in N$. This correspondence can be used to prove many results concerning normal subgroups of $H\left(\lambda_{q}\right)$. For example, as all regular maps of genus less than 8 are classified, we can easily find all normal subgroups of genus <8 of $H\left(\lambda_{q}\right)$. Another nice application of regular map theory is the determination of the normal subgroups of $g=0$ and $g=1$ of Hecke groups. First we consider the case of $g=0$:

2. Normal Genus 0 Subgroups of $H\left(\lambda_{q}\right)$

Let N be a normal subgroup of genus 0 in $H\left(\lambda_{q}\right)$. Then $H\left(\lambda_{q}\right) / N$ is a group of automorphisms of \hat{U} / N where $\hat{U}=U \cup \mathbf{Q} \cup\{\infty\}$. This gives a regular map on the sphere so that $H\left(\lambda_{q}\right) / N$ is isomorphic to one of the finite triangle groups. These are known to be isomorphic to $A_{4}, S_{4}, A_{5} C_{n}$ and D_{n}, for $n \in \mathbf{N}$. Now considering each of these groups as a quotient group of $H\left(\lambda_{q}\right)$, whenever possible, we can find all genus 0 normal subgroups of Hecke groups.

Let us begin with the cyclic group C_{n} of order n . If we map R to identity and S to the generator α of C_{n} where $n \mid q$, we obtain a homomorphism of $H\left(\lambda_{q}\right)$ to C_{n}. For each such n, we can obtain a normal subgroup N of genus 0 as the kernel of this homomorphism. By the permutation method, [1], N has the signature ($0 ; 2^{(n)}, q / n, \infty$), i.e. it is isomorphic to the free product of n cyclic groups of order 2 and a cyclic group

CANGÜL, BİZİM

of order q / n. Corresponding regular maps are called star maps. They consist of a vertex surrounded by a number of edges (see Figure 1).

Figure 1.

Similarly, for each $n \mid q$, we obtain a normal subgroup N of genus 0 in $H\left(\lambda_{q}\right)$ such hat $H\left(\lambda_{q}\right) / N \cong D_{n}$, the dihedral group of order 2 n . In that case, N has signature $(0 ; \mathrm{q} / \mathrm{n}$, $\mathrm{q} / \mathrm{n}, \infty^{(n)}$) and therefore is isomorphic to the free product of two cyclic groups of order q / n with $\mathrm{n}-1$ infinite cyclic groups. Corresponding regular maps are regular polygons on the sphere.

The above classes of normal genus 0 subgroups of $H\left(\lambda_{q}\right)$ occur for any q. There are some more normal genus 0 subgroups whose existence completely depend on q. Recall that $A_{4} \cong(2,3,3), S_{4} \cong(2,3,4)$ and $A_{5} \cong(2,3,5)$. Now, if $3 \mid q$, then $H\left(\lambda_{q}\right) \cong(2, q, \infty)$ can be mapped to A_{4}, S_{4} and A_{5} homomorphically. If $4 \mid q$ ($5 \mid q$, respectively), it can only be mapped to $S_{4}\left(A_{5}\right.$, respectively). When $H\left(\lambda_{q}\right) / N$ is isomorphic to A_{4}, then the corresponding regular map is a tetrahedron. If $H\left(\lambda_{q}\right) / N \cong(2,3,4)$ we obtain an octahedron and when it is $(2,4,3)$, a cube is obtained. Finally, when it is isomorphic to $(2,3,5)((2,5,3)$, respectively) an icosahedron (dodecahedron) is obtained.

There are also duals of regular polygons on the sphere corresponding to dihedral quotients $H\left(\lambda_{q}\right) / N \cong D_{n} \cong(2,2, n)$. This class of genus 0 normal subgroups is obtained only when q is even. As for each $n \in \mathbf{N}$, we can obtain a normal subgroup, this class contains infinitely many normal genus 0 subgroups of $H\left(\lambda_{q}\right), q$ even. Therefore we have the following theorem.

Theorem 1. (i) If q is odd then $H\left(\lambda_{q}\right)$ has finitely many normal subgroups of genus 0 ; their number is given by

$$
\text { (a) } 2 d(q) \quad \text { if }(q, 15)=1 \text {, }
$$

CANGÜL, BİZİM

(b) $2 d(q)+3$ if $(q, 15)=3$,
(c) $2 d(q)+1 \quad$ if $(q, 15)=5$,
(d) $2 d(q)+4 \quad$ if $(q, 15)=15$,
where $d(q)$ denotes the number of divisors of q.
(ii) If q is even then $H\left(\lambda_{q}\right)$ has infinitely many normal genus 0 subgroups.

Proof. We only prove (i) (b), i.e. we let q be odd such that ($\mathrm{q}, 15$) $=3$. As $H\left(\lambda_{q}\right)$ has signature $(2, q, \infty)$ it is only possible to map it to $(1, \mathrm{~m}, \mathrm{n})$ or $(2, \mathrm{~m}, \mathrm{n})$ where $m \mid q$ and $n \in \mathbf{N}$. Former ones give degenerate regular maps and therefore are omitted. As $m \mid q$, and as we are interested in the normal subgroups of genus $0, \mathrm{~m}$ is 3 . This is because when q is odd we can only map $H\left(\lambda_{q}\right)$ to A_{4}, S_{4} or A_{5} to obtain normal subgroups corresponding to non-degenerate regular maps. This gives 3 normal genus 0 subgroups. There is also $\mathrm{d}(\mathrm{q})$ of them corresponding to cyclic quotients and $\mathrm{d}(\mathrm{q})$ of them corresponding to dihedral quotients. Therefore the result follows.

Other parts of the proof are similar and therefore omitted.

3. Normal Genus 1 Subgroups of $H\left(\lambda_{q}\right)$

It is well-known that all regular maps of genus one are those of type $\{4,4\},\{3,6\}$ or $\{6,3\}$. They are classified in [2] and [5] as $\{4,4\}_{r, s},\{3,6\}_{r, s}$ and $\{6,3\}_{r, s}$ for non-negative integers r and s, not both 0 .

In [7], Kern-Isberner and Rosenberger proved some results on genus 1 normal subgroups of certain free products. Their method of proof was number theoretical. As Hecke groups are free products, Theorems 2 to 6 of this section can also be deduced from Theorems 1, 2 and 3 of this paper. Here we use the $1: 1$ correspondence mentioned and used above to find all genus 1 normal subgroups of Hecke groups. The proofs are direct results of this correspondence. We first have the following theorems.

Theorem 2. $H\left(\lambda_{q}\right)$ has a normal subgroup of genus 1 iff $q \equiv 0 \bmod 3$ or $q \equiv 0 \bmod 4$.
Proof. The existence of such a subgroup completely depends on the divisibility of q by 3,4 and 6 , as all regular maps on a torus are of type $\{4,4\},\{3,6\}$ and $\{6,3\}$. For

CANGÜL, BIZİM

example, if $4 \mid q$, then $H\left(\lambda_{q}\right)$ has normal genus 1 subgroups corresponding to regular maps of type $\{4,4\}$. Now if N is a normal subgroup of genus 1 in $H\left(\lambda_{q}\right)$, then $3|q, 4| q$ or $6 \mid q$ implying $q \equiv 0 \bmod 3$ or $\mathrm{q} \equiv 0 \bmod 4$. Conversely, if $q \equiv 0 \bmod 3$ or $q \equiv 0 \bmod 4$, then either 3 or 4 divides q. In the first (second) case $H\left(\lambda_{q}\right)$ has a normal genus 1 subgroup corresponding to a regular map of type $\{3,6\}(\{4,4\}$, respectively).

Theorem 3. The total number of normal genus 1 subgroups of $H\left(\lambda_{q}\right)$ is either 0 or ∞. Proof. If $H\left(\lambda_{q}\right)$ has a normal genus 1 subgroup, then it corresponds to either $\{4,4\}_{r, s}$, $\{3,6\}_{r, s}$ or $\{6,3\}_{r, s}$ for a pair of non-negative integers r and s . As r and s can be chosen in infinitely many ways, the result follows.

We can characterize the freeness of a normal genus 1 subgroup of $H\left(\lambda_{q}\right)$ as follows:

Theorem 4. (i) All normal subgroups of genus 1 of $H\left(\lambda_{q}\right)$ are free iff $q=3$ or 4 .
(ii) The only values of q such that $H\left(\lambda_{q}\right)$ has a normal free subgroup of genus 1 are 3, 4 and 6 .

Proof. To have a free normal subgroup, we must map $(2, q, \infty)$ to a subgroup of the triangle group ($2, \mathrm{q}, \mathrm{n}$), where $n \in \mathbf{N}$. In that case the corresponding regular map will be type $\{q, \mathrm{n}\}$. Because of $\mathrm{g}=1$, q or n could only be 3,4 or 6 . Then result follows.

Now we want to calculate the number of normal genus 1 subgroups of $H\left(\lambda_{q}\right)$. Note that if N is a normal genus 1 subgroup of $H\left(\lambda_{4}\right)$, then it is also a normal genus 1 subgroup of every $H\left(\lambda_{4 k}\right), k \in \mathbf{N}$. Similarly, if M is a normal genus 1 subgroup of $H\left(\lambda_{6}\right)$, then it is also a normal genus 1 subgroup of every $H\left(\lambda_{6 \ell}\right), \ell \in \mathbf{N}$. Therefore if we can calculate the number of normal genus 1 subgroups of $H\left(\lambda_{4}\right)$ and $H\left(\lambda_{6}\right)$, then we can calculate this number for all q. Theorem 2 implies that if $(q, 12)<3$ then $H\left(\lambda_{q}\right)$ has no normal genus 1 subgroups. Let us begin with $\mathrm{q}=4$ case. If N is a normal genus 1 subgroup of $H\left(\lambda_{4}\right)$, then it corresponds, in a 1:1 way, to a regular map $M=\{4,4\}_{r, s}$. Also,

$$
|A u t M|=\left|H\left(\lambda_{4}\right): N\right|=\mu=4\left(r^{2}+s^{2}\right) .
$$

CANGÜL, BİZİM

Note that we obtain N by mapping $H\left(\lambda_{4}\right)$ to a normal subgroup of $(2,4,4)$. This implies that the level of N is 4 . Therefore

$$
\mu=4 t
$$

where t is the parabolic class number of N . This implies that

$$
t=r^{2}+s^{2}
$$

Clearly, more than one pair (r, s) satisfy the last equation. We define an equivalence relation on these pairs: $\left(r_{1}, s_{1}\right) \approx\left(r_{2}, s_{2}\right)$ if $\left|r_{1}\right|=\left|r_{2}\right|$ or $\left|r_{1}\right|=\left|s_{2}\right|$, and $\left|s_{1}\right|=\left|r_{2}\right|$ or $\left|s_{1}\right|=\left|s_{2}\right|$ i.e. two pairs are equivalent if the entries of one can be transformed to the entries of the other by changing the signs and/or order. Now given $\mu=4 . t, H\left(\lambda_{4}\right)$ has as many normal subgroups of genus 1 with index μ as the number of possible "nonequivalent" pairs (r, s) such that $r^{2}+s^{2}=t$. Note that for each pair (r, s) there are 3 more equivalent pairs. As each set of equivalent pairs gives a normal genus 1 subgroup N , we obtain the following result:

Theorem 5. The number $N_{4}(\mu)$ of normal genus 1 subgroups of $H\left(\lambda_{4}\right)$ of index μ is

$$
N_{4}(\mu)=1 / 4 . \#\left\{(r, s): r, s \in \mathbf{Z}, r^{2}+s^{2}=t\right\}
$$

i.e. $N_{4}(\mu)$ is equal to a quarter of the number of representations of $t=\mu / 4$ as the sum of two squares in \mathbf{Z}.

Remark 1. This number has been found in [7] using the multiplicativity of $N_{4}(\mu)$.
Using a well-known number-theoretical result (see e.g. [6]), we can determine $N_{4}(\mu)$ more explicity:

Theorem 6. Let $t=2^{\alpha} \prod_{b} P_{b}^{\ell_{b}} \prod_{c} q_{c}^{m_{c}}$ be the prime power decomposition of t, where $p_{b} \equiv 1(\bmod 4)$ and $q_{c} \equiv 3(\bmod 4)$. Then

$$
N_{4}(\mu)=r(t) / 4,
$$

where $r(t)$ is the number of integer solutions of the Diophantine equation $x^{2}+y^{2}=t$ given by $r(t)=0$ if one of the m_{c} is odd, and by

$$
r(t)=4 \prod_{b}\left(\ell_{b}+1\right)
$$

if all m_{c} are even.
Remark 2. The first few values of $N_{4}(\mu)$ are given in the following table:

t	1	2	3	4	5	6	7	8	9	10
μ	4	8	12	16	20	24	28	32	36	40
$N_{4}(\mu)$	1	1	0	1	2	0	0	1	1	2

In a similar way to the case $q=4$ discussed above, we can find the number of normal genus 1 subgroups of $H\left(\lambda_{6}\right)$ as follows (there is ahint in [7] about how to prove Theorems 7 to 9. But the proofs we give here are completely different):

Theorem 7. (i) The number $N_{6}(\mu)$ of all normal subgroups of genus 1 of $H\left(\lambda_{6}\right)$ of index μ is

$$
N_{6}(\mu)=1 / 3 . \#\left\{(r, s): r, S \in \mathbf{Z}, r^{2}+r s+s^{2}=t / 2\right\} .
$$

(ii) $N_{6}(\mu) / 2$ is the number of normal torsion (or torsion-free) subgroups of genus 1 of $H\left(\lambda_{6}\right)$ having index μ.

Again using a well-known result (see e.g. [6]), we can express $N_{6}(\mu)$ more explicitly:

Theorem 8. $N_{6}(\mu)=2 \varepsilon$, where ε is the number of divisors of $\mu / 6$ of the form $3 a+1$ subtracting the number of divisors of the form $3 b+2$.

Remark 3. (i) The folloing table gives the first few values of $N_{6}(\mu)$:

t	2	4	6	8	10	12	14	16	18	20
$\mu=3 t$	6	12	18	24	30	36	42	48	54	60
$N_{6}(\mu)$	2	0	2	2	0	0	4	0	2	0

(ii) $N_{6}(\mu)$ is always even.

We can now generalize all these to all values of q :

CANGÜL, BİZİM

Theorem 9. The number $N_{q}(\mu)$ of normal genus 1 subgroups of $H\left(\lambda_{q}\right)$ of index μ is

$$
N_{q}(\mu)= \begin{cases}0 & \text { if }(q, 12)=1 \text { or } 12 \\ \beta / 2 & \text { if } 3 \mid q, q \text { odd and } \mu=3 t_{2} \\ 0 & \text { if } 3 \mid q, q \text { odd and } \mu \neq 3 t_{2} \\ \alpha & \text { if } 4|q, 3| q \text { and } \mu=4 t_{1} \\ 0 & \text { if } 4|q, 3| q \text { and } \mu \neq 4 t_{1} \\ \beta & \text { if } 6|q, 4| q \text { and } \mu=3 t_{2} \\ 0 & \text { if } 6|q, 4| q \text { and } \mu \neq 3 t_{2} \\ \alpha+\beta & \text { if } 12 \mid q \text { and } \mu=3 t_{2}=4 t_{1} \\ \alpha & \text { if } 12 \mid q \text { and } \mu=3 t_{2} \neq 4 t_{1} \\ \beta & \text { if } 12 \mid q \text { and } \mu=4 t_{1} \neq 3 t_{2} \\ 0 & \text { if } 12 \mid q \text { and } 3 t_{2} \neq \mu \neq 4 t_{1}\end{cases}
$$

where t_{1} and t_{2} are such that $t_{1}=r_{1}^{2}+s_{1}^{2}$ and $t_{2}=2\left(r_{2}^{2}+r_{2} s_{2}+s_{2}^{2}\right)$ and also

$$
\alpha=1 / 4 . \#\left\{\left(r_{1}, s_{1}\right): r_{1}, s_{1} \in Z, t_{1}=r_{1}^{2}+s_{1}^{2}\right\}
$$

and

$$
\beta=1 / 3 . \#\left\{\left(r_{2}, s_{2}\right): r_{2}, s_{2} \in Z, 2\left(r_{2}^{2}+r_{2} s_{2}+s_{2}^{2}\right\}\right)
$$

Example 1. Let $q=84$. As $12 \mid q$, total number of normal genus 1 subgroups is either $0, \alpha, \beta$ or $\alpha+\beta$. The first few values of $N_{84}(\mu)$ are given in the following table:

| μ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $N_{84}(\mu)$ | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | |
| μ | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | |
| $N_{84}(\mu)$ | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | | |

CANGÜL, BİZİM

References

[1] İ. N. Cangül., Normal Subgroups of Hecke Groups, PhD Thesis, Southampon, (1994)
[2] H. S. M. Coxeter and W. O. J. Moser, Generators and Relaions for Discrete Groups, Springer Berlin (1957)
[3] D. Garbe, Uber die regularen zerlegungen geschlossener orientierbarer flachen, J. reine, angew. Math., 237 (1967), 39-55.
[4] D. A. Garbe, A Remark on nonsymmetric Compact Riemann Surfaces, Arch. der Math., 30 (1978), 435-437.
[5] G. A. Jones and D. Singerman, Theory of Maps on Orientable Surfaces, Proc. L. M. S. (3) 37 (1978), 273-307.
[6] H. L. Keng, Introduction to Number Theory, Springer-Verlag-Berlin, (1982).
[7] G. Kern-Isberner and G. Rosenberger, Normalteiler vom geschlecht eins in freien produkten endlicher zyklischer gruppen, Results in Mathematics, 11 (1987), 272-288.

İsmail Naci CANGÜL

Received 02.03.1999
Uludağ University Art and Science Faculty
Dept. of Maths., Görükle 16059 Bursa-TURKEY
Osman BİZiM
Uludağ University Art and Science Faculty
Dept. of Maths., Görükle 16059 Bursa-TURKEY

[^0]: * This work is partly based on the first author's PhD Thesis

