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Abstract

We first give a precise definition of the terms “topological horseshoe” and “gen-

eralized quadrilateral” and then examine the behavior of a homeomorphism F on a

locally compact, separable, locally connected metric space X (X is usually a man-

ifold in applications) such that F restricted to some generalized quadrilateral Q in

X is a topological horseshoe map. For a set Q ⊂ X we define and describe (1) the

permanent set Z of Q to be {x ∈ X : Fn(x) ∈ Q for all integers n} , and (2) the

entrainment set of Q to be E(Q) = {x ∈ X : F−n(x) ∈ Q for all sufficiently large

n} . We give conditions under which various closed sets of E(Q) are associated, in

a strong way, with indecomposable, closed, connected spaces invariant under F . (A

connected set A is indecomposable if it is not the union of two proper connected sets,

each of which is closed relative to A .) Next we show that even when small amounts

of noise are added to the dynamical system, there are associated indecomposable

sets. These sets are not, in general, invariant sets for our process with noise, but

they are the physically observable sets, while invariant Cantor sets are not, and they

are the sets that can be measured.
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1. Introduction

Let F : M →M be a C1 map on a manifold M . The study of a dynamical system

xn → xn+1 = F (xn) (1)

often becomes the study of sets such as fixed points, periodic orbits, stable and unstable

manifolds, basins, attractors, and basic sets -in general, those sets that are invariant under

F . A particularly interesting case is the invariant set of a horseshoe map.

Some physical processes are better modelled by including some representation of

noise as follows: Let ε > 0. We define a time-dependent process (n is time)

(n, x)→ (n + 1, Fn(x)) (2)

where Fn : M →M is a C1 map for each integer n such that

‖ Fn − F ‖C1≤ ε.

Hence (2) is a time-dependent system that we could say is ε-close to the time-dependent

system (1). The dependence of time means there are in general no sets that are invariant

for (2), that is no nontrivial sets S such that Fn(S) = S for all integers n .

Let F : R2 → R2 be a homeomorphism. Let Q be the quadrilateral pictured

in Figure 1, and imagine that a computer prints this picture by plotting separately the

images of the four sides of the quadrilateral. Let F̃ (S) be the computer image of S ,

where S is any of the sides of the quadrilateral. We can view F̃ (S) as a finite collection

of dots or line segments. Assume furthermore that for some small ε (say

epsilon is less than 0.001 times the length of the sides of Q), and for each side S of

the quadrilateral, F̃ (S) and F (S) each lie in an ε-neighborhood of the other (so in the

Hausdorff metric the distance between them is less than ε).
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Figure 1. The figure is part of a computer investigation of a fluid flow model. (See [SKGY] and

[KSYG] for detailed discussions of this work.) The image of the quadrilateral Q0 is pictured (the

curve crossing Q0 twice), and was obtained by computing the image of Q0 under the Poincaré

return map F associated with the fluid flow model. Evidently, the action of F on Q0 results in

a “topological horseshoe”. The crosses mark the images of the vertices of the quadrilateral Q0

under F . In the figure, the upper right side of Q0 (i.e., the upper of the two side which can be

expressed as a linear function of the horizontal x -axis with negative slope) is the short portion

of the image curve just outside the upper right side, while the image of the lower left side (the

lower of the two sides which can be expressed as a linear function of the horizontal x -axis with

negative slope) is the portion of the image curve with vertices marked at the lower right of the

figure. The image of this side actually extends back up into the image, and is not just a short

segment between the two crosses.

Such a picture is often called a topological horseshoe. We ask what can be

rigorously concluded from this situation about the points Z = {p ∈ Q : F n(p) ∈ Q

for all integers n} . In the literature it is usally assumed that F is a diffeomorphism and

that the map is hyperbolic in Q (which we need not define here), and in this case we call

the example a Smale horseshoe. It is often easy to verify that F is diffeomorphism,but it

is far more difficult to verify hyperbolicity in a picture such as we have above, and indeed
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hyperbolicity may not hold. Our Theorems 3 and 4 will apply to Figure 1 assuming

hypothesis Ω given below. We remark that the homeomorphic image of a side S can

be quite complicated and still be within ε of F̃ (S) as shown, and we must draw our

conclusions despite this difficulty.

We are interested in the entrainment sets (and the destination sets) associated with

topological horseshoes for several reasons:

1. The dynamics on the permanent set in a generalized quadrilateral Q for a topolog-

ical horseshoe are described “in the large “ at least, by the dynamics of the shift on

M symbols. In particular, although we know there are periodic sets of all periods

in the permanent set, we don’t know, without further information about the space

and the homeomorphism involved, if there are any periodic orbits in those sets.

In addition to the usual M -shift dynamics inside the set, interesting behavior and

topology can happen outside Q in the entrainment set associated with Q as well.

Compare, for example, the Smale horseshoe map where the crossing number M is

2 (Figure 3) with the fluid flow horseshoe pictured in Figure 1. (To be completely

accurate, Figure 1 actually shows the action of the square root
√

F of the fluid

flow diffeomorphism, or the time-1/2 map, rather than the time-1 map studied in

[SKGY] and [KSYG]. These papers study the dynamics of a periodically varying

fluid flow past an array of cylinders.) For the Smale horseshoe map, the entrainment

set consists entirely of points attracted to a fixed point outside the rectangle (see

Figure 3), while the fluid flow diffeomorphism, on the other hand, has a much more

complicated and interesting entrainment set, both topologically and dynamically.

(See Figure 2.) These vastly different entrainment sets occur in spite of the fact

that inside the respective quadrilaterals, the dynamics are exactly the same.

2. The entrainment sets for a topological horseshoe are physically observable in real

experiments in the sense that they can be observed. (See [SKG].) Of course, no ex-

periment can reveal the infinitely fine structure of an entrainment set. Nonetheless,

the entrainment set can be thought of as the result of pouring dye into a quadriateral

Q and then watching it evolve. The entrainment set is the limit as time goes to ∞
of the theoretical position of the dye. Thus, it may well be possible in experiments
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to measure and compute the entrainment set’s fractal dimension, Lyapunov expo-

nents, Hausdorff dimension, etc. (See [HOY].) Cantor sets, or quotient Cantor sets,

and periodic points, on the other hand, are nearly impossible to observe forming in

a real, as opposed to simulated, flow.

3. Similar indecomposable sets often appear as the “strange” sets associated with

nonlinear dynamics (e.g., strange attractors, fractal basin boundaries, and closures

of stable and unstable manifolds of chaotic saddles, as well as entrainment sets),

and, when present, they provide a usefull conceptual characterization of these

phenomena. (See [SKOY].)

2. Background, Definitions and Notation

A continuum is a compact, connected metric space. A subset of a continuum which

is itself a continuum is a subcontinuum. A continuum is indecomposable if it is not the

union of two (necessarily overlapping) proper subcontinua. Equivalently, a continuum is

indecomposable if and only if every proper subcontinuum has empty interior (relative to

the continuum). If x is a point in the continuum X , then the composant Com(x) in X

containing x is the set of all points y in X such that there is a proper subcontinuum

in X that contains both x and y . The collection C(X) of all composants of an

indecomposable continuum X partitions X into c (the cardinality of the real numbers)

many mutually disjoint, first category, connected Fσ -sets. (For more information and

references concerning indecomposable continua, see [K].)

In this paper, we use the term “indecomposable” in its original, more general sense:

If X is a metric space, then the connected subset A of X is indecomposable if it cannot

be expressed as the union of two proper (necessarily overlapping) connected sets. When

L. E. J. Brouwer [B] constructed the first indecomposable continuum, he was disproving

a conjecture of Schoenflies that the common boundary between two simply connected

open plane sets had to be decomposable, i.e., that such a boundary would be a connected,

closed set which was itself the union of two proper, closed, connected sets. Although

the boundary in Brouwer’s example is compact, and failed to be decomposable so that

it is an indecomposable continuum, for a number of years indecomposability was studied
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as a property of connected sets which were not necessarily compact. In recent years,

indecomposability has been studied mostly in compact sets. In this paper, we return to

the original focus of indecomposability as a (possible) property of connected sets, and one

that often arises in the presence of chaotic dynamics.

If X is a locally compact, separable metric space, then it must still be the case that

a connected subset A is indecomposable if and only if every proper, closed, connected

subset of A has empty interior (relative to the subspace A). (See [Ku].) If x is a point

in the set A , then the composant Com(x) in A containing x is the set of all points y

in A such that there is a proper, connected subset of A that contains both x and y ,

and is closed in A . If A is a completely metrizable (i.e., the set A admits a metric dA

which is compatible with its topology and with respect to which A is complete, and it

should be noted that the metric dA may not extend to a metric d on X compatible

with the topology on X ), indecomposable subset of X , then the collection C(A) of all

composants of the set A partitions it into uncountably many mutually disjoint, first

category, connected Fσ -sets.

In this paper, the indecomposable sets we consider all lie in a larger spaces X

that are connected, locally compact, locally connected, spearable metric spaces. There

are connected, locally compact, locally connected, separable metric spaces which are one-

dimensional, and have the property that no countable collection of disjoint arcs separates

the space. Examples include the Sierpinski curve (or gasket), the Menger cube (or sponge),

and higher dimensional analogs of these spaces. Thus in this paper the statement

that “X is a background space” means that “X is a locally compact, locally

connected, separable metric space”. Subspaces of X , however, need not be locally

compact, connected, locally connected, or closed.

If X is a background space and A is a subset of X , then we use the notation A◦, A ,

and ∂A to denote the interior, closure, and boundary of A in X , respectively. If Y is a

subspace of X (with the inherited topology), A ⊆ Y , and we wish to discuss the interior,

closure, or boundary of A in the subspace Y , we use the notation IntY (A), ClY (A),

and BdyY (A), respectively, to avoid confusion. The symbols Z, N , and Ñ are used to

denote the integers, the positive integers, and the nonnegative integers, respectively. We

use d to denote a metric on X (which is, of course, compatible with its topology), unless
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this leads to confusion, in which case we differentiate metrics by using a variety of other

letters and symbols. If ε > 0, x ∈ X , let Dε(x) = {y ∈ X : d(x, y) < ε} . If ε > 0, and

A, B ⊂ X , let Dε(A) = {y ∈ X| d(x, y) < ε for some x ∈ A} , and let
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Figure 2. The figure is part of a computer investigation of a fluid flow model. (See [SKGY]

and [KSYG] for detailed discussions of this work.)

d(A, B) = inf{d(x, y)|x ∈ A, y ∈ B} . Since our background spaces X are locally

connected we can make the additional assumption that for each ε > 0 , if x is

a point in X , then Dε(x) is connected.

Hypothesis Ω0 : Suppose that X is a background space, and F : X → X is

a homeomorphism. The set Q ⊂ X is a generalized quadrilateral if Q is a compact,

connected, locally connected neighborhood of X such that (Q◦) = Q , and end0 and

end1 are disjoint closed subsets of ∂Q each of which has nonempty interior in the relative

topology on ∂Q , i.e., Int∂Q(endi) 6= ∅ for i = 1, 2. We say that end0 and end1 are the

ends of Q , and that Q\(end0 ∪ end1) = side is the “side” of Q , and define the map F
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to be a (topological) horseshoe map on Q if there is a positive integer M ≥ 2 such that

1. if K an arc in Q that intersects both end0 and end1 , then Q ∩ F (K) contains at

least M components each of which intersects both end0 and end1 ,

2. neither F (end0) nor F (end1) intersects Q , and

3. F (side) ∩ side = ∅ .

We say that F satisfies Hyothesis Ω0 on the generalized quadrilateral Q (with respect to

end0 , end1 = Q\(end0 ∪ end1)) if the definition above is satisfied. If M is a positive

integer with the property that if K is an arc in Q that intersects both end0 and end1 ,

then Q ∩ F (K) contains at least M components each of which intersects both end0

and end1 , then M is unique, and we say that M is the crossing number of F on

Q . If, in addition, X is a differentiable manifold and F is a diffeomorphism, then

F is a hyperbolic horseshoe map on Q if it is a topological horseshoe map on Q (i.e., it

satisfies the conditions above) and if Γ denotes the invariant set ∩n∈ZF n(Q), then F

is hyperbolic on Γ. (See Figure 3 for illustrations of hyperbolic horseshoes with several

crossing numbers, and Figure 4 for illustrations of topological horseshoes, and what is

and is not allowed by this definitintion).

If F : X → X is a homeomorphism, then the closed set B satisfies the lockout

property if when q ∈ B and F k(q) 6∈ B for some k > 0, then further iterates of q remain

outside B ; i.e., F n(q) 6∈ B if n ≥ k . For the noisy case we need a stronger version of

this property: thus, the closed set B satisfies the uniform lockout property if there are

a positive integer NF , a closed neighborhood B+ such that B ⊂ (B+)◦ , and a positive

number ε such that if q ∈ B and F (q) 6∈ B , then d(F n(q), B+) > ε if n ≥ NF .

Suppose that
∑

M = {(. . . i−1?i0i1i2 . . .): for each integer j, ij ∈ {1, 2, . . .M}} .
Then

∑
M is a Cantor set expressed as the product space {1, 2, . . .M}Z , and the shift (on

M symbols) σM :
∑

M →
∑

M defined by σM ((. . . i−1?i0i1i2 . . .)) = (. . . j−1?j0j1j2 . . .),

where jk = ik+1 for each integer k , is a homeomorphism. Thus, σM ((. . . i−1?i0i1i2 . . .)) =

(. . . i−1i0?i1i2 . . .). The properties of
∑

M and σM have been thoroughly studied: see

[R], for example, for a discussion).
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Basic Smale Horseshoe

F2 (A)

F2 (B)

Side A
R

Side B

A
R

B

The stadium
region

F3 (A)

F3 (A)

F3 (B)F3 (D) in D

F5 (D) in D F5 (B)

F2
3 (D) indicated in F3 (D)

F2
5 (D) indicated in F5 (D)

Figure 3. Smale horseshoes with several crossing numbers are pictured.

Now if X denotes a compactification of the background space X , which is itself a

metric space (and since the one-point compactification is a metric space, one does exist),

there is a metric d on X which is compatible with its topology. Since X is a compact

metric space, so is the space F(X) consisting of all closed subsets of X with the topology

induced by the Hausdorff metric ν (relative to the metric d). Thus, if H and K are in

F(X), then ν(H, K) is the inf {ε > 0| each point of H is within ε (under the metric

d) of some point of K and each point of K is within ε (under the metric d) of some

point of H} . A Cantor set of continua is a collection C of continua in X such that if C̃
denotes the subset of FX whose points are the components of C , then C̃ is a Cantor set
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in F(X). We can also talk directly about the Hausdorff metric on closed subsets F(X)

of X , if we use the metric d inherited by X when it is considered as a subspace of X .

Example 1. Q

F[Q]

end

end

F(ends)

The map F is not a topological horseshoe 
on Q-the crossing number here is only 1.

end
Example 2.

end

F[Q]

Q

Image of
the ends

Topological horseshoe-crossing number 2.

Image of an arc
in Q [now in F[Q]] 
that crosses the 
minimum number 
of times [2]

Example 4.

Example 3.

F[Q]

end

end

Q Q

F[Q]

end

end

F[end]

F[end]

F[end]

The map F does not satisfy the horseshoe hypothesis 
on Q. A minimally crossing Image arc is pictured in 
white in the grey-shaded F[Q].

Topological horseshoe-crossing number 4.

Figure 4. Examples 1 and 3 are not topological horseshoes, while Examples 2 and 4 are.

Another topology on collections of closed subsets of a compact subset D of X

that we need is the quotient topology. Suppose that D is a compact subset of X , and

D denotes a decomposition of D into disjoint closed sets which is upper semicontinuous.

The collection D , when endowed with the quotient topology, is a compact metric space,

with the points of D (considered as space) being the sets in the collection D (considered

as collection in X ). Let P : D → D denote the projection map associated with the

decomposition. (Thus, for x ∈ D , P (x) = Dx , where Dx ∈ D and x ∈ Dx .) The map

P is continuous and onto. We say that the set D is a quotient Cantor set (relative to the

decomposition D ) if there is an upper semicontinuous decomposition D of D such that

D endowed with the quotient topology is a Cantor set. Note that D ⊂ F(X). Every

set that is open in the quotient topology on D is also open in the topology induced by
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the Hausdorff metric on D . If D0 ∈ D , then D0 is a point of continuity of D if every

sequence D1, D2, . . . in D which converges to D0 in the quotient topology also converges

to D0 in the topology induced by the Hausdorff metric on D . The points of continuity

of an upper semicontinuous decomposition on a compact metric space contain a dense

Gδ -subset of the decomposition space. (See [Ku] for more details.)

A finite collection C = {c0, c1, . . . , cn} of subsets of a space X is a chain if

ci ∩ cj 6= ∅ if and only if |i − j| ≤ 1. If the elements of C are open sets, the C

is an open chain. However, in this manuscript our chains have elements consisting of

closed neighborhoods intersecting only at their boundaries. Thus, we define a tiling

chain C = {c0, c1, . . . , cn} to be a chain whose elements are closed sets and such that

c◦i ∩ c◦j = ∅ for i 6= j . The mesh of a chain C = {c0, c1, . . . , cn} is the positive number

$ = sup{diam(ci)} , and each ci ∈ C is a link of the chain C .

For the noisy case, we consider a new assumption.

Adding noise. Let ε > 0 . Instead of applying a homeomorphism F at each time i, we

instead assume that for each i, a homeomorphism Fi which is close to F in the sense that

d(F (q), Fi(q)) < ε for each i and q, is applied. We refer to ε as the “noise level”.

With this assumption we can still talk about the trajectory of a point if we replace

F (q0) with F0(q0), F 2(q0) with F1 ◦ F0(q0), and so forth. In general, the trajectory

of q0 is the bisequence . . . q−2, q−1, q0, q1, . . . , where q1 = Fi−1 ◦ Fi−2 ◦ . . . ◦ F0(q0) and

q−i = (F−1 ◦F−2◦ . . .◦F−i)−1(q0) = F−1
−i ◦ . . .◦F−1

−2 F−1
−1 (q0) for i > 0. It no longer makes

sense to talk about invariant Cantor sets, invariant points, or invariant continua. Define

then the permanent set Z0 to be the set of all points x0 whose entire trajectory (under

a sequence of noisy maps) is inside the generalized quadrilateral B, the entrainment set

E(Z0) to be the set of points x0 whose backward trajectory (under a sequence of noisy

maps) is eventually inside B, and the destination set D(Z0) to be the set of points x0

whose forward trajectory (under a sequence of noisy maps) is eventually inside B.

For notational convenience, we make the following definition: for m ≤ n , and

{Fn, Fn−1, . . . , Fm} a collection of n−m+1 homeomorphisms on X, Fn◦Fn−1◦. . .◦Fm =

Fn,m . Even though the maps Fj are chosen randomly, we are assuming that once the j th

map Fj is chosen, it is the map that is applied at integer time j . Thus, we have a family

of maps {Fj}∞j=−∞ which also defines a map F : Z×X → X , where F(j, x) = Fj(x) for
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x ∈ X , just as a flow on the space X is a map ϕ : R×X → X , such that for each time

t, ϕt : X → X is the homeomorphism defined by ϕt(x) = ϕ(t, x) for x ∈ X . However,

there is one important difference: the group operation on Z is not preserved by F , while

that on R is preserved by ϕ . Thus, although it is the case that ϕ(t+t′, x) = ϕ(t, ϕ(t′, x)),

or ϕt+t′(x) = ϕt(ϕt′(x)), it is not generally the case that F(j + j′, x) = Fj+j′(x) is the

same as F(j, F(j′, x)) = Fj(Fj′(x)) since Fj ◦ Fj′ 6= Fj′ ◦ Fj (for most cases). We say

that F : Z×X → X is a floating dynamical system, or just a floating system.

Since we can talk about the trajectory of a point x in X under the system

F of maps, we can talk about the trajectory of the permanent set Z0 , if we define

Zn = F̃n,0(Z0) for n ≥ 0 and Z−n = F̃−1
−1,−n(Z0) for n < 0. Note that each Zn

is contained in B . Because composition is not commutative for maps in the family

{Fj}∞j=−∞ , in order to keep track of our trajectories, we need to designate a “relative

center” for each trajectory to know where it is in relation to the family {Fj}∞j=−∞ and

the sets {Zj}∞j=−∞ : for each integer n , let the trajectory of qn be the centered bisequence

. . . qn−2, qn−1 ? qn ? qn+1, . . . Note that if the bisequence that denotes the trajectory of q0

is . . . q−2, q−1, q0, q1, . . . , then . . . q−2, q−1 ? q0 ? q1, . . . , = . . . q−2, q−1, q0, q1, . . . , but the

symbol ? puts the center for this trajectory at q0 , and we know that the next map to

be applied to q0 is F0 , and the last map already applied to obtain q0 is F−1 . Similarly,

. . . q−2, q−1, q0, q1, . . . = . . . qn−2, qn−1, qn, qn+1, . . . = . . . qn−2, qn−1 ? qn ? qn+1, . . . , but

the next map to be applied to qn is Fn , and F−1
n−1(qn) = qn−1 . Also, for i ≥ 0,

qn+i+1 = F̃n,n+i(qn), and for i > 0, qn−i = F̃−1
n−1,n−i(qn).

Further, if there is an ordered collection Z = {Zn}n∈Z of subsets of X , then the

floating system F : Z×X → X preserves Z if for each integer n, Fn(Zn) = Zn+1 (where

Fn = F|{n}×Zn). We use the notation F|Z to denote {Fn|Zn}n∈Z . We say that F|Z is

conjugate to the map φ : Y → Y if there is a collection H = {hn}n∈Z of homeomorphisms

such that for each n, hn is a homeomorphism from Zn onto Y , and φ◦hn = hn+1◦Fn|Zn .

More generally, if Y = {Yn}n∈Z is an ordered collection of subsets of the space X , or is

an ordered collection of spaces, and tY denotes the disjoint union of the collection Y ,

then if F : tY → ∪Y is one-to-one and onto, we say that F preserves the collection Y if

for each n and each y ∈ Yn ∈ Y , F|Yn : Yn → Yn+1 is a homeomorphism. The statement

that F is conjugate to the map φ : Y → Y means that there is a collection H = {θn}n∈Z
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of homeomorphisms such that for each n, θn is a homeomorphism from Yn onto Y , and

φ ◦ θn = θn+1 ◦ F|Yn .

3. The Results

Theorem 2.1. Suppose that X is a background space, A is an indecomposable subset

of X such that A is nowhere dense in X , and X is a metric compactification of X . Let

A denote the closure of A in X . Then

1. if some composant Cps of A is has the property that if o is an open set in X such

that o is compact, and any component of o ∩ Cps is also a component of o ∩ A ,

then A is an indecomposable continuum in X if and only if A is an indecomposable

set in X; and

2. if A is a closed subset of X, then A is an indecomposable continuum in X if and

only if A is an indecomposable set in X.

Proof. We prove the first statement. The second then follows immediately. That when

A is an indecomposable continuum in X , A is an indecomposable set in X follows from

the fact that a dense connected subset of an indecomposable set is indecomposable. (See

[Ku], p.208.)

Suppose then that A is an indecomposable set in X . If A = A ⊂ X , then A is

an indecomposable continuum, so there is nothing to prove. Then suppose that A\A 6= ∅
(which means that either A ∩ (X\X) 6= ∅ or A ∩X 6= A). If A is decomposable, then

there is some proper subcontinuum H of A that has nonempty interior relative to A .

Then H must intersect A/A . Let Cps denote a composant of A that has the property

that if o is an open set in X such that o is compact, then any component of o ∩ Cps

is also a component of o ∩ A . Note that if x and y are points in Cps , then there is a

continuum Cxy which is contained in Cps , in nowhere dense in A , and contains both x

and y .

Consider the subspace A′ = A ∩X of X . Choose a point x0 from Cps ∩ (A\H),

and a nonempty open subset o such that o ⊂ IntA(H) ∩X . Then x0 is not in o , and

x0 is in some component C0 of A\o , C0 is a nowhere dense continuum in Cps and in
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A . Now choose an open set u from A\H such that u does not intersect C0 and u ⊂ X .

The continuum C0 is properly contained in some component C1 of A\u , and C1 is a

nowhere dense continuum in Cps and in A .

There is ε > 0 such that Dε(C1) does not contain o . For each z in C1\({x0}∪u),

there is ε/2 > εz > 0 such that D2εz(z) does not intersect {x0} ∪ u and D2εz(z) ⊂ X .

Let C2 = ClX(∪{Dεz(Z) : z ∈ C1\({x0} ∪ u)}). Without loss of generality, we can

assume that C2 ⊂ X . Suppose that D denotes the upper semicontinuous decomposition

of C2 into its components. That is, we are considering the space D whose points are the

components of C2 endowed with the quotient topology. Then C1 is a component of C2

(and, in particular, C1 is not properly contained in any component of C2 ), since each

component of C2 ∩A is a component of C2 ∩ A , and D itself is a totally disconnected,

compact metric space. Let P : C2 → D denote the projection map associated with the

decomposition. The map P is continuous and onto. Note that C2 does not contain o ,

but C2 ∩ o 6= ∅ since C1 ∩ o 6= ∅ .
Since A is indecomposable, A is nowhere dense in X , and each point x of C2 ∩A

is in ClX{y ∈ C2 ∩ A : y is not in Cx , the component of C2 ∩ A that contains x} , D
is a Cantor set. Since C2 ∩ Cps is dense in C2, P (C2 ∩ Cps) is dense in D . The set

C = {Dx ∈ D : H ∩ ∂C2 ∩Dx = ∅} is open in D , and C1 ∈ C . Thus, there is a subset O
of C that contains C1 , and is both open and closed in D . Then P−1(O) is both closed

and open relative to C2 .

But we have a contradiction: then P−1(O)∩ IntA(H) 6= ∅ , and P−1(O) does not

contain IntA(H). It follows that H is not connected, since P−1(O)∩H ∩ ∂C2 = ∅ , and

P−1(O)∩H is both closed and open in H . Thus, A is an indecomposable continuum. 2

Remark In the theorem above, the assumption that X be locally connected is not needed.

Also, it is clear that the indecomposable continua in the compactifications of R2 considered

in [KY], [KSYG] and [SKGY] are also closed indecomposable sets when restricted to R2

(even without the compactifications considered in those papers), and this result could be

used to simplify the results in those papers concerning indecomposable continua in the

compactified spaces.
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Lemma 2. Suppose that F̃ : X → X is a homoemorphism, B is a generalized

quadrilateral in X with ends end0 and end1 , F̃ is a horseshoe map on B , and M

is the crossing number of F̃ on Q . There is ε > 0 such that if F : X → X is a

homeomorphism such that for each q ∈ X, |F̃ (q)− F (q)| < ε , then

1. F is a horseshoe map on B ,

2. (F (B) ∩B)\Dε(end0 ∪ end1) contains only finitely many components,

3. (F (B) ∩ B)\Dε(end0 ∪ end1) is a subset of the union of M multually diswoint,

closed sets (which are not necessarily components) C = {C1, C2, . . . , CM} , and ∪C
is contained in F (B) ∩B , and

4. there is a tiling chain T = {T0, T1, . . . , T2M} such that ∪T = F (B) ; F (end0) ⊂ T0 ,

F (end1) ⊂ T2M , for 1 ≤ i ≤ M , T2i−1 ∈ {C1, C2, . . . , CM} and for 0 ≤ i ≤ M ,

T2i ⊂ Dε(F (B)\B) .

Proof. For each ε′ > 0,
(
F̃ (B) ∩B

)
\Dε′(end0 ∪ end1) contains only finitely many

components (Otherwise F̃ (B) is not locally connected.) Choose ε1 > 0 such that

e1. F̃ (end0 ∪ end1) ∩D4ε1
(end0 ∪ end1) = ∅ ,

e2. F̃−2(B) ∩D4ε1
(end0 ∪ end1) = ∅ , and

e3. D4ε1
(F̃ (side))∩ D4ε1

(side) = ∅ , and D4ε1
(end0) ∩D4ε1

(end1) = ∅ ,

There is ε1/2 > ε2 > 0 such that (i) if C and C ′ are distinct components of

F̃ (B) ∩B that intersect
(
F̃ (B) ∪B

)
\Dε′(end0 ∪ end1), or (ii) if C and C ′ are distinct

components of Dε′ (F̃ (B)\B) that do not intersect the interior of any component C ′′ of

F̃ (B) ∩ B that intersects
(
F̃ (B) ∩B

)
\Dε′ (end0 ∪ end1), then d(C, C ′) > ε2 . Suppose

0 < ε < ε2/2, and F is a homeomorphism on X such that
∣∣∣F̃ (q) − F (q)

∣∣∣ < ε for each

q ∈ X . There is an arc K in B that intersects both end0 and end1 , both F (K)∩end0 and

F (K)∩end1 consist of exactly one point, and B∩ F̃ (K) contains exactly M components

each of which intersects both end0 and end1 , and for no arc K′ in B that intersects both

end0 and end1 is it the case that B∩ F̃ (K′) has fewer than M components each of which
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intersects both end0 and end1 . Then B∩F (K) contains exactly M components each of

which intersects both end0 and end1 , and for no arc K′ in B that intersects both end0

and end1 with both F (K′)∩ end0 and F (K′)∩ end1 consisting of exactly one point is it

the case that B∩F (K) contains fewer than M components each of which intersects both

end0 and end1 . Let K = {K′ : K′ is an arc in B that intersects both end0 and end1 ,

and both F (K′)∩ end0 and F (K′)∩ end1 consist of exactly one point} . For K′ ∈ K , let

K′B denote the collection of all components of F (K′)∩B which intersect both end0 and

end1 . This set is finite, but it may well contain more than M components. List the M̃K′

components in K′B in the order that they occur in F (K′), beginning with the component

of K′B that intersects the closure of that component of K′\ ∪ {K′B} that contains the

degenerate set F (K′) ∩ end0 : K′B = {K′B1, K
′
B2, . . . , K

′
BM̃K′

} . The set F (K′) ∩B may

also have components that are not contained in Dε(F (B)\B) but do intersect both end0

and end1 : list these components, if there are any, in the order in which they occur in

K′ , that order being the one established above in the listing of the members of K′B ,

giving a (possibly empty) collection K′BO = {K′BO1, K
′
BO2, . . . , K

′
BOM̃OK′

} . Then let

K′T = {K′T1, K
′
T2, . . . , K

′
TM

K′
} denote a listing, in the order in which the intervals occur

in K′ , of the members of K′B ∪ K′BO , with MK′ = M̃K′ + M̃OK′ . For each K′Ti , let

Com(K′Ti) denote that component of F (B) ∩ B that contains K′Ti , and let Com =

{Com(K′Ti) : K′ ∈ K, 1 ≤ i ≤ MK′} , a finite collection. Let N denote the collection

of components of [Dε(F (B)\B)\(∪Com)] ∩ F (B). Then F (B) = (∪Com) ∪ (∪N ). Let

N ′ = ComUN .

Form the collection T ′ = {T ′0, T ′1, . . . T ′2MK′
} as follows: Let T ′0 denote the collec-

tion of all members of N that contain a point of F (end0), and let T ′2M
K′

denote the

collection of all members of N that contain a point of F (end1). Then T ′0 ∩ T ′2MK′
= ∅ ,

because otherwise there is an arc K in B that intersects both end0 and end1 , and

F (K) ∩ B ⊂ Dε(F (B)\B). Let T ′0 = UT ′0 and T ′2MK′
= UT2MK′

. Inductively, let T ′1
denote the collection of all members of Com that contain a point of T ′0 and let T ′1 = ∪T ′1 .

Let T ′2 denote the collection of all members of N that contain a point of T ′1 , but are

not contained in T ′0 , and let T ′2 = ∪T ′2 . Let T ′3 denote the collection of all members

of Com that contain a point of T ′2 , but are not contained in T ′1 . Continue this finite

“out-in-out-in-out” process, until finally, T ′2M
K′−2 denotes the collection of all members
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of N that contain a point of T ′2MK′−3 but are not contained in ∪≤j≤M
K′−2T

′
2j−i ; and let

T ′2MK′−1 denote the collection of all members of Com that contain a point of T ′2MK′−2 ,

but are not contained in ∪1≤j≤MK′−1T
′
2j−1 , with T ′2MK′−1 = ∪T ′2M

K′−1
. Note that

T ′ = {T ′0, T ′1, . . . , T ′2M
K′
} is a tiling chain such that ∪T ′ = F (B), for otherwise there

is some arc K̃ ∈ K such that B ∩ F (K) contains fewer than MK′ components each of

which intersects both end0 and end1 . However, T ′ may have more than 2M members.

To remedy this, note that exactly M members of {T ′2j−1 : 1 ≤ j ≤ MK′} contain a

component that intersects both end0 and end1 . Suppose that {j1, j2, . . . , jM} is that

subsequence of {1, 3, . . . , 2MK′ − 1} such that {T ′ji : 1 ≤ ji ≤ M} is the collection of

all links in T ′ that contain a component that intersects both end0 and end1 . Finally,

define T0 = ∪{T ′2j : 2j < j1} , T1 = ∪{T ′2j−1 : 2j − 1 ≤ j1} . Inductively, for 1 < k < M ,

define T2k = ∪{T ′2j : jk−1 < 2j < jk} , T2k−1 = ∪{T ′2j−1 : jk−1 < 2j − 1 ≤ jk} ; and

define the two links, T2M−1 and T2M , by T2M−1 = ∪{T ′2j−1 : jM−1 < 2j − 1 ≤ MK′} ,
T2M = ∪{T ′2j : jM−1 < 2j ≤ MK′} . Hence, T = {T0, T1, . . . , T2M} is a tiling chain with

the properties desired. 2

The following, especially part one, is in the spirit of a folk theorem, though to our

knowledge, no one has published a precise definition of a topological horseshoe.

Theorem 3. Topological Horseshoe Theorem-Cantor Set Part. Suppose that

F : X → X is a homeomorphism, B is a generalized quadrilateral in X with ends end0

and end1 , and F is a horseshoe map on B with crossing number M .

1. Then the permanent set CB = {x : F n(x) ∈ B for all integers n} has an upper

semicontinuous decomposition Q which is a Cantor set in the quotient topology, and

CB = ∪Q is a quotient Cantor set contained in the interior of B . Furthermore, F

preserves the members of Q , and thus, if we define F : Q → Q by F(Q) = F (Q) ,

then F is a homeomorphism on Q , F is conjugate to the shift σM :
∑
M →

∑
M ,

and F |CB factors over σM :
∑

M →
∑

M .

2. There is a dense Gδ -subset Q′ of Q such that each member of Q′ is a point of

continuity of the decomposition Q .
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3. The set C ′B = ∪Q′ is an invariant quotient Cantor set with respect to the upper

semicontinuous decomposition Q′′ = {Q∩∪Q′ : Q ∈ Q} , and for each Q′′ ∈ Q′′ , if

x ∈ Q′′ , then x ∈ C ′B\Q′′ . (The set C ′B is just the set CB with all “dynamically

inert” sets, such as interiors of members of Q or isolated points of Q , removed.)

Furthermore, F preserves the members of Q′′ , and thus, if we define F ′′ : Q′′ → Q′′

by F ′′(Q′′) = F (Q′′) for Q′′ ∈ Q′′ , then F ′′ is a homeomorphism on Q′′, Q′′ which

is conjugate to the shift σM :
∑

M →
∑

M , and F |C ′B factors over σM :
∑
M →∑

M .

4. If x ∈ Q′ ∈ Q′ , then Qx = {Q ∩ O(x) : Q ∈ Q} is an upper semicontinuous

decomposition of O(x) , and O(x) is a quotient Cantor set with respect to the

decomposition Qx . Again, F preserves the members of Qx , and thus, if we define

Fx : Qx → Qx by F(Qx) = F (Qx) for Qx ∈ Qx , then Fx is a homeomorphism on

Qx , and Fx is conjugate to the shift σM :
∑

M →
∑
M .

5. Let C denote the collection of all continua contained in CB = {x : F n(x) ∈ B for all

integers n} . Then C is an upper semicontinuous decomposition which is a Cantor

set in the quotient topology, and CB = ∪C is a quotient Cantor set relative to the

decomposition C . Furthermore, F preserves the members of C , and thus, if we

define Fcon : C → C by F(C) = F (C) for C ∈ C , then Fcon is a homeomorphism

on C , and F factors over the shift σM :
∑

M →
∑

M .

6. If x ∈ Q′ ∈ Q′ , and Cx denotes the collection of all continua contained in O(x) ,

then Cx is an upper semicontinuous decomposition of O(x) , and O(x) is a quotient

Cantor set with respect to the decomposition Cx . Again, F preserves the members

of Cx , and thus, if we define Fcon,x : Cx → Cx by Fcon,x(Cx) = F (Cx) for

Cx ∈ Cx , then Fcon,x is a homeomorphism on Cx,Fcon,x factors over the shift

σM :
∑

M →
∑

M , and the orbit of x is dense in O(x) = ∪Cx .

Proof. Suppose B has ends end0 and end1 , and side side . Consider CB = {q ∈
B|F n(q) ∈ B for all n ∈ Z} . Applying the previous lemma, there are a positive number

ε , and a tiling chain S1 = {S1,0, S1,1, . . . , S1,2M} such that

1. ∪S1 = F (B), S1,0 ⊃ F (end0), and S1,2M ⊃ F (end1);
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2. for 0 ≤ j ≤M, S1,2j ⊂ Dε(F (B)\B) ;
⋃

1≤j≤M S1,2j−1

3. (B ∩ F (B))\Dε(end0 ∪ end1) ⊆ B ∩ F (B); and

4. Dε(F (B)\B) ∩Dε(F−1(B) ∩B) = ∅ .

For each 0 ≤ i ≤ 2M , let S0,i = S−1,i = F−1(S1,i), so that S0 = {S0,0, S0,1, . . . , S0,2M} =

S−1 = {S−1,0, S−1,1, . . .S−1,2M} is a tiling chain, ∪S0 = B , and for 1 ≤ i ≤ 2M − 1,

S0,i separates B .

Let N1 = 2M . Now consider F (S1) = {F (S1,0), F (S1,1), . . . , F (S1,N1)} and

construct the tiling chain S2 = {S2,0, S2,2, . . . , S2,N2} that covers F 2(B) as follows: Let

S2,0 = F (S1,0). The set F (S1,1) intersects both F (end0) and F (end1), and this forces

F (S1,1) ∩ S1,j , for 0 ≤ j ≤ N1 , to be a nonempty set. List these sets S2,1, . . . , S2,N1+1

so that S2,0, S2,1, . . . , S2,N1+1 is a tiling chain that covers F (S1,0) ∪ F (S1,1).

Let S2,N1+2 = F (S1,2). The set F (S1,3) intersects both F (end0) and F (end1),

and this forces F (S1,3) ∩ S1,j , for 0 ≤ j ≤ N1 , to be a nonempty set. List these sets

S2,N1+3, . . . , S2,2N1+3 so that S2,0, S2,1, . . .S2,N1 , S2,N1+1, S2,N1+2, . . . , S2,2N1+3 is a tiling

chain that covers ∪3
j=0F (S1,j). Continue this process, finally letting S2,N2 = F (S1,N1).

Having the tiling chain S2 = {S2,0, S2,2, . . . , S2,N2} , construct the tiling chain

S3 = {S3,0, S3,3, . . . , S3,N3} that covers F 3(B) as follows: Let S3,0 = F (S2,0). The set

F (S2,1) intersects both F 2(end0) and F 2(end2) and has at least one component that

intersects both F 2(end0) and F 2(end2), and this forces F (S2,1) ∩ S2,j , for 0 ≤ j ≤ N2 ,

to be a nonempty set. List these sets S3,1, . . . , S3,N2+1 so that S3,0, S3,1, . . . , S3,N2+1 is a

tiling chain that covers F (S2,0)∪F (S2,1). Let S3N2+2 = F (S2,2). The set F (S1,3) inter-

sects both F 2(end0) and F 2(end2) and has at least one component that intersects both

F 2(end0) and F 2(end2), and this forces F (S2,3)∩S2,j for 0 ≤ j ≤ N2 , to be a nonempty

set. List these sets S3,N2+3 , . . . , S3,3N2+3 so that S3,0, S3,1, . . . , S3,N2+1, S3,N2+3, . . . , S3,3N2+3

is a tiling chain that covers ∪3
j=0F (S2,j). Continue this process, finally letting S3,N3 =

F (S2,N2). Continue the inductive process begun here: For each positive intger k , having

the tiling chain Sk = {Sk,0Sk,1, . . . , Sk,Nk} that covers F k(B), construct the tiling chain

Sk+1 = {Sk+1,0, Sk+1,1, . . . , Sk+1,Nk+1} that covers F k+1(B) in the manner described.

The for each k, F−k(Sk) = {F−k(Sk,0), F−k(Sk,1), . . . , F−k(Sk,Nk)} is a tiling

chain cover of B, F−k−1(Sk+1) refines F−k(Sk), and for 1 ≤ l ≤ Nk − 1, F−k(Sk,l) sep-
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arates B . For 0 ≤ j ≤ Nk , let S−kj = F−k(Sk,j), and S−k = {S−k,0, S−k,1 . . . , S−k,Nk} .
For each positive integer k , there is a finite subsequence (ik,1, ik,2 , . . . , ik,M) = (i−k,1, i−k,2 ,

. . . , i−k,M) of (0, 1, . . . , Nk) such that F j(S−k,ik,α) ⊂ B and F−j(Sk,ik,α) ⊂ B for each

0 ≤ j ≤ k , ik,α ∈ {ik,1, ik,2, . . . , ik,M}, F k(S−k,ikα) contains a component that intersects

both end0 and end1 , and Sk,ik,α ⊂ F k(B) contains a component that intersects both

F k(end0) and F k(end1).

If x is in the permanent set CB , then F n(x) ∈ B for each n ∈ Z . Thus, there

is a unique bisequence (. . . , px,1, px,0, px,1, . . .) contained in {1, . . .M}Z such that for

each n, x ∈ Sn,in,px,n . Further, by construction, if (. . . , p−1, p0, p1, . . .) is a bisequence

contained in {1, . . .M}Z , the Q(...,p−1,p0,p1,...) = ∩n∈ZSn,in,pn is a nonempty closed

subset of B◦ . If (. . . , p−1p0, p1, . . .) and (. . . , p′−1, p
′
0p
′
1, . . .) are distinct bisequences,

then Q(...,p−1p0,p1,...)∩ Q(...,p′−1,p
′
0p
′
1,...)

= ∅ , Q = {Q(...,p−1p0,p1,...) : (. . . , p−1, p0, p1, . . .)

is a bisequence contained in {1, . . .M}Z} is a collection of disjoint closed sets in B , and

Q is an upper semicontinuous decomposition of CB = ∪Q = {x ∈ B : F n(x) ∈ B for each

integer n} . From standard arguments, if follows that Q is a Cantor et in the quotient

topology, and CB is a quotient Cantor set in the interior of B .

For each bisequence (. . . , j−1?j0, j1, . . .) ∈ {1, . . .M}Z , it is also the case that

∩∞k=−∞F k(S0,2jk−1) 6= ∅ ; and, in fact, since for each n > 0, ∩nk=0F
k(S0,2jk−1 ) = Sn,in,qn

for some in,qn ∈ {in,1in,2 . . . in,M} , and ∩−1
k=−nf

k(S0,2jk−1 ) = S−n,i−n,q−n for some

i−n,q−n ∈ {i−n,1, i−n,2,..., i−n,M} , ∩∞k=−∞F k(S0,2jk−1 ) = ∩∞k=−∞Sk,ik,qk ∈ Q . Since

F (∩∞k=−∞F k(S0,2jk−1)) = ∩∞k=−∞F k+1(S0,2jk−1) ∈ Q , it follows that if Q ∈ Q , then

the set F (Q) is also in Q . Thus, F preserves the decomposition Q , and if we define

F : Q → Q by F(Q) = F (Q), then F is a homeomorphism on Q . because for each

Q ∈ Q , there is a unique bisequence (. . . , j−1?j0, j1, . . .) ∈ {1, . . .M}Z such that Q =

∩∞k=−∞F k(S0,2jk−1), and F (Q) = F (∩∞k=−∞F k(S0,2jk−1)) = ∩∞k=−∞F k+1(S0,2jk−1) ∈
Q,F is conjugate to the shift σM :

∑
M →

∑
M .

Since is F conjugate to σM , there must be a dense Gδ -subset Q′ of Q such that

(i) the orbit O(Q) = {Fn(Q) : n ∈ Z} of each member Q of Q′ is dense in Q , and (ii)

each Q in Q′ is a point of continuity of Q , because there are dense Gδ -subsets A and B
of Q such that the orbit of each point Q in A is dense in Q , and such that each point Q

of B is a point of continuity of Q , and Q′ = A∩B is also a dense Gδ -subset of Q . Then
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∪Q′ = C ′B is an invariant quotient Cantor set with respect to the upper semicontinuous

decomposition Q′′ = {Q ∩ ∪Q′ : Q ∈ Q} . If x ∈ Q′ ∈ Q′ , then O(x) ∩ Q/ 6= ∅ for any

Q ∈ Q . It follows that Qx = {Q ∩ O(x) : Q ∈ Q} is an upper semicontinuous decompo-

sition of O(x), and O(x) is a quotient Cantor set with respect to the decomposition Qx .

The rest follows easily. 2

Theorem 4. Noisy Topological Horseshoe Theorem-Cantor Set Part. Suppose

that F : X → X is a homeomorphism, B is a genarlized quadrilateral in X with ends

end0 and end1 , and F is a horseshoe map on B with crossing number M. There is δ > 0

such that if for each integer j, Fj : X → X is a homeomorphism with d(F (x), Fj(x)) < δ

for each x ∈ X , then the following hold:

1. If for each integer η , Zη = {xη ∈ B : the trajectory {. . . xη−2, xη−1?xη?xη+1, . . .} ⊂
B} , then there is an upper semicontinuous decomposition Qη of Zη which is a

Cantor set in the quotient topology, and Zη = ∪Qη is a quotient Cantor set

contained in the interior of B . Furthermore, the system F = {Fj}j∈Z preserves the

members of ∪η∈ZQη , in the sense that for Q ∈ Qη , Fη(Q) ∈ Qη+1 , and thus, if we

define Fn : Qη → Qη+1 by Fη(Q) = Fη(Q) , then Fη is a homeomorphism from Qη
onto Qη+1 . There is a collection Γ = {γη : Qη →

∑
M}η∈Z of homeomorphisms

such that σM ◦γη = γη+1 ◦Fη for each η . Hence, if Z = {Zη}η∈Z , then the floating

system F|Z factors over the shift σM :
∑

M →
∑
M .

2. For each η , there is a dense Gδ -subset Q′η of Qη such that (i) each member

Q of Q′η is a point of continuity of the decomposition Q′η , and (ii) for each

member Q of Q′η, γη(Q) has a dense orbit in
∑

M (under the action of σ ). If

Z′η = ∪Q′η , then the set Z′η = ∪Q′η is a quotient Cantor set with respect to the upper

semicontinuous decomposition Q′′η = {Q∩ ∪Q′ : Q ∈ Qη} and if x ∈ Q ∈ Q′′η , then

x ∈ Q′′η\{Q}. (Here, as before, the set Z′η is just the set Zη with all “dynamically

inert” sets (relative to the system F), such as interiors of members of Qη or isolated

points of Qη , removed.) Furthermore, the system F preserves the members of

∪η∈ZQ′′η , in the sense that for Q ∈ Q′′η , Fη(Q) ∈ Q′′η+1 and thus, if we define
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F ′′η : Q′′η → Q′′η+1 by F ′′η (Q) = Fη(Q) , then F ′′η is a homeomorphism from Q′′η onto

Q′′η+1 . There is a collection Γ′′ = {γ′′η : Q′′η →
∑

M}η∈Z of homeomorphisms such

that σM ◦ γ′′η = γ′′η+1 ◦ F ′′η for each η . Hence, if Z ′′ = {Z′′η }η∈Z , then the system

F|Z ′′ factors over the shift σM →
∑
M .

3. If, for each η, Cη denotes the collection of all continua contained in Zη , then Cη
is an upper semicontinuous decomposition of Zη which is a quotient Cantor set

relative to the decomposition Cη . Furthermore, the system F preserves the members

of ∪η∈ZCη , in the sense that for C ∈ Cη , Fη(C) ∈ Cη+1 , and thus, if we define

Fη,con : Cη → Cη by Fη,con(C) = F (C) for C ∈ Cη , then Fη,con is a homeomorhism

on Cη . There is a collection Γcon = {γcon,η : Cη →
∑
M}η∈Z of continuous

surjections such that σM ◦ γcon,η = γη+1 ◦ Fη,con for each η .

Proof. Suppose B has side side . There is ε > 0 such that if F ′ : X → X is a

homeomorphism with d(F (x), F ′(x)) < ε for each x ∈ X , then

e1) F ′(end0 ∩ end1) ∩D4ε(end0 ∪ end1) = ∅ ,

e2) (end0 ∪ end1) ∩D4εF ′−1(end0 ∪ end1) = ∅ ,

e3) Dε(end0) ∩D4ε(end1) = ∅

e4) D4ε(F ′(side)) ∩D4ε(side) = ∅ and

e5) each F ′ is a horseshoe map on the generalized quadrilateral B (with ends end0

and end1 ) with the same crossing number M as F .

Suppose that T = {T0, T1, . . . T2M} is the tiling chain obtained by applying Lemma 2

to F on the generalized quadrilateral B . Thus, ∪T = F (B); F (end0) ⊂ T0, F (end1) ⊂
T2M ,∪1≤i≤MT2i−1 ⊂ B , and ∪0≤i≤MT2i−1 ⊂ Dε(F (B)\B). There is some δ > 0 such

that δ < ε/2, and

e6) if C and C ′ are different components of B∩F ′(B) that intersect B\Dε(end0∪end1),

then d(C, C ′) > 4δ , and

e7) if C and C ′ are different components of Dε(F ′(B)\) , then d(C, C ′) > 4δ , and
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e8) d(T2i−1, T2j−1) > 4δ if i 6= j, i, j ∈ {1, 2, . . .M} .

For each integer j , suppose that Fj : X → X is a homeomorphism with d(F (x),

Fj(x)) < δ for each x ∈ X . Note that for each j, Dε(end0 ∪ end1) ∩ F−1
j (B) = ∅ . Let F

denote the floating system {Fj}∞j=−∞ , and fix the integer η . For this fixed η , consider the

floating permanent set Zη = {xη ∈ B : the trajectory {. . . xη−2, xη−1 ? xη ? xη+1, . . .} ⊂
B} . Let εj = {C : C is a component of Fj(B)∩B and C intersects B\Dε(end0∪end1)}
and let ε′j = {C : C is a component Fj(B)\(∪εj)} . Hence, both ∪ε and ∪ε′j are closed,

and ∪εj ⊂ B , while ∪ε′j ⊂ Dε(F (B)\B) .

Let N1 = 2M . Now consider a positive integer n , and the composition F̃η+n,η−n .

First, consider Sn = {Sn,0, Sn,1, . . . , Sn,N1} where Sn is the tilin chain constructed in

Lemma 2 for Fη+n , and let Tn,n = {F−1
η+n(Sn,0), . . . , F−1

η+n(Sn,N1 )} = {Tn,n,0, Tn,n,1 ,

. . . , Tn,n,N1} , which is a tiling chain cover of B . Let αn,n = {αn,n,i}Mi=1 , where αn,n,i =

2i− 1. Then consider the tiling chain Sn−1 = {Sn−1,0, Sn−1,1, . . . , Sn−1,N1} , the Lemma

2 tiling chain cover of Fη+n−1(B) that covers Fη+n−1(B), and modify it to produce the

tiling chain cover Dn,n−1 as follows: Let Dn,n−1 = {Sn−1,2i : 0 ≤ i ≤M} ∪ {Sn−1,2i−1 ∩
Tn,n,j : 1 ≤ i ≤ M and 0 ≤ j ≤ N1} . The collection Dn,n−1 is a tiling chain cover of

Fη+n−1(B) that refines Sn−1 , and we can list the links of Dn,n−1 so that they reflect this

chain structure as Dn,n−1 = {Dn,n−1,0, Dn,n−1,1, . . . , Dn,n−1,N2} , with Fη+n−1(end0) ⊂
Dn,n−1,0 and Fη+n−1(end1) ⊂ Dn,n−1,N2 . Let αn,n−1 = {αn,n−1,i}M

2

i=1 be that subse-

quence of {i}N2
i=0 such that αn,n−1 = {j : Dn,n−1,j = Sn−1,2i−1 ∩ Tn,n,αn,n,k : 1 ≤ i ≤ M

and 1 ≤ k ≤ M} . Let Tn,n−1 = {F−1
η+n−1(Dn,n−1,1), . . . , F−1

η+n−1(Dn,n−1,N2)} =

{Tn,n−1,0, Tn,n−1,1, . . . , Tn,n−1,N2} , which is a tiling chain cover of B . Note that (1)

Tn,n−1,0 contains end0 , Tn,n−1,N2 contains end1 , and each Tn,n−1,i , for 1 ≤ i ≤ N2− 1,

separates B ; and (2) for 1 ≤ i ≤ M2 , the set F̃η+n,η+n−1(Tn,n−1,αn,n−1,i) is contained

in B and contains a component that intersects both end0 and end1 . Continue with

this constraction: For −n < m < n , having constructed the tiling chain cover Tn,m =

{F−1
η+m(Dn,m,1), . . . , F−1

η+m(Dn,m,Nn−m+1 )} = {Tn,m,0, Tn,m,1, . . . , Tn,m,Nn−m+1} , a tiling

chain cover of B such that (1) Tn,m,0 contains end0 , Tn,m,Nn−m+1 contains end1 , and

each Tn,m,i for 1 ≤ i ≤ Nn−m+1 − 1, separates B ; and (2) αn,m = {αn,m,i}M
M−n+1

i=1 is a

subsequence of {i}Nn−m+1
i=0 such that for 1 ≤ i ≤Mn−m+1 , the set F̃η+n,η+m(Tn,m,αn,m,i)

is contained in B and contains a component that intersects both end0 and end1 , let
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Dn,m−1 = {Sm−1,2i : 0 ≤ i ≤ M} ∪ {Sm−1,2i−1∩ Tn,m,j : 1 ≤ i ≤ M and 0 ≤ j ≤
Nn−m+1} . The collection Dn,m−1 is a tiling chain cover of Fη+m−1(B) that refines

Sm−1 , and we can list the links of Dn,m−1 so that they reflect this chain structure and

Dn,m−1 = {Dn,m−1,0, Dn,m−1,1, . . . , Dn,m−1,Nn−m+2} , with Fη+m−1(end0) ⊂ Dn,m−1,0

and Fη+m−1(end1) ⊂ Dn,m−1,Nn−m+2 . Let αn,m−1 = {αn,m−1,i}M
n−m+2

i=1 be that sub-

sequence of {i}Nn−m+2
i=0 such that αn,m−2 = {j : Dn,m−1,j = Sm−1,2i−1 ∩ Tn,m,αm,k for

some 1 ≤ i ≤ M and 1 ≤ k ≤ Mn−m+1} . Let Tn,m−1 = {F−1
η+m−1(Dn,m−1,1), . . . ,

F−1
η+m−1(Dn,m−1,Nn−m+2 )} = {Tn,m−1,0, Tn,m−1,1, . . . , Tn,m−1,Nn−m+2} , which is a tiling

chain cover of B . As before, (1) Tn,m−1,0 contains end0 contains end0 , Tn,m−1,Nn−m+2

contains end1 , and each Tn,m−1,i , for 1 ≤ i ≤ Nm−n+2 − 1, separates B ; and (2) for

1 ≤ i ≤Mn−m+2 , the set F̃η+n,η+m−1(Tn,m−1αn,m−2,i) is contained in B and contains a

component that intersects both end0 and end1 .

Now back up a bit: Let L−n = F̃η−1,η−n(Tn,−n) = {F̃η−1,η−n (Tn,−n,0), F̃η−1,η−n

(Tn,−n,1) . . ., F̃η−1,η−n (Tn,−n,N2n+1)} = {L−n,0, L−n,1 , . . .L−n,N2n+1} , so that L−n is

a tiling chain cover of F̃η−1,η−n(B). Consider the subsequence αn,−n = {αn,−n,i}M
2n+1

i=1

of {i}N2n+1
i=0 . For 1 ≤ j ≤ M2n+1 , Fη,n(Tn,−n,αn,−n,j) = Dn,−n,α−n,j = S−n,2kn−1 ∩

Tn,−n+1,αn,−n+1,in
for some appropriate kn, in and is contained in B . Then F̃η−n+1,η−n

(Tn,−n,αn,−n,j) = Fη−n+1(S−n,2kn−1∩ Tn,−n+1,αn,−n+1,in
) ⊂ S−n+1,2kn−1−1∩

Tn,−n+2,αn,−n+2,in−1
for some appropriate kn−1 , in−1 , and is contained in B , and so

on, until finally, we conclude that F̃η−1,η−n(Tn,−n,αn,−n,j) ⊂ F̃η−1,η−n+1(S−n,2kn−1 ∩
Tn,−n+1,αn,−n+1,in

) ⊂ F̃η−1,η−n+2(S−n+1,2kn−1−1∩Tn,−n+2,αn,−n+2,in−1
) ⊂ . . . ⊂ S−1,2k1−1∩

Tn,0,αn,−1,i1
for some appropiriate sequences {kn−ξ}n−1

ξ=0 , {iη−ξ}n−1
ξ=0 , and is contained in

B . Note that the subsequence αn,0 = {αn,−1,i}M
n+1

i=1 of {i}Nn+1
i=0 has Mn+1 members,

and each Tn,0,αn,−1,k separates B and contains Mn members of {Tn,−n,αn,−n,j : αn,−n,j ∈
αn,−n} . Further, Fη−n(Tn,−n,αn,−n,j) ⊂ S−n,2kn−1 ; F̃η−n+1,η−n(Tn,−n,αn,−n,j) ⊂ Fη−n+1

(S−n,2kn−1)∩S−n+1,2kn−1−1 ; and so on, until we conclude that F̃η−1,η−n(Tn,−n,αn,−n,j) ⊂
F̃η−1,η−n+1(S−n,2kn−1) ∩ F̃η−1,η−n+2(S−n+1,2kn−1−1) ∩ . . . ∩ S−1,2k1−1 .

For each sequence {k′n, k′n−1, . . . , k
′
1} in {1, 2, . . . , M}n , let S̃(k′n, k′n−1, . . . , k

′
1) =

F̃η−1,η−n+1(S−n,2k′n−1)∩F̃η−1,η−n+2(S−n+1,2k′
n−1−1)∩. . .∩S1,2k′1−1 . Each S̃(k′n, k′n−1, . . . , k

′
1)

contains at least one component that intersects both end0 and end1 . It follows that

each Tn,0,αn−1,i ∩ S̃(k′n, k′n−1, . . . , k
′
1) 6= ∅ for αn,−1,j ∈ αn,−1, {k′n, k′n−1, . . . , k

′
1} ∈
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{1, 2, . . . , M}n , and, in fact, Tn,0,α−1,i ∩ S̃{k′n, k′n−1, . . . , k
′
1} = F̃η−1,η−n(Tn,−n,αn,−n,i)

for some i .

Now the η th floating permanent set Zη = {xη ∈ B : the trajectory {. . . xη−2, xη−1?

xη ?xη+1, . . .} ⊂ B} = (∩∞j=0F̃
−1
η+j,η(B))∩B∩ (∩∞j=1F̃η−1,η−j(B)). For each centered bise-

quence {. . . , iη−1?iη?iη+1, . . .} , let Qη({. . . , iη−1?iη?in+1, . . .}) = (∩∞j=0F̃
−1
η+j,η(Sj,2iη+j−1))

∩S−1,2iη−1∩ (∩∞j=1F̃η−1,η−j(S−j,2iη+j−1)). Also, for each centered bisequence {. . . , iη−1 ?

iη ? iη+1 , . . . , } ∈ {1, 2, . . . , M}Z , there is a unique sequence {îj}∞j=1 such that (1)

the sequence F̃−1,−1(T1,−1,α1,−1,̂i1
) ⊃ F̃−1,−2(T2,−2,α2,−2,̂i2

) ⊃ . . . is nested, and (2)

Qη({. . . , iη−1 ? iη ? iη+1, . . .}) = ∩∞j=1F̃η−1,η−j(Tn,n,αn,−n,̂ij ). Let Qη = {Qη({. . . , iη−1 ?

iη ?iη+1 , . . .}) : {. . . , iη−1 ?iη ?iη+1, . . .} ∈ {1, 2, . . . , M}Z} . Then, by construction, Zη =

∪Qη , and thus, Zη is a quotient Cantor set with upper semicontinuous decomposition

Qη . Define γn : Qη →
∑

M by γn(Qη({. . . , iη−1?iη ?iη+1 , . . .})) = {. . . , iη−1?iηiη+1 . . .} .
It is easy to check that γη+1 ◦ Fη = σM ◦ γη . Thus, the first statement of the theorem is

proved. The rest is similar to the corresponding theorem in the previous section, and so

we omit those parts. 2

Theorem 5. Topological Horseshoe Theorem-Indecomposable Set Part. Sup-

pose that F : X → X is a homeomorphism, B is a generalized quadrilateral in X with

ends end0 , F is a horseshoe map on B with crossing number M , and F has the lockout

property on B . In the Hausdorff metric, the sequence B, F (B), F 2(B), . . . of continua

in X has a unique limit point B̃ , and B̃ is a closed, invariant set which contains the

entrainment set E(B) = {x ∈ X|F−n(x) ∈ B for all sufficiently large n} . Furthermore,

1. B̃ contains an invariant indecomposable continuum Ĩ which for some z ∈ CB ,

contains the invariant quotient Cantor set O(z) = ∩Qz ⊆ C ′B ⊆ CB contained in

interior of B and discussed in Theorem 3, and

2. there is an upper semicontinuous decomposition G of B̃ such that the quotient space

G is an indecomposable, locally compact, separable metric space, each composant of

which is an arc-component.

Proof. For each integer k , let Sk = {Sk,0, Sk,1, . . . , Sk,Nk} denote the tiling chain con-

403



KENNEDY, YORKE

structed in the proof of Theorem 3. Thus, for k > 0, ∪Sk = F k(B), F k(end0) ⊂ Sk,0 ,

F k(end1) ⊂ Sk,2M , and each Sk,i , for 1 ≤ i ≤ Nk−1 , separates F k(B). If k < 0, then

S−k = {S−k,0, S−k,1, . . . , S−k,Nk} = F−k(Sk) = {F−k(Sk,0), F−k(Sk,1), . . . , F−k(Sk,Nk )} ,
and S0 = {S0,0, S0,1, . . . , S0,N0} = S−1 = {S−1,0, S−1,1, . . . , S−1,N1} . If (i0, i1 . . .) is a

sequence contained in {1, . . .M}Ñ , then Q+
(i0,i1,...)

= ∩n∈ÑF n(S1,2in−1) is a nonempty

closed subset of B and some component of Q+
(i0,i1,...)

intersects both end0 and end1 .

If (p0, pi, . . .) and (p′0, p′1, . . .) are distinct sequences, then Q+
(i0,i1,...)

∩ Q+
(i′0,i

′
1,...)

= ∅ .
Let W0 = {Q+

(i0,i1,...)
: (i0, i1, . . .) is a sequence contained in {1, . . .M}Ñ} . Thus, W

is a collection of disjoint closed sets in B , and W0 is an upper semicontinuous decom-

position of B̃0 = ∩W0 = ∩i≤0F
i(B). Arguing as we did in the proof of Theorem 3,

B̃0 is a quotient Cantor set in B , with each member of W0 containing a continuum

that intersects both end0 and end1 . At most countably many of the members of W0

have interior because there are at most countably many disjoint open sets in X . For

each n ≤ 0, B̃n = ∩i≤nF i(B) = F n(B̃0) is a quotient Cantor set with respect to the

upper semicontinuous decomposition F n(W0) = Wn = {Q+
(pn,pn+1,...)

: (pn, pn+1, . . .)

is a sequence contained in {1, . . .M}Ñ\{0,1,...,n−1} , and each member of Wn contains

a component that intersects both ends F n(end0) and F n(end1) of F n(B). For each

n, B̃n ⊂ B̃n+1 Consider ∪n≤0B̃n = B̃∞ . (Since X may not be compact, it is possible

that B̃∞\(∪n≤0B̃∞) is empty, or, even if it is not empty, it may be disconnected.) Since

B̃∞ ⊂ B̃n+1 for each n, B̃∞ is the Hausdorff limit of the sequence B̃0, B̃1, B̃2, . . . Since

F (B̃n) = B̃n+1, F (B̃∞) = B̃∞ .

We can partition each B̃n into its components: denote this collection of components

as Bn . For each point x in B̃n, x is contained in some component Rx,n of B̃n . Then

Rx,n ⊆ Rx,n+1 for each x , each n , and F (Rx,n) = RF (x),n+1 . Let Rx = ∪n≤0Rx,n , so

that Rx is a connected set in X . Note that for each positive integer n , Rx,n ⊂ B̃n ⊂
F n(B). Choose z ∈ C ′B such that (i) if Q′′z denotes the member of Q′′ (from Theorem

3) that contains z , then (i) both O−(Q′′z ) = {F−n(Q′′z ) : n ∈ Ñ} and O+(Q′′z ) =

{F+n(Q′′z ) : n ∈ Ñ} are dense in Q′′ ; and (ii) Rz has empty interior. Since B0 is an

upper semiccontinuous decomposition of B̃0 , and B′0 = {Q ∈ B0 : Q ∩ C ′B 6= ∅} is a

closed subset of B0 that contains O(z), B′0 is an upper semicontinuous decomposition

of B̃′0 = ∪B′0 . The points of continuity of B′0 form a dense Gδ -subset of B′0 . Let

404



KENNEDY, YORKE

B̂0 denote such a dense Gδ -subset of B′0 , and, without loss of generality, assume that

O(z) ⊂ B̂0 , that no member of B̂0 has interior, and that F (∪B̂0) = ∩B̂0 . Since each

Rz,n has empty interior, Rz is first category in B̃ and connected. For each n > 1,

each Rz,0 is in the interior (relative to the subspace B ) of some component Ez,0,n of

∩0≤l≤nF
l(B), and moreover, the collection {Ez,0,n}∞n=1 forms a neighborhood base in B

for the component Rz,0 . Thus, for each m ≥ 0 and each n > m , each Rz,m is in the

interior (relative to the subspace Fm(B)) of some component Ez,m,n of ∩m≤l≤nF l(B),

and the collection {Ez,m,n}∞n=1 forms a neighborhood base for the component Rz,m of

B̃m . Let J̃ = {RFn(z) : n ∈ Z} , and let Ĩ = ¯̃J ⊂ X .

If n ∈ Z , there is a sequence m1, m2, . . . of integers, all different from n , such taht

γ(Fm1 (z)), γ(Fm2 (z)), . . . converges to γ(F n(z)). Hence, each limit point of γ(Fm1 (z),

γ(Fm2 (z), . . . is contained in RFn(z) . Since RFn(z),0 is a point of continuity of B0 ,

RFm1 (z),0, RFm2 (z),0,... converges to RFn(z),0 (in the Hausdorff metric), and for each

integer k, RFm1 (z),k, RFm1(z),k,... converges to RFn(z),k (in the Hausdorff metric). Thus,

each RFn(z) is dense in J̃ . Then, applying Theorem 1, Ĩ is indecomposable. Thus, the

first part of the theorem is proved.

Now consider the set CB . Define the upper semicontinuous decomposition G of

B̃∞ as follows: If (. . . , i−1, i0, i1, . . .) is a bisequence contained in {1, . . .M}Z , then

Q(...,i−1,i0,i1,...) = ∩n∈ZF n(S1,2in−1) is a nonempty closed subset of B,Q = {Q(...,i−1,i0,i1,...) :

(. . . , i−1, i0, i1, . . .) is a bisequence contained in {1, . . .M}Z} is a collection of disjoint

closed sets in B that is an upper semicontinuous decomposition of CB = {x ∈ B :

F n(x) ∈ B for each integer n} , and W0 = {Q+
(i0,i1,...)

: (i0, i1, . . .) is a sequence con-

tained in {1, . . .M}Ñ} is a collection of disjoint closed sets in B whose union contains

CB . Since for 0 ≤ j ≤ Nk, S−k,j = F−k(Sk,j), and S−k = {S−k,0, S−k,1, . . . , S−k,Nk} ,
where Sk = {Sk,0, Sk,1, . . . , Sk,Nk} is the tiling chain cover of F k(B) in Theorem 3, S−k
is a tiling chain cover of B , and each link S−k,j, 1 ≤ j < Nk , separates B . Then since

each Q+
(i0,i1,...)

∈ W0 intersects both end0 and end1 , and each Q+
(i0,i1,...)

is separated

by each link S−k,j, 1 ≤ j < Nk, Q
+
(i0,i1,...)

\CB is a countable union of disjoint open sets

relative to the subspace Q+
(i0,i1,...)

.

For each positive integer n , use Urysohn’s Lemma to construct inductively the

Urysohn functions fn : B → [0, 1/2n] as follows:
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1) There is a continuous function f1 : B → [0, 1/2] such that

a) f1(∪1≤i≤MS−1,2i−1) = 1/2,

b) f1(end0 ∪ end1) = 0, and

c) for x ∈ B\((end0 ∪ end1) ∪ (∪1≤i≤MS−1,2i−1)), 0 < f1(x) < 1/2.

2) Having chosen fn−1 , there is a continuous function fn : B → [0, 1/2n] such that

a) for x ∈ F−n+1(B) ∩B, fn(x) = fn−1(F n−1(x))/2, and

b) for x ∈ B\F−n+1(B), fn(x) = 0.

Then define f(x) =
∑∞
n=1 fn(x) so that f : B → [0, 1] , f(x) = 1 if and only if

F n(x) ∈ B for each n ≥ 0, and f(end0 ∪ end1) = 0. Next let g0 = f and Ξ0 =

{g−1
0 (t) : t ∈ [0, 1]} . Since f is continuous, Ξ0 is an upper semicontinuous decomposition

of B . Then, making use of the way f and F are related, define gn : F n(B) → [0, 1]

by gn = f ◦ F−n = g0 ◦ F−n , and Ξn = {g−1
n (t) : t ∈ [0, 1]} so that Ξn is an upper

semicontinuous decomposition of F n(B). Note that if Yn ∈ Ξn such that Yn ⊂ B , then

Yn is contained in some unique member Y0 of Ξ0 . In fact, if Yn ∈ Ξn, Yn ⊂ Fm(B) for

0 ≤ m < n , then Yn is contained in some unique member Ym of Ξm .

For each Q+
(p0,p1,...)

∈ W0 , let Gp0,p1,...) = {Q+
(p0,p1,...)

∩Y : Y ∈ Ξ0} , and for n > 0,

for each Q+
(pn,pn+1,...)

∈ Wn , let G(pn,pn+1,...) = {(Q+
(pn,pn+1,...)

\(∪0≤m<nQ
+
(pm,pm+1,...)

)) ∩
Y : Y ∈ Ξn} . Again, because of the way f and F are related, the lockout property of

F on B with its consequence that Q̃(p0,p1,...) = ∪n≥0Q
+
(pn,pn+1,...)

is a countable union of

nested compact sets, and because each F n(B) is compact, G̃(p0,p1,...) = ∪n≥G(pn,pn+1,...)

is an upper semicontinuous decomposition of Q̃(p0,p1,...) . If (p0, p1, . . .) and (p′0, p
′
1 . . .)

are sequences contained in {1, . . .M}Ñ , then if Q̃(p0,p1,...) ∩ Q̃(p′0,p
′
1,...)
6= ∅ , Q̃(p0,p1,...) =

Q̃(p′0,p
′
1,...)

. Hence, G = ∪{G̃(p0,p1,...) : (p0, p1, . . .) is a sequence each member of which

is an element of {1, . . . , M}} is an upper semicontinuous decomposition of ∩n≥0B̃n .

Because of the lockout property of F on B , (∪G′)∩ (B̃∞\ ∪n≥0 B̃) = ∅ , and thus

H = G′ ∪ {B̃\ ∪n≥0 B̃n} is an upper semicontinuous decomposition of B̃∞ . (Note that

∪n≥0B̃n is open in B̃∞). Since each Q̃(p0,p1,...) is dense and connected in B̃ , so is the

subspace G̃(p0,p1,...) of the space H (which we have endowed with the quotient topology).

By construction, each set G̃(p0,p1,...) is dense in G̃′ . Suppose that P : B̃∞ → H denotes

the projection associated with the given upper semicontinuous decomposition. For each

Q+
(pn,pn+1...)

, P (Q+
(pn,pn+1...)

) is an arc in H , and P (Q+
(pn+1,pn+2...)

) ⊃ P (Q+
(pn,pn+1...)

).
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Specifically, each P (Q+
(pn+1,pn+2...)

) contains exactly those M members of Wn in the

set {Q+
(i,pn+1...)

: i ∈ {1, 2, . . .M}} , and the collection {G̃(p0,p1,...) : (p0, p1, . . .) is a

sequence each member of which is an element of {1, . . . , M}} is uncountable. Thus,

each G̃(p0,p1,...) is a “folded” ray or line, and each G̃(p0,p1,...) is a composant of G′ . Then

G′ is indecomposable, and applying Theorem 1, so is H . Furthermore, each composant

of H is an arc-component, and H is a locally compact, separable, indecomposable metric

space.

Finally, for each nonnegative integer n , let Dn = ∪m≥nFm(B) . Then B̃ =

∩n≥0Dn is a closed, connected invariant subset of X which contains B̃∞ . In fact, if

G = ∪n≥0(F n(B))◦ , then B̃∞ ∩G = B̃ ∩ G . Thus, G = G′ ∪ {B̃\ ∪n≥0 B̃n} is an upper

semicontinuous decomposition of B̃ , and, when endowed with the quotient topology, G
is a locally compact, separable indecomposable metric space which is homeomorphic to

H , and each composant of H is an arc-component. 2

Theorem 6. Noisy Topological Horseshoe Theorem-Indecomposable Set Part.

Suppose that F : X → X is a homeomorphism, B is a generalized quadrilateral in X

with ends end0 and end1 , F is a horseshoe map on B , and F satisfies the uniform

lockout property on B . There is δ > 0 such that if for each integer j, Fj : X → X is a

homeomorphism with d(F (x), Fj(x)) < δ for each x ∈ X , then the following hold:

1. In the Hausdorff metric, the sequence B, F−1(B), F̃−1,−2(B), . . . of continua in X

has a unique limit point B̃ , and B̃ is a closed, connected, invariant set which con-

tains the entrainment set E(B) = {x0 ∈ X|(F̃−1,−n)−1(x0) ∈ B for all sufficiently

large n} , and there is an upper semicontinuous decomposition G of B̃ such that the

quotient space G is an arc-component.

2. The system F : Z ×X → X defined by F (n, x) = Fn(x) preserves

(a) the collection B̃ = {B̃(η)}η∈Z , where B̃(η + 1) = F̃0,η(B̃) for η ≥ 0 , B̃(η) =

F̃−1
−1,η(B̃) for η < 0 , and B̃(0) = B̃ ; and

(b) if we define for G ∈ G , G(η +1) = F̃0,η(G) for η ≥ 0 , G(η) = F̃−1
−1,η(G) for η < 0 ,

and G(0) = G ; and for η ∈ Z, G(η) = {G(η) : G ∈ G} , then each G(η) is an upper
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semicontinuous decomposition of B̃(η) , and as space, is an indecomposable, locally

compact, separable metric space, when G(η) is endowed with the quotient topology;

(c) the system F preserves the ordered collection G = {G(η)}η∈Z since for G ∈ G(η) ,

F(η, G) = Fη(G) , and if we define = : tG → tG by Im(Gη) = Fη(Gη) for

each Gη ∈ G(η) , then each =|G(η) : G(η)→ G(η + 1) is a homeomorphism, and =
preserves the collection G ; and

(d) the system = : tG→ tG is conjugate to the homeomorphism F : G → G , where we

define F(G) = F (G) for G ∈ G (from the previous theorem), with the conjugating

homeomorphism γη : G(η) → G being the one induced naturally by the respective

constructions of G(η) and G .

Proof. Suppose B has ends end0 and end1 ; side; the lockout set for F is B+ , a closed

neighborhood that contains B in its interior and has the property that for some ε > 0,

if x ∈ ∂B+ , then d(F (x), B+) > ε ; and the lockout number for F is NF = N . There is

ε/2 > ε1 > 0 such that

e1) if F ′ : X → X is a homeomorphism with d(F (x), F ′(x)) < ε1 for each x ∈ X ,

then F ′(end0∪end1)∩
D4ε1(end0∪end1) = ∅ , (F ′)−1(end0 ∪ end1) ∩ D4ε1

(end0 ∪ end1) = ∅ , and

D4ε1
(F ′(side)) ∩D4ε1

(side) = ∅ ,

e2) each F ′ is a horseshoe map on the generalized quadrilateral B with ends end0 and

end1 and the same crossing number M as F ; and

e3) if F ′1, . . . , F
′
N is a collection of N homeomorphisms on X such that for each q ∈ X ,

|F (q)−F ′i(q)| < ε1 , and if Fi1 ◦. . .◦FiN has the property that if q ∈ Dε1 (F (B)−B),

then Fi1 ◦ . . . ◦ FiN (q) is in X\B+ (in other words, each F ′i is chosen so close to

F that the resulting composition of N homeomorphisms satisfies an appropriately

modified version of the strong lockout property).

Next there is some δ > 0 such that δ < ε1/2, and if

e4) if C and C ′ are different components of B ∩ F ′(B) that intersect B\Dε1 (end0 ∪
end1), then the Hausdorff distance from C and C ′ is greater that 4δ , and
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e5) if C and C ′ are different components of Dε1 (F ′(B)\B) , then the Hausdorff distance

from C and C ′ is greater than 4δ .

For each integer j , suppose that Fj : X → X is a homeomorphism with d(F (x),

Fj(x)) < δ for each x ∈ X . Note that for each j, Fj(end0∪end1)∩Dε1(end0 ∪ end1) = ∅ ,
and F 1

j (end0 ∪ end1) ∩Dε1 (end0 ∪ end1) = ∅ .
For each η ∈ Z , the permanent set Zη = {xη ∈ B : the trajectory {. . . xη−2, xη−1 ?

xη ? xη+1, . . .} ⊂ B} = (∩∞j=0F̃
−1
η+j,η(B)) ∩ B ∩ (∩∞j=1F̃η−1,η−j(B)). For each centered

bisequence {. . . , iη−1?iη ?iη+1, . . .} , there corresponds exactly on member Qη({. . . , iη−1?

iη ? iη+1, . . .}) of the upper semicontinuous decomposition Qη of Zη , and Qη({. . . , iη−1 ?

iη ? iη+1 , . . .}) = (∩∞j=0F̃
−1
η+j,η(Sj,2iη+j−1))∩ S−1,2iη−1 ∩ (∩∞j=1F̃

−1
η−1,η−j(S−j,2iη+j−1)). We

are adopting the notation of Theorem 4.

Let η = 0. If (p1, p2, . . .) is a sequence contained in {1, . . .M}N , then Q+
(p1,p2,...)

=

S−1,2p1−1 ∩ (∩∞j=2F̃−1,−j(S−j,2pj−1)) is a nonempty closed subset of B and some cam-

ponent of Q+
(p1,p2,...)

intersects both end0 and end1 . If (p1, p2, . . .) and (p′1, p′2, . . .) are

distinct sequences, then Q+
(p1,p2,...)

∩ Q+
(p′1,p

′
2,...)

= ∅ , W0 = {Q+
(p1,p2,...)

: (p1, p2, . . .) is a

sequence contained in {1, . . .M}N} is an upper semicontinuous decomposition of B̃0 =

B∩ (∩i≥1F̃−1,−i(B)), Z0 ⊂ ∪W0 , and B̃0 is a quotient Cantor set in B . For each n ≥ 1,

B̃n = ∩i≥nF̃−1,−i(B) = F̃−1,−n(B̃0) is a quotient Cantor set with respect to the upper

semicontinuous decomposition F̃−1,−n(W0) = Wn = {Q+
pn+1,pn+2,...)

: (pn+1, pn+2, . . .) is

a sequence contained in {1, . . .M}N\{1,...,n}} , and each member of Wn contains a compo-

nent that intersects both ends F̃−1,−n(end0) and F̃−1,−n(end1) of F̃−1,−n(B). For each

n , B̃n ⊂ B̃n+1 . Consider ∪n≥0B̃n = B̃∞ . (As before, it is possible that B̃∞\(∪n≥0B̃n)

may be empty or disconnected.) Since B̃n ⊂ B̃n+1 for each n , the sequence B̃0, B1, B2, . . .

has the Hausdorff limit B̃∞ . Arguing as we did in the previous proof, the entrainment

set E(B) = {x ∈ X : for some positive integer Nx , if n ≥ Nx , F̃−1
−1,−n(x) ∈ B} ⊆ B̃∞ .

For each negative integer n , let Dn = ∪m≥nF̃−1,−m(B) . Then B̃ = ∩n≥0Dn

is a closed, connected invariant subset of X which contains B̃∞ . In fact, if G =

B◦ ∪ (∪n≥0(F̃−1,−n(B))◦), then B̃∞ ∩ G = B̃ ∩ G , and the Hausdorff limit of the

sequence F̃−1,−1(B), F̃−1,−2(B), F̃−1,−3(B), . . . is B̃ . Since for each positive integer k ,

each Q+
(p1,p2,...)

is separated by each link S−k,j, 1 ≤ j < Nk (from the proof of Theorem

4), Q+
(p1,p2,...)

\Z0 is a countable union of disjoint open sets (relative to the subspace
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Q+
(p1,p2,...)

).

Adopting the notation of Theorem 4, for each n ≥ 1, let T−1,−n = {T−1,n,0 ,

T−1,−n,1 , . . ., T−1,−n,N−n} denote the tiling chain cover of B obtained by applying

Lemma 2 to F̃−1,−n and then F̃−1
−1,−n on B . Thus, for each n ≥ 1,

1. T−1,−n,0 contains end0 and T−1,n,N−n contains end1 ,

2. T−1,−n−1 refines T−1,−n , and

3. F̃−1,−n(T−1,−n) = {F̃−1,−n(T−1,−n,0), F̃−1,−n(T−1,−n,1), . . . , F̃−1,−n(T−1,−n,N−n)}
is a tiling chain cover of F̃−1,−n(B).

For each nonnegative integer n , use Urysohn’s Lemma to construct inductively the

Urysohn functions fn : B → [0, 1/2n] as follows:

1) There is a continuous function f0 : B → [0, 1/2] such that

a) f0(B ∩ F−1
0 (B)) = 1/2,

b) f0(end0 ∪ end1) = 0, and

c) for x ∈ B\((end0 ∪ end1) ∪ (B ∩ F−1
0 (B)), 0 < f0(x) < 1/2.

2) Having chosen fn−1 , there is a continuous function fn : B → [0, 1/2n+1] such that

a) for x ∈ F̃−1
n−1,0(B) ∩B , fn(x) = fn−1(F̃n−1,0(x))/2, and

b) for x ∈ B\F̃−1
n−1,0(B), fn(x) = 0.

Then define f(x) =
∑∞
n=1 fn(x), so that f : B → [0, 1], f(x) = 1 if and only if

F̃−1,−n(x) ∈ B for each n ≥ 0, and f(end0 ∪ end1) = 0. Further, note that f has been

constructed carefully so that f “preserves the system F|N × X in that preimages of

points in [0,1] are carefully chosen to coordinate with the Fn ‘s(n ≥ 0) in the appropriate

order. Next let g0 = f and Ξ0 = {g−1
0 (t) : t ∈ [0, 1]} . Since f is continuous, Ξ0 is

an upper semicontinuous decomposition of B . Then, making use of the way f and F

are related, define gn : F̃−1,−n(B) → [0, 1] by gn = f ◦ F̃−1
−1,−n = g0 ◦ F−1

−1,−n , and

Ξn = {g−1
n (t) : t ∈ [0, 1]} so that Ξn is an upper semicontinuous decomposition of

F̃−1,−n(B). Note that for Yn ∈ Ξn , Yn ⊂ B , and Yn is contained in some unique

member Ym of Ξm .

For each Q+
(p0,p1,...)

∈ W , let G(p0,p1,...) = {Q+
(p0,p1,...)

∩Y : Y ∈ Ξ0} , and for n > 0,

for each Q+
(pn,pn+1,...)

∈ W, G(pn,pn+1,...) = {(Q+
(pn,pn+1,...)

\(∪0≤m<nQ
+
(pm,pm+1,...)

)) ∩ Y :
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Y ∈ Ξn} . Note that Z0 ⊂ ∪W0 . For n > 0, for each Q+
(pn,pn+1,...)

∈ Wn , let

G(pn,pn+1,...) = {(Q+
(pn,pn+1,...)

\F̃−1,−n+1(B)) ∩ Y : Y ∈ Ξn} = {F̃−1,−n(Q+
(p0,p1,...)

)

\F̃−1,−n+1(B)) ∩ Y : Y ∈ Ξn} . Again, for each sequence (p0, p1, . . .) contained in

{1, . . .M}Ñ , let Q̃+
(p0,p1,...)

= ∪n≥0Q
+
(pn,pn+1,...)

so that G̃(p0,p1,...) = ∪n≥0G̃(pn,pn+1,...)

is an upper semicontinuous decomposition of Q̃(p0,p1,...) . Further, G′ = ∪{G̃(p0,p1,...) :

(p0, p1, . . .) is a sequence each member of which is an element of {1, . . . , M}} is an

upper semicontinuous decomposition of ∪n≥0B̃n , and, as in the previous proof, G =

G′ ∪ {B̃\Un≥0B̃n} is an upper semicontinuous decomposition of B̃ , each Q̃(p0,p1,...) is

dense, first category, and connected in B̃ , and so is the subspace G̃(p0,p1,...) of the space

G (which we have endowed with the quotient topology). If (p0, p1, . . .) and (p′0, p
′
1, . . .)

are sequences contained in {1, . . .M}Ñ , then if Q̃(p0,p1,...) ∩ Q̃(p′0,p
′
1,...)
6= ∅ , Q̃(p0,p1,...) =

Q̃(p′0,p
′
1,...)

. Since {Q̃+
(p0,p1,...)

: (p0, p1, . . .) is a sequence each member of which is an

element of {1, . . .M}} is uncountable and for each (p0, p1, . . .) ∈ {1, . . . , M}Ñ, Q+
(p1,p2,...)

contains exactly M members of G′, G′ has uncountably many distinct composants and is

indecomposable, and applying Theorem 1, so is G . Because of the uniform lockout prop-

erty of F on B , with its result that for each n ≥ 0, Q+
(pn,pn+1,...)

∩ (∪n≥1F̃−1,−n(B)) =

Q(p0,p1,...)∩(∪n≥1F̃−1,−n(B)), and Q+
(p0,p1,...)

⊂ Q+
(p1,p2,...)

⊂ . . . , G is an indecomposable,

locally compact, separable, closed metric space. The rest then follows easily. 2

Remark Results similar to those of the last two theorems concerning indecomposability

associated with entrainment sets hold, of course, for destination sets as well. The en-

trainment set and destination set for a topological horseshoe need not be homeomorphic,

however.

4. Associated and Future Work

Since doing this research, we have learned that Konstantin Mischaikow, M. Carbinatto,

J. Kwapisz, and M. Mrozek have been studying topological horseshoes for the last several

yeras. (See [CKM], [CM], [MM] and [S].) However, those results approach the subject

from a different, more algebraic perspective namely that of the Conley index.
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We are currently writing a second paper generalizing the results in this paper by (1)

eliminating the requirement that F be a homeomorphism (F needs only be continuous);

(2) eliminating the requirement that a generalized quadrilateral Q be connected (Q

needs only to be a closed neighborhood); and (3) eliminating the requirement that

the background space X be locally connected (X needs only to be a locally compact,

separable, connected metric space). Our results hold even with these more general

hypotheses. We also prove more facts about topological horseshoes and their entrainment

sets, and we hope to be able to relate our work to that of Mischaikow, Carbinatto,

Kwapisz, and Mrozek.
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