ON THE COHOMOLOGY RING OF THE INFINITE FLAG MANIFOLD LG/T

Cenap Özel*

Abstract

In this work, we discuss the calculation of cohomology rings of $L G / T$. First we describe the root system and Weyl group of $L G$, then we give some homotopy equivalences on the loop groups and homogeneous spaces, and investigate the cohomology ring structures of $L S U_{2} / T$ and $\Omega S U_{2}$. Also we prove that BGG-type operators correspond to partial derivation operators on the divided power algebras.

1. Introduction

In [10], Kumar described the Schubert classes which are the dual to the closures of the Bruhat cells in the flag varieties of the Kac̆-Moody groups associated to the infinite dimensional Kac̆-Moody algebras. These classes are indexed by affine Weyl groups and can be choosen as elements of integral cohomologies of the homogeneous space $\widehat{L}_{\mathrm{pol}} G_{\mathbb{C}} / \widehat{B}$ for any compact simply connected semi-simple Lie group G. Later, S. Kumar and B. Kostant gave explicit cup product formulas of these classes in the cohomology algebras by using the relation between the invariant-theoretic relative Lie algebra cohomology theory (using the representation module of the nilpotent part) with the purely nil-Hecke

[^0]
ÖZEL

rings [9]. These explicit product formulas involve some BGG-type operators A^{i} and reflections. Using some homotopy equivalances, we determine cohomology ring structures of $L G / T$ where $L G$ is the smooth loop space on G. Here, as an example we calculate the products and explicit ring structure of $L S U_{2} / T$ using these ideas.

Note that these results grew out a chapter of the author's thesis [12].

2. The root system, Weyl group and Cartan matrix of the loop group $L G$.

We know from compact simply-connected semi-simple Lie theory that the complexified Lie algebra $\mathbf{g}_{\mathbb{C}}$ of the compact Lie group G has a decomposition under the adjoint action of the maximal torus T of G. Then, from [6], we have the following theorem.

Theorem 2.1. There is a decomposition

$$
\mathbf{g}_{\mathbb{C}}=\mathbf{t}_{\mathbb{C}} \bigoplus_{\alpha} \mathbf{g}_{\alpha}
$$

where $\mathbf{g}_{\mathbf{0}}=\mathbf{t}_{\mathbb{C}}$ is the complexified Lie algebra of T, and

$$
\mathbf{g}_{\alpha}=\left\{\xi \in \mathbf{g}_{\mathbb{C}}: \mathbf{t} \cdot \xi=\alpha(\mathbf{t}) \xi \forall \mathbf{t} \in \mathbf{T}\right\} .
$$

The homomorphisms $\alpha: T \rightarrow \mathbb{T}$ for which $\mathbf{g}_{\alpha} \neq \mathbf{0}$ are called the roots of G. They form a finite subset of the lattice $\breve{T}=\operatorname{Hom}(T, \mathbb{T})$. By analogy, the complexified Lie algebra $L \mathbf{g}_{\mathbb{C}}$ of the loop group $L G$ has a decomposition

$$
L \mathbf{g}_{\mathbb{C}}=\bigoplus_{\mathbf{k} \in \mathbb{Z}} \mathbf{g}_{\mathbb{C}} \cdot \mathbf{z}^{\mathbf{k}}
$$

where $\mathbf{g}_{\mathbb{C}}$ is the complexified Lie algebra of G. This is the decomposition into eigenspaces of the rotation action of the circle group \mathbb{T} on the loops. The rotation action commutes with the adjoint action of the constant loops G, and from [13], we have the following theorem.

Theorem 2.2. There is a decomposition of $L \mathbf{g}_{\mathbb{C}}$ under the action of the maximal torus T of G,

ÖZEL

$$
L \mathbf{g}_{\mathbb{C}}=\bigoplus_{\mathbf{k} \in \mathbb{Z}} \mathbf{g}_{\mathbf{0}} \cdot \mathbf{z}^{\mathbf{k}} \oplus \bigoplus_{(\mathbf{k}, \alpha)} \mathbf{g}_{\alpha} \cdot \mathbf{z}^{\mathbf{k}}
$$

The pieces in this decomposition are indexed by homomorphisms

$$
(k, \alpha): \mathbb{T} \times T \rightarrow \mathbb{T}
$$

The homomorphisms $(k, \alpha) \in \mathbb{Z} \times \breve{T}$ which occur in the decomposition are called the roots of $L G$.
defination 2.3. The set of roots is called the root system of $L G$ and denoted by $\widehat{\Delta}$.
Let δ be $(0,1)$. Then

$$
\widehat{\Delta}=\bigcup_{k \in \mathbb{Z}}(\Delta \cup\{0\}+k \delta)=\Delta \cup\{0\}+\mathbb{Z} \delta,
$$

where Δ is the root system of G. The root system $\widehat{\Delta}$ is the union of real roots and imaginary roots:

$$
\widehat{\Delta}=\widehat{\Delta}_{\mathrm{re}} \cup \widehat{\Delta}_{\mathrm{im}},
$$

where

$$
\begin{aligned}
\widehat{\Delta}_{\mathrm{re}} & =\{(\alpha, n): \alpha \in \Delta, n \in \mathbb{Z}\} \\
\widehat{\Delta}_{\mathrm{im}} & =\{(0, r): r \in \mathbb{Z}\}
\end{aligned}
$$

definition 2.4. Let the rank of G be l. Then, the set of simple roots of $L G$ is

$$
\left\{\left(\alpha_{i}, 0\right): \alpha_{i} \in \Sigma \text { for } 1 \leq i \leq l\right\} \cup\left\{\left(-\alpha_{l+1}, 1\right)\right\}
$$

where α_{l+1} is the highest weight of the adjoint representation of G.
The root system $\widehat{\Delta}$ can be divided into three parts as the positive and the negative and 0 :

ÖZEL

$$
\widehat{\Delta}=\widehat{\Delta}^{+} \cup\{0\} \cup \widehat{\Delta}^{-}
$$

where

$$
\begin{aligned}
& \widehat{\Delta}^{+}=\widehat{\Delta}_{\mathrm{re}}^{+} \cup \widehat{\Delta}_{\mathrm{im}}^{+}, \\
& \widehat{\Delta}^{-}=\widehat{\Delta}_{\mathrm{re}}^{-} \cup \widehat{\Delta}_{\mathrm{im}}^{-},
\end{aligned}
$$

where

$$
\begin{aligned}
\widehat{\Delta}_{\mathrm{re}}^{+} & =\left\{(\alpha, n) \in \widehat{\Delta}_{\mathrm{re}}: n>0\right\} \cup\left\{(\alpha, 0): \alpha \in \Delta^{+}\right\} \\
\widehat{\Delta}_{\mathrm{im}}^{+} & =\{n \delta: n>0\}
\end{aligned}
$$

and

$$
\begin{aligned}
\widehat{\Delta}_{\mathrm{re}}^{-} & =-\widehat{\Delta}_{\mathrm{re}}^{+} \\
\widehat{\Delta}_{\mathrm{im}}^{-} & =-\widehat{\Delta}_{\mathrm{im}}^{+}
\end{aligned}
$$

Now, we will give some examples. First, we will discuss the case of $S U_{2}$. The root system $\widehat{\Delta}$ of the loop group $\operatorname{LSU}(2)$ has two basis elements $\mathbf{a}_{\mathbf{0}}=(-\alpha, \mathbf{1})$ and $\mathbf{a}_{\mathbf{1}}=(\alpha, \mathbf{0})$ where α is the simple root of $S U_{2}$. All roots of $L S U_{2}$ can be written as a sum of the simple roots $\mathbf{a}_{\mathbf{0}}$ and $\mathbf{a}_{\mathbf{1}}$.

Proposition 2.5. The set of roots of $L S U_{2}$ is given by $\widehat{\Delta}=\widehat{\Delta}_{\mathrm{re}} \cup \widehat{\Delta}_{\mathrm{im}}$ where

$$
\begin{aligned}
\widehat{\Delta}_{\mathrm{re}} & =\left\{k \mathbf{a}_{0}+l \mathbf{a}_{1}:|k-l|=1, k \in \mathbb{Z}\right\} \\
\widehat{\Delta}_{\mathrm{im}} & =\left\{k \mathbf{a}_{\mathbf{0}}+\mathbf{k} \mathbf{k a}_{\mathbf{1}}: \mathbf{k} \in \mathbb{Z}\right\}
\end{aligned}
$$

corollary 2.6. The set of positive roots of LSU_{2} is given by

$$
\widehat{\Delta}^{+}=\widehat{\Delta}_{\mathrm{re}}^{+} \cup \widehat{\Delta}_{\mathrm{im}}^{+} \text {where }
$$

ÖZEL

$$
\begin{aligned}
\widehat{\Delta}_{\mathrm{re}}^{+} & =\left\{k \mathbf{a}_{0}+l \mathbf{a}_{1}:|k-l|=1, k \in \mathbb{Z}^{+}\right\} \quad=\{(\alpha, r),(-\alpha, s): r \geq 0, s>0\}, \\
\widehat{\Delta}_{\mathrm{im}}^{+} & =\left\{k \mathbf{a}_{\mathbf{0}}+\mathbf{k} \mathbf{a}_{\mathbf{1}}: \mathbf{k} \in \mathbb{Z}^{+}\right\} .
\end{aligned}
$$

In the case of $L S U_{n}$, for $n \geq 3$, the root system $\widehat{\Delta}$ of the loop group $L S U_{n}$ has basis elements $\mathbf{a}_{\mathbf{0}}=\left(-\alpha_{\mathbf{0}}, \mathbf{1}\right)$ and $\mathbf{a}_{\mathbf{i}}=\left(\alpha_{\mathbf{i}}, \mathbf{0}\right), \mathbf{1} \leq \mathbf{i} \leq \mathbf{n}-\mathbf{1}$ where α_{i} is the simple root of $S U_{n}$ and $\alpha_{0}=\sum_{i=1}^{n-1} \alpha_{i}$. All roots of $L S U_{n}$ can be written as a sum of the simple roots a_{i}.

Theorem 2.7. (see [8])
The set of roots of $L S U_{n}$, for $n \geq 3$, is

$$
\widehat{\Delta}=\left\{k \sum_{r=0}^{i-1} \mathbf{a}_{\mathbf{r}}+\mathbf{l} \sum_{\mathbf{r}=\mathbf{i}}^{\mathbf{j}-\mathbf{1}} \mathbf{a}_{\mathbf{r}}+\mathbf{k} \sum_{\mathbf{r}=\mathbf{j}}^{\mathbf{n}-\mathbf{1}} \mathbf{a}_{\mathbf{r}}:|\mathbf{k}-\mathbf{l}|=\mathbf{1}, \mathbf{k} \in \mathbb{Z} \quad \text { and } \quad \mathbf{0} \leq \mathbf{i} \leq \mathbf{j} \leq \mathbf{n}\right\} .
$$

Corollary 2.8. The set of positive roots of $L S U_{n}$, for $n \geq 3$, is

$$
\widehat{\Delta}^{+}=\left\{k \sum_{r=0}^{i-1} \mathbf{a}_{\mathbf{r}}+\mathbf{l} \sum_{\mathbf{r}=\mathbf{i}}^{\mathbf{j}-\mathbf{1}} \mathbf{a}_{\mathbf{r}}+\mathbf{k} \sum_{\mathbf{r}=\mathbf{j}}^{\mathbf{n}-\mathbf{1}} \mathbf{a}_{\mathbf{r}}:|\mathbf{k}-\mathbf{l}|=\mathbf{1}, \mathbf{k} \in \mathbb{Z}^{+} \quad \text { and } \quad \mathbf{0} \leq \mathbf{i} \leq \mathbf{j} \leq \mathbf{n}\right\} .
$$

Now, we will discuss the Weyl group of the loop group $L G$. In order to define this group, we need a larger group structure. We define the semi-direct product $\mathbb{T} \ltimes L G$ of \mathbb{T} and $L G$ in which \mathbb{T} acts on $L G$ by the rotation. From [13], we have the following two theorems.

Theorem 2.9. $\mathbb{T} \times T$ is a maximal abelian subgroup of $\mathbb{T} \ltimes L G$.

Theorem 2.10. The complexified Lie algebra of $\mathbb{T} \ltimes L G$ has a decomposition

$$
\left(\mathbb{C} \oplus \mathbf{t}_{\mathbb{C}}\right) \oplus\left(\bigoplus_{k \neq 0} \mathbf{t}_{\mathbb{C}} \cdot \mathbf{z}^{\mathbf{k}} \oplus \bigoplus_{(\mathbf{k}, \alpha)} \mathbf{g}_{\alpha} \cdot \mathbf{z}^{\mathbf{k}},\right)
$$

according to the characters of $\mathbb{T} \times T$.

ÖZEL

We know that the roots of G are permuted by the Weyl group W. This is the group of automorphisms of the maximal torus T which arise from conjugation in G, i.e. $W=N(T) / T$, where

$$
N(T)=\left\{n \in G: n T n^{-1}=T\right\}
$$

is the normalizer of T in G. In exactly same way, the infinite set of roots of $L G$ is permuted by the Weyl group $\widetilde{W}=N(\mathbb{T} \times T) /(\mathbb{T} \times T)$, where $N(\mathbb{T} \times T)$ is the normalizer in $\mathbb{T} \ltimes L G$. The Weyl group \widetilde{W} which was defined above is called the affine Weyl group.

Proposition 2.11. The affine Weyl group \widetilde{W} is the semidirect product of the coweight lattice $T^{\vee}=\operatorname{Hom}(\mathbb{T}, T)$ by the Weyl group W of G.

We know that the Weyl group W of G acts on the Lie algebra of the maximal torus T, it is a finite group of isometries of the Lie algebra \mathbf{t} of the maximal torus T. It preserves the coweight lattice T^{\vee}. For each simple root α, the Weyl group W contains an element r_{α} of order two represented by $\exp \left(\frac{\pi}{2}\left(e_{\alpha}+e_{-\alpha}\right)\right)$ in $N(T)$. Since the roots α can be considered as the linear functionals on the Lie algebra \mathbf{t} of the maximal torus T, the action of r_{α} on \mathbf{t} is given by

$$
r_{\alpha}(\xi)=\xi-\alpha(\xi) h_{\alpha} \text { for } \xi \in \mathbf{t}
$$

where h_{α} is the coroot in \mathbf{t} corresponding to simple root α. Also, we can give the action of r_{α} on the roots by

$$
r_{\alpha}(\beta)=\beta-\alpha\left(h_{\beta}\right) \alpha \text { for } \alpha, \beta \in \mathbf{t}^{*},
$$

where \mathbf{t}^{*} is the dual vector space of \mathbf{t}. The element r_{α} is the reflection in the hyperplane H_{α} of \mathbf{t} whose equation is $\alpha(\xi)=0$. These reflections r_{α} generate the Weyl group W. For the special unitary matrix group $S U_{2}$, we have only one simple root α with corresponding reflection r_{α} which generates the Weyl group of $S U_{2}$ and $W \cong \mathbb{Z} / 2$. More generally, we have from [7] this theorem:

ÖZEL

Theorem 2.12. The Weyl group of $S U_{n}$ is the symmetric group S_{n}.
Now, we want to describe the Weyl group structure of $L G$. By analogy with \mathbb{R} for real form, the roots of the loop group $L G$ can be considered as linear forms on the Lie algebra $\mathbb{R} \times \mathbf{t}$ of the maximal abelian group $\mathbb{T} \times T$. The Weyl group \widetilde{W} acts linearly on $\mathbb{R} \times \mathbf{t}$, the action of W is an obvious reflection in the affine hyperplane $1 \times \mathbf{t}$ and the action of $\lambda \in T^{\vee}$ is given by

$$
\lambda \cdot(x, \xi)=(x, \xi+x \lambda) .
$$

Thus, the Weyl group \widetilde{W} preserves the hyperplane $1 \times \mathbf{h}$, and $\lambda \in \breve{T}$ acts on it by translation by the vector $\lambda \in T^{\vee} \subset \mathbf{t}$. If $\alpha \neq 0$, the affine hyperplane $H_{\alpha, k}$ can be defined as follows. For each root (α, k),

$$
H_{\alpha, k}=\{\xi \in \mathbf{t}: \alpha(\xi)=-\mathbf{k}\}
$$

We know that the Weyl group W of G is generated by the reflections r_{α} in the hyperplanes H_{α} for the simple roots α. A corresponding statement holds for the affine Weyl group \widetilde{W}.

Proposition 2.13 Let G be a simply-connected semi-simple compact Lie group. Then the Weyl group \widetilde{W} of the loop group $L G$ is generated by the reflections in the hyperplanes $H_{\alpha, k}$. The affine Weyl group \widetilde{W} acts on the root system $\widehat{\Delta}$ by

$$
r_{(\alpha, k)}(\gamma, m)=\left(r_{\alpha}(\gamma), m-\alpha\left(h_{\gamma}\right) k\right) \text { for }(\alpha, k),(\gamma, m) \in \widehat{\Delta}
$$

Proposition 2.14 The Weyl group \widetilde{W} of $L S U_{2}$ is

$$
\widetilde{W}=\left\{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{k},\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{k} r_{\mathbf{a}_{0}},\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{k},\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{k} r_{\mathbf{a}_{1}}: k \geq 0, r_{\mathbf{a}_{0}}^{2}=r_{\mathbf{a}_{1}}^{2}=I d\right\} .
$$

Proposition 2.15 The Weyl group of $L S U_{n}$ is the semi-direct product $S_{n} \ltimes \mathbb{Z}^{n-1}$ where S_{n} acts by permutation action on coordinates of \mathbb{Z}^{n-1}.

Actually the symmetric group S_{n} acts on \mathbb{Z}^{n} by the permutation action. \mathbb{Z}^{n-1} is the fixed subgroup which corresponds to the eigen-value action. From [5], we have

ÖZEL

Theorem 2.16 The affine Weyl group \widetilde{W} of $L G$ is a Coxeter group.
We will give some properties of the affine Weyl group \widetilde{W}.

Definition 2.17 The length of an element $w \in \widetilde{W}$ is the least number of factors in the decomposition relative to the set of the reflections $\left\{r_{\mathbf{a}_{\mathbf{i}}}\right\}$, is denoted by $\ell(w)$.

Definition 2.18 Let $w_{1}, w_{2} \in \widetilde{W}, \gamma \in \Delta_{\mathrm{re}}^{+}$. Then $w_{1} \xrightarrow{\gamma} w_{2}$ indicates the fact that

$$
\begin{aligned}
r_{\gamma} w_{1} & =w_{2} \\
\ell\left(w_{2}\right) & =\ell\left(w_{1}\right)+1
\end{aligned}
$$

We put $w \leqslant w^{\prime}$ if there is a chain

$$
w=w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{k}=w^{\prime}
$$

The relation \leqslant is called the Bruhat order on the affine Weyl group \widetilde{W}.
Proposition 2.19 Let $w \in \widetilde{W}$ and let $w=r_{\mathrm{a}_{1}} r_{\mathrm{a}_{2}} \cdots r_{\mathrm{a}_{1}}$ be the reduced decomposition of w. If $1 \leq i_{1}<\ldots<i_{k} \leq l$ and $w^{\prime}=r_{\mathbf{a}_{\mathbf{i}_{1}}} r_{\mathbf{a}_{\mathbf{i}_{\mathbf{2}}}} \cdots r_{\mathbf{a}_{\mathbf{i}_{\mathbf{k}}}}$, then $w^{\prime} \leqslant w$. If $w^{\prime} \leqslant w$, then w^{\prime} can be represented as above for some indexing set $\left\{i_{\xi}\right\}$. If $w^{\prime} \rightarrow w$, then there is a unique index $i, 1 \leq i \leq l$ such that

$$
w^{\prime}=r_{\mathbf{a}_{1}} \cdots r_{\mathbf{a}_{\mathbf{i}-1}} r_{\mathbf{a}_{\mathbf{i}+1}}
$$

The last proposition gives an alternative definition of the Bruhat ordering on \widetilde{W}. Now we will define the subset \widehat{W} of the affine Weyl group \widetilde{W} which will be used in the text later. We know that the Weyl group \widetilde{W} of the loop group $L G$ is a split extension $T^{\vee} \rightarrow \widetilde{W} \rightarrow W$, where W is the Weyl group of the compact group Lie group G. Since the Weyl group W is a sub-Coxeter system of the affine Weyl group \widetilde{W}, we can define the set of cosets \widetilde{W} / W.

Lemma 2.20 The subgroup of \widetilde{W} fixing 0 is the Weyl group W.

ÖZEL

Corollary 2.21. Let $w, w^{\prime} \in \widetilde{W}$. Then, $w(0)=w^{\prime}(0)$ if and only if $w W=w^{\prime} W$ in \widetilde{W} / W.

By the last corollary, the map $\widetilde{W} / W \rightarrow T^{\vee}$ given by $w W \rightarrow w(0)$ is well-defined and has inverse map given by $\chi_{i} \rightarrow r_{\alpha_{i}} W$, so the coset set \widetilde{W} / W is identified to T^{\vee} as set. We have from [1],

Theorem 2.22. Each coset in \widetilde{W} / W has a unique element of the minimal length.
We will write $\overline{\ell(w)}$ for the minimal length element occuring in the coset $w W$, for $w \in \widetilde{W}$. We see that each coset $w W, w \in \widetilde{W}$ has two distinguished representatives which are not in the general the same. Let the subset \widehat{W} of the affine Weyl group \widetilde{W} be the set of the minimal representative elements $\overline{\ell(w)}$ in the coset $w W$ for each $w \in \widetilde{W}$. The subset \widehat{W} has the Bruhat order since it identitifies the set of the minimal representative elements $\overline{\ell(w)}$. As a example, we calculate the subset \widehat{W} of the Weyl group of $L S U_{2}$. Our aim is to find the minimal representative elements $\overline{\ell(w)}$ in the right coset $w W$ for each the element $w \in \widetilde{W}$, where

$$
\widetilde{W}=\left\{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{k},\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l} r_{\mathbf{a}_{0}},\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{m},\left(r_{\mathbf{a}_{1}} r_{\mathrm{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}: k, l, m, n \geq 0, r_{\mathbf{a}_{0}}^{2}=r_{\mathbf{a}_{1}}^{2}=\mathrm{id}\right\},
$$

and $W=\left\langle r_{\mathbf{a}_{1}} ; r_{\mathbf{a}_{1}}^{2}=\mathrm{id}\right\rangle$. We have the minimal representative elements $\overline{\ell(w)}$ for each coset $w W, w \in \widetilde{W}$ as follows

$$
\begin{aligned}
\overline{l\left(\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{k}\right)} & =\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{k} \quad \text { for } k \geq 0 \\
\overline{l\left(\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l} r_{\mathbf{a}_{0}}\right)} & =\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l} r_{\mathbf{a}_{0}} \quad \text { for } l \geq 0 \\
l\left(\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}\right) & =\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} \quad \text { for } n \geq 0
\end{aligned}
$$

and

$$
\overline{l\left(\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{m}\right)}= \begin{cases}\mathrm{Id} & \text { for } \mathrm{m}=0 \\ \left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{m-1} r_{\mathbf{a}_{0}} & \text { for } m>0\end{cases}
$$

By the transformations $m-1, l$ and $k \rightarrow n$, we have the subset

ÖZEL

$$
\widehat{W}=\{\overline{\ell(w)}: w \in \widetilde{W}\}=\left\{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n},\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}: n \geq 0\right\} .
$$

Now we will describe the Lie algebra $L_{\mathrm{pol}} \mathbf{g}_{\mathbb{C}}$ and its universal central extension in terms of generators and relations. For a finite dimensional semi-simple Lie algebra $\mathbf{g}_{\mathbb{C}}$, we can choose a non-zero element e_{α} in \mathbf{g}_{α} for each root α. From [6], we have

Theorem 2.23. $\mathbf{g}_{\mathbb{C}}$ is a Kac̆-Moody Lie algebra generated by $e_{i}=e_{\alpha_{i}}$ and $f_{i}=e_{-\alpha_{i}}$ for $i=1, \ldots, l$ where the α_{i} are the simple roots and l is the rank of $\mathbf{g}_{\mathbb{C}}$ only if G is semi-simple.

Let us choose generators e_{j} and f_{j} of $L \mathbf{g}_{\mathbb{C}}$ corresponding to simple affine roots. Since $\mathbf{g}_{\mathbb{C}} \subset \mathbf{L g}_{\mathbb{C}}$, we can take

$$
e_{j}= \begin{cases}z e_{-\alpha_{0}} & \text { for } j=0 \\ e_{i} & \text { for } 1 \leq j \leq l\end{cases}
$$

and

$$
f_{j}= \begin{cases}z^{-1} e_{\alpha_{0}} & \text { for } j=0 \\ f_{i} & \text { for } 1 \leq j \leq l\end{cases}
$$

where α_{0} is the highest root of the adjoint representation. From [13],

Theorem 2.24. Let $\mathbf{g}_{\mathbb{C}}$ be a semi-simple Lie algebra. Then, $L_{\mathrm{pol}} \mathbf{g}_{\mathbb{C}}$ is generated by the elements e_{j} and f_{j} corresponding to simple affine roots.

The Cartan matrix $A_{(l+1) \times(l+1)}$ of $L \mathbf{g}_{\mathbb{C}}$ has the Cartan integers $a_{i j}=\mathbf{a}_{\mathbf{j}}\left(\mathbf{h}_{\mathbf{a}_{\mathbf{i}}}\right)$ as the entries where $\mathbf{a}_{\mathbf{0}}=-\alpha_{\mathbf{0}}$, and $\mathbf{a}_{\mathbf{j}}=\alpha_{\mathbf{j}}$ if $1 \leq j \leq l$. As an example,

Theorem 2.25. Let $G=S U_{2}$. The Cartan matrix $A_{2 \times 2}$ of $L \mathbf{g}_{\mathbb{C}}$ is the symmetric matrix $\left(\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right)$.

Although the relations of the Kač-Moody algebra hold in $L_{\mathrm{pol}} \mathbf{g}_{\mathbb{C}}$, they do not define it. By a theorem of Gabber and Kac̆ in [2], the relations define the universal central extension $\widehat{L}_{\mathrm{pol}} \mathbf{g}_{\mathbb{C}}$ of $L_{\mathrm{pol}} \mathbf{g}_{\mathbb{C}}$ by \mathbb{C} which is described by the cocycle ω_{K} given by

ÖZEL

$$
\omega_{K}(\xi, \eta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sigma\left(\xi(\theta), \eta^{\prime}(\theta)\right) d \theta
$$

As a vector space $\widehat{L}_{\mathrm{pol}} \mathbf{g}_{\mathbb{C}}$ is $L_{\mathrm{pol}} \mathbf{g}_{\mathbb{C}} \oplus \mathbb{C}$ and the bracket is given by

$$
[(\xi, \lambda),(\eta, \mu)]=\left([\xi, \eta], \omega_{K}(\xi, \eta)\right) .
$$

Theorem 2.26. $\widehat{L} \mathbf{g}_{\mathbb{C}}$ is an affine Kac̆-Moody algebra.

3.1. Some homotopy equivalences for the loop group $L G$ and its homogeneous

 spaces.From [3], we have

Theorem 3.1. The compact group G is a deformation retract of $G_{\mathbb{C}}$ and so, the loop space $L G$ is homotopic to the complexified loop space $L G_{\mathbb{C}}$.

Now, we want to give a major result from [13]

Theorem 3.2. The inclusion

$$
\iota: L_{\mathrm{pol}} G_{\mathbb{C}} \rightarrow L G_{\mathbb{C}}
$$

is a homotopy equivalence.
Now we will give some useful notations. The parabolic subgroup P of $L_{\mathrm{pol}} G_{\mathbb{C}}$ is the set of maps $\mathbb{C} \rightarrow G_{\mathbb{C}}$ which have non-negative Laurent series expansions. Then $P=G_{\mathbb{C}}[z]$. The minimal parabolic subgroup B is the Iwahori subgroup

$$
\{f \in P: f(0) \in \bar{B}\}
$$

where \bar{B} is the finite-dimensional Borel subgroup of G. Note also that the minimal parabolic subgroup B corresponds to the positive roots, the parabolic subgroup P to the roots (α, n) with $n \geq 0$. From [3],

ÖZEL

Theorem 3.3. The evaluation at zero map $e_{0}: P \rightarrow G_{\mathbb{C}}$ is a homotopy equivalence with the homotopy inverse the inclusion of $G_{\mathbb{C}}$ as the constant loops.

The following fact follows from the local rigidity of the trivial bundle on the projective line. From [4], we have

Theorem 3.4. The projection

$$
L_{\mathrm{pol}} G_{\mathbb{C}} \rightarrow L_{\mathrm{pol}} G_{\mathbb{C}} / P
$$

is a principal bundle with fiber P.
Now, as a consequence of Theorem 3.2, Proposition 3.4 and Theorem 3.3, we have

Theorem 3.5. $\Omega G_{\mathbb{C}}$ is homotopy equivalent to $L_{\mathrm{pol}} G_{\mathbb{C}} / P$.

Theorem 3.6. (see [11]) The homogeneous space

$$
L_{\mathrm{pol}} G_{\mathbb{C}} / P=\coprod_{w \in \widetilde{W} / W} B w P / P
$$

Corollary 3.7. The homogeneous space

$$
L_{\mathrm{pol}} G_{\mathbb{C}} / B=\coprod_{w \in \widetilde{W}} B w B / B
$$

By a theorem of [13], we have an isomorphism

Theorem 3.8.

$$
H^{*}(L G / T ; \mathbb{C}) \cong H^{*}\left(L \mathbf{g}_{\mathbb{C}}, \mathbf{t}_{\mathbb{C}} ; \mathbb{C}\right) \cong \mathbf{H}^{*}\left(\widehat{\mathbf{L}} \mathbf{g}_{\mathbb{C}}, \widehat{\mathbf{t}}_{\mathbb{C}} ; \mathbb{C}\right) \cong \mathbf{H}^{*}\left(\widehat{\mathbf{L}}_{\mathrm{pol}} \mathbf{G}_{\mathbb{C}} / \widehat{\mathbf{B}} ; \mathbb{C}\right)
$$

By Theorem 3.8, the \mathbb{Z}-cohomology ring of $L G / T$ generated by the strata can be calculated using a corollary of [9]. In the next section, we will work at an example.

ÖZEL

4. Cohomology rings of the homogeneous spaces $\Omega S U_{2}$ and $L S U_{2} / T$.

In order to determine the integral cohomology ring of $L S U_{2} / T$, we need some calculations in the integral cohomology of $L S U_{2} / T$.

Theorem 4.1. For $n \geq 0$, the action of affine Weyl group of $L S U_{2}$ on the real root system is given by

$$
\begin{align*}
\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}(-\alpha, s) & =(-\alpha, s+2 n) ; \tag{4.1}\\
\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}(\alpha, r) & =(\alpha, r-2 n), \tag{4.2}\\
\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}(-\alpha, s) & =(\alpha, s-2 n-2) ; \tag{4.3}\\
\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}(\alpha, r) & =(-\alpha, r+2 n+2), \tag{4.4}\\
\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}(-\alpha, s) & =(-\alpha, s-2 n) ; \tag{4.5}\\
\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}(\alpha, r) & =(\alpha, r+2 n), \tag{4.6}\\
\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}(-\alpha, s) & =(\alpha, s+2 n) ; \tag{4.7}\\
\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}(\alpha, r) & =(-\alpha, r-2 n) . \tag{4.8}
\end{align*}
$$

Proof. First, by induction on n, we shall show that

$$
\begin{aligned}
\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}(-\alpha, s) & =(-\alpha, s+2 n) \\
\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}(\alpha, r) & =(\alpha, r-2 n),
\end{aligned}
$$

for $(-\alpha, s),(\alpha, r) \in \widehat{\Delta}_{\mathrm{re}}$. The case $n=0$ is trivially true.
Now, we assume that the equations Eq.(4.1) and Eq.(4.2) hold for $n=l$. Then,

$$
\begin{aligned}
\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l+1}(-\alpha, s) & =\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l}(-\alpha, s) \\
& =\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)(-\alpha, s+2 l) \\
& =r_{\mathbf{a}_{0}}(\alpha, s+2 l) \\
& =(-\alpha, s+2(l+1))
\end{aligned}
$$

ÖZEL

and

$$
\begin{aligned}
\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l+1}(\alpha, r) & =\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l}(\alpha, r) \\
& =\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)(\alpha, r-2 l) \\
& =r_{\mathbf{a}_{0}}(-\alpha, r-2 l) \\
& =(\alpha, r-2(l+1)) .
\end{aligned}
$$

This means that Equations $\operatorname{Eq}(4.1)$ and $\mathrm{Eq}(4.2)$ hold for any $n \geq 0$.
Since $\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}=r_{\mathbf{a}_{1}}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}$, we can find easily the action of the reflection $\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}$ on the real root system.

Then, we have Equation Eq.(4.7) and Eq.(4.8),

$$
\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}(-\alpha, s)=r_{\mathbf{a}_{1}}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}(-\alpha, s)=r_{\mathbf{a}_{1}}(-\alpha, s+2 n)=(\alpha, s+2 n),
$$

and

$$
\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}(\alpha, r)=r_{\mathbf{a}_{1}}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}(\alpha, r)=r_{\mathbf{a}_{1}}(\alpha, r-2 n)=(-\alpha, r-2 n) .
$$

Since $\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}$ is inverse of $\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}$, the action of $\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}$ on the real root system is given by

$$
\begin{aligned}
\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}(\alpha, r) & =(\alpha, r+2 n) \\
\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}(-\alpha, s) & =(-\alpha, s-2 n) .
\end{aligned}
$$

Also, since $\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}=r_{\mathbf{a}_{0}}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}$, the action of $\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}$ on the real root system is given by

$$
\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}(\alpha, r)=r_{\mathbf{a}_{0}}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}(\alpha, r)=r_{\mathbf{a}_{0}}(\alpha, r+2 n)=(-\alpha, r+2 n+2)
$$

and

$$
\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}(-\alpha, s)=r_{\mathbf{a}_{0}}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}(-\alpha, s)=r_{\mathbf{a}_{0}}(-\alpha, s-2 n)=(\alpha, s-2 n-2) .
$$

ÖZEL

Corollary 4.2. Let (α, u) and $(-\alpha, v), u \geq 0, v>0$, be real positive roots of $L S U_{2}$.
For $n \geq 0$,

$$
\begin{align*}
r_{(\alpha, u)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}(-\alpha, s) & =(\alpha, s+2 n+2 u) ; \tag{4.9}\\
r_{(\alpha, u)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}(\alpha, r) & =(-\alpha, r-2 n-2 u), \tag{4.10}\\
r_{(\alpha, u)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}(-\alpha, s) & =(-\alpha, s-2 n-2 u-2) ; \tag{4.11}\\
r_{(\alpha, u)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}(\alpha, r) & =(\alpha, r+2 n+2 u+2), \tag{4.12}\\
r_{(\alpha, u)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}(-\alpha, s) & =(\alpha, s-2 n+2 u) ; \tag{4.13}\\
r_{(\alpha, u)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}(\alpha, r) & =(-\alpha, r+2 n-2 u), \tag{4.14}\\
r_{(\alpha, u)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}(-\alpha, s) & =(-\alpha, s+2 n-2 u) ; \tag{4.15}\\
r_{(\alpha, u)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}(\alpha, r) & =(\alpha, r-2 n+2 u), \tag{4.16}\\
& =(\alpha, s+2 n-2 v) ; \tag{4.17}\\
r_{(-\alpha, v)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}(-\alpha, s) & =(-\alpha, r-2 n+2 v), \tag{4.18}\\
r_{(-\alpha, v)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}(\alpha, r) & =(-\alpha, s-2 n+2 v-2) ; \tag{4.19}\\
r_{(-\alpha, v)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}(-\alpha, s) & =(-2 v+2), \tag{4.20}\\
r_{(-\alpha, v)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}(\alpha, r) & =(\alpha, r+2 n-2 v, \tag{4.21}\\
r_{(-\alpha, v)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}(-\alpha, s) & =(\alpha, s-2 n-2 v) ; \tag{4.22}\\
r_{(-\alpha, v)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}(\alpha, r) & =(-\alpha, r+2 n+2 v), \tag{4.23}\\
r_{(-\alpha, v)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}(-\alpha, s) & =(-\alpha, s+2 n+2 v) ; \tag{4.24}\\
r_{(-\alpha, v)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}(\alpha, r) & =(\alpha, r-2 n-2 v),
\end{align*}
$$

Theorem 4.3. For $k \geq 0$, the following equations hold in $H^{*}\left(L S U_{2} / T, \mathbb{Z}\right)$.

$$
\begin{align*}
\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 k} & =(2 k)!\varepsilon^{\left(r_{a_{0}} r_{\mathbf{a}_{1}}\right)^{k}}, \tag{4.25}\\
\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 k} & =(2 k)!\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{k}}, \tag{4.26}\\
\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 k+1} & =(2 k+1)!\varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{k} r_{\mathbf{a}_{0}}}, \tag{4.27}\\
\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 k+1} & =(2 k+1)!\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{k} r_{\mathbf{a}_{1}}} \tag{4.28}
\end{align*}
$$

ÖZEL

Proof. By induction on k, we will show that these equations hold in $H^{*}\left(L S U_{2} / T, \mathbb{Z}\right)$. For $k=0$, these equations hold.

Now, we assume that these equations hold for $k=n$. Then, we have to show that they hold for $k=n+1$. By assumption,

$$
\begin{aligned}
\left(\varepsilon^{r_{\mathrm{a}_{0}}}\right)^{2 n+2} & =\left(\varepsilon^{r_{\mathrm{a}_{0}}}\right) \cdot\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 n+1} \\
& =(2 n+1)!\varepsilon^{r_{\mathrm{a}_{0}}} \cdot \varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathrm{a}_{0}}} .
\end{aligned}
$$

We have

$$
\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 n+2}=(2 n+1)!\sum_{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}} \xrightarrow{\gamma} w} \chi_{0}\left(h_{\gamma}\right) \varepsilon^{w} .
$$

When we check the action of the reflections which have length $2 n+2$, by the action of $r_{(\alpha, u)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}$ and $r_{(-\alpha, v)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}$ on the real root system, we see that the sum in the right side of the last cup product equation holds the only for the positive root

$$
(-\alpha, 2 n+2)=(2 n+2) \mathbf{a}_{\mathbf{0}}+(2 n+1) \mathbf{a}_{\mathbf{1}} .
$$

Then,

$$
\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 n+2}=(2 n+2)!\varepsilon^{r_{(-\alpha, 2 n+2)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}} .}
$$

The composition of reflections $r_{(-\alpha, 2 n+2)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}$ can be represented by the Weyl group element $\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n+1}$, so

$$
\left(\varepsilon^{r_{a_{0}}}\right)^{2 n+2}=(2 n+2)!\varepsilon^{\left(r_{a_{0}} r_{a_{1}}\right)^{n+1}}
$$

If we continue the induction for equation Eq.(4.27), by assumption,

$$
\begin{aligned}
\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 n+3} & =\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right) \cdot\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 n+2} \\
& \left.=(2 n+2)!\varepsilon^{r_{\mathbf{a}_{0}}} \cdot \varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right.}\right)^{n+1}
\end{aligned}
$$

We have

ÖZEL

$$
\left(\varepsilon^{r_{a_{0}}}\right)^{2 n+3}=(2 n+2)!\sum_{\left(r_{a_{0}} r_{a_{1}}\right)^{n+1}{\underset{\sim}{\gamma}}_{w}} \chi_{0}\left(h_{\gamma}\right) \varepsilon^{w} .
$$

When we check the action of the reflections which have length $2 n+3$, by the action of $r_{(\alpha, u)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n+1}$ and $r_{(-\alpha, v)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n+1}$ on the real root system, we see that the sum in the right side of the last cup product equation holds only for the positive root

$$
(-\alpha, 2 n+3)=(2 n+3) \mathbf{a}_{\mathbf{0}}+(2 n+2) \mathbf{a}_{\mathbf{1}} .
$$

Then,

$$
\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 n+3}=(2 n+3)!\varepsilon^{r_{(-\alpha, 2 n+3)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n+1}} .
$$

The composition of reflections $r_{(-\alpha, 2 n+3)}\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n+1}$ can be represented by the Weyl group element $\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n+1} r_{\mathbf{a}_{0}}$, so

$$
\left.\left(\varepsilon^{r_{a_{0}}}\right)^{2 n+3}=(2 n+3)!\varepsilon^{\left(r_{a_{0}} r_{a_{1}}\right.}\right)^{n+1} r_{a_{0}} .
$$

Thus, we have proved that the equations Eq.(4.25) and Eq.(4.27) hold in $H^{*}\left(L S U_{2} / T, \mathbb{Z}\right)$.
Similarly, by assumption,

$$
\begin{aligned}
\left(\varepsilon^{r_{a_{1}}}\right)^{2 n+2} & =\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right) \cdot\left(\varepsilon^{r_{\mathbf{r}_{1}}}\right)^{2 n+1} \\
& \left.=(2 n+1)!\varepsilon^{r_{a_{1}}} \cdot \varepsilon^{\left(r_{a_{1}} r_{a_{0}}\right.}\right)^{n} r_{a_{a_{1}}}
\end{aligned} .
$$

We have

$$
\left(\varepsilon^{r_{a_{1}}}\right)^{2 n+2}=(2 n+1)!\sum_{\left(r_{a_{1}} r_{a_{0}}\right)^{n} r_{r_{1}} \tilde{q}_{w}} \chi_{1}\left(h_{\gamma}\right) \varepsilon^{w} .
$$

When we check the action of the reflections which have length $2 n+2$, by the action of $r_{(\alpha, u)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}$ and $r_{(-\alpha, v)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}$ on the real root system, we see that the sum in the right side of the last cup product equation holds the only for the positive root

$$
(\alpha, 2 n+1)=(2 n+1) \mathbf{a}_{\mathbf{0}}+(2 n+2) \mathbf{a}_{\mathbf{1}} .
$$

ÖZEL

Then,

$$
\left(\varepsilon^{r_{a_{1}}}\right)^{2 n+2}=(2 n+2)!\varepsilon^{r} r_{(\alpha, 2 n+1)}\left(r_{a_{1}} r_{a_{0}}\right)^{n} r_{a_{1}} .
$$

The composition of reflections $r_{(\alpha, 2 n+1)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}$ can be represented by the Weyl group element $\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n+1}$, so

$$
\left.\left(\varepsilon^{r_{a_{1}}}\right)^{2 n+2}=(2 n+2)!\varepsilon^{\left(r_{a_{1}} r_{a_{0}}\right.}\right)^{n+1} .
$$

If we continue the induction for equation Eq.(4.28),

$$
\begin{aligned}
\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 n+3} & =\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right) \cdot\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 n+2} \\
& \left.=(2 n+2)!\varepsilon^{r_{\mathbf{a}_{1}}} \cdot \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right.}\right)^{n+1}
\end{aligned}
$$

We have

$$
\left(\varepsilon^{r_{a_{1}}}\right)^{2 n+3}=(2 n+2)!\sum_{\left(r_{a_{1}} r_{a_{0}}\right)^{n+1} \mathcal{q}_{w}} \chi_{1}\left(h_{\gamma}\right) \varepsilon^{w} .
$$

When we check the action of the reflections which have length $2 n+3$, by the action of $r_{(\alpha, u)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n+1}$ and $r_{(-\alpha, v)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n+1}$ on the real root system, we see that the sum in the right side of the last cup product equation holds the only for the positive root

$$
(\alpha, 2 n+2)=(2 n+2) \mathbf{a}_{\mathbf{0}}+(2 n+3) \mathbf{a}_{\mathbf{1}} .
$$

Then,

$$
\left(\varepsilon^{r_{a_{1}}}\right)^{2 n+3}=(2 n+3)!\varepsilon^{r_{(\alpha, 2 n+2)}\left(r_{a_{1}} r_{a_{0}}\right)^{n+1}} .
$$

The composition of reflections $r_{(\alpha, 2 n+2)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n+1}$ can be represented by the Weyl group element $\left(r_{\mathrm{a}_{1}} r_{\mathrm{a}_{0}}\right)^{n+1} r_{\mathrm{a}_{1}}$, so

$$
\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 n+3}=(2 n+3)!\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n+1} r_{\mathbf{a}_{1}}} .
$$

So, the induction is completed and we have proved that all equations hold in $H^{*}\left(L S U_{2} / T, \mathbb{Z}\right)$.

We will make another calculation in the integral cohomology algebra of $L S U_{2} / T$.

ÖZEL

Theorem 4.4. For $n, m \geq 0$, the following equation holds in $H^{*}\left(L S U_{2} / T, \mathbb{Z}\right)$.

$$
(n+m)\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{n} \cdot\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{m}=n\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{n+m}+m\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{n+m} .
$$

Proof. By induction on m, we shall prove that the result holds in $H^{*}\left(L S U_{2} / T, \mathbb{Z}\right)$. Since the integral cohomology ring of $L S U_{2} / T$ is torsion-free, the integral cohomology ring can be embedded in the rational cohomology ring hence the calculations can be done in the rational cohomology. For $m=0$, the equation obviously holds.

First, we will verify the equation for $m=1$. For $m=1$, the equation reduces to

$$
\begin{equation*}
(n+1)\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{n} \cdot\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)=n\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{n+1}+\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{n+1} . \tag{4.29}
\end{equation*}
$$

Now, we will use sub-induction with respect to n on the equation Eq.(4.29). The equation Eq.(4.29) obviously holds for $n=0$.

Now, we assume that equation Eq.(4.29) holds for $n=k$. We verify that equation Eq.(4.29) holds for $n=k+1$. By the induction hypothesis, we have

$$
\begin{align*}
\varepsilon^{r_{\mathbf{a}_{1}}} \cdot\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+1} & =\left(\varepsilon^{r_{\mathbf{a}_{1}}} \cdot\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k}\right) \cdot \varepsilon^{r_{\mathbf{a}_{0}}} \\
& =\left(\frac{k}{k+1}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+1}+\frac{1}{k+1}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+1}\right) \cdot \varepsilon^{r_{\mathbf{a}_{0}}} \\
& =\frac{k}{k+1}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+2}+\frac{1}{k+1}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+1} \cdot \varepsilon^{r_{\mathbf{a}_{0}}} \tag{4.30}
\end{align*}
$$

Now, we calculate the cup product

$$
\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+1} \cdot \varepsilon^{r_{\mathbf{a}_{0}}}
$$

in the above equation. We now treat the case k odd or even separately. If $k=2 l-1$, by equation Eq.(4.26),

$$
\begin{equation*}
\varepsilon^{r_{\mathbf{a}_{0}}} \cdot\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 l}=(2 l)!\left(\varepsilon^{r_{\mathbf{a}_{0}}} \cdot\left(\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l}}\right)\right) . \tag{4.31}
\end{equation*}
$$

By the cup product formula,

ÖZEL

$$
\varepsilon^{r_{\mathbf{a}_{0}}} \cdot \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l}}=\sum_{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} \xrightarrow{\gamma} w} \chi_{0}\left(h_{\gamma}\right) \varepsilon^{w} .
$$

When we check the action of reflections $r_{(\alpha, u)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l 1}$ and $r_{(-\alpha, v)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l}$ by the action of the Weyl group elements $\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}}$ and $\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l} r_{\mathbf{a}_{0}}$ which has length $2 l+1$, we see that the reflections $r_{(-\alpha, 1)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l}$ and $r_{(\alpha, 2 l)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l}$ can be represented by the Weyl group elements $\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l} r_{\mathbf{a}_{0}}$ and $\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}}$ respectively. Using the positive root $(\alpha, 2 l)=(2 l) \mathbf{a}_{0}+(2 l+1) \mathbf{a}_{1}$ in the cup product formula,

$$
\begin{equation*}
\varepsilon^{r_{\mathbf{a}_{0}}} \cdot \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l}}=\varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l} r_{\mathbf{a}_{0}}}+(2 l) \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}}} \tag{4.32}
\end{equation*}
$$

By equations Eq.(4.27) and Eq.(4.28),

$$
\begin{equation*}
\varepsilon^{r_{\mathbf{a}_{0}}} \cdot \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l}}=\frac{1}{(2 l+1)!}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 l+1}+\frac{2 l}{(2 l+1)!}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 l+1} . \tag{4.33}
\end{equation*}
$$

When the last result is placed in the equation Eq.(4.31), we have

$$
\begin{aligned}
\varepsilon^{r_{\mathbf{a}_{0}}} \cdot\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 l} & \left.=(2 l)!\left(\varepsilon^{r_{\mathbf{a}_{0}}} \cdot\left(\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right.}\right)^{l}\right)\right) \\
& =(2 l)!\left(\frac{1}{(2 l+1)!}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 l+1}+\frac{2 l}{(2 l+1)!}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 l+1}\right) \\
& =\frac{1}{2 l+1}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 l+1}+\frac{2 l}{2 l+1}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 l+1}
\end{aligned}
$$

Using $k=2 l-1$, we have

$$
\begin{equation*}
\varepsilon^{r_{\mathbf{a}_{0}}} \cdot\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+1}=\frac{1}{k+2}\left(\varepsilon^{r_{\mathrm{a}_{0}}}\right)^{k+2}+\frac{k+1}{k+2}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+2} \tag{4.34}
\end{equation*}
$$

When the last result is placed in equation Eq.(4.30), we have

$$
\begin{aligned}
\varepsilon^{r_{\mathbf{a}_{1}}} \cdot\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+1} & =\frac{k}{k+1}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+2}+\frac{1}{k+1}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+1} \cdot \varepsilon^{r_{\mathbf{a}_{0}}} \\
& =\frac{k}{k+1}\left(\varepsilon^{r_{a_{0}}}\right)^{k+2}+\frac{1}{k+1}\left(\frac{1}{k+2}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+2}+\frac{k+1}{k+2}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+2}\right)
\end{aligned}
$$

ÖZEL

$$
\begin{aligned}
& =\left(\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}\right)\left(\varepsilon^{r_{\mathrm{a}_{0}}}\right)^{k+2}+\frac{1}{k+2}\left(\varepsilon^{r_{\mathrm{a}_{1}}}\right)^{k+2} \\
& =\frac{k+1}{k+2}\left(\varepsilon^{r_{\mathrm{a}_{0}}}\right)^{k+2}+\frac{1}{k+2}\left(\varepsilon^{r_{\mathrm{a}_{1}}}\right)^{k+2} .
\end{aligned}
$$

If $k=2 l$, by the equation Eq.(4.28),

$$
\begin{equation*}
\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right) \cdot\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 l+1}=(2 l+1)!\left(\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right) \cdot\left(\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}}}\right)\right) \tag{4.35}
\end{equation*}
$$

By the cup product formula,

$$
\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right) \cdot\left(\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}}}\right)=\sum_{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}} \xrightarrow{\gamma} w} \chi_{0}\left(h_{\gamma}\right) \varepsilon^{w} .
$$

When we check the action of reflections $r_{(\alpha, u)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}}$ and $r_{(-\alpha, v)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}}$ by the action of the Weyl group elements $\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l+1}$ and $\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l+1}$, which has length $2 l+2$, we see that the reflections $r_{(-\alpha, 1)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}}$ and $r_{(\alpha, 2 l+1)}\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}}$ can be represented by the Weyl group elements $\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l+1}$ and $\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l+1}$ respectively. Using the positive root $(\alpha, 2 l+1)=(2 l+1) \mathbf{a}_{0}+(2 l+2) \mathbf{a}_{1}$, we have

$$
\begin{equation*}
\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right) \cdot\left(\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}}}\right)=\varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l+1}}+(2 l+1) \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l+1}} . \tag{4.36}
\end{equation*}
$$

By equations Eq.(4.25) and Eq.(4.26),

$$
\begin{equation*}
\varepsilon^{r_{\mathbf{a}_{0}}} \cdot \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l} r_{\mathbf{a}_{1}}}=\frac{1}{(2 l+2)!}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{2 l+2}+\frac{2 l+1}{(2 l+2)!}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 l+2} \tag{4.37}
\end{equation*}
$$

When the last result is placed in the equation Eq.(4.35), we have

$$
\left.\left.\begin{array}{rl}
\varepsilon^{r_{\mathbf{a}_{0}}} \cdot\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 l+1} & =(2 l+1)!\left(\varepsilon^{r_{\mathrm{a}_{0}}} \cdot\left(\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathrm{a}_{0}}\right.}\right)^{l} r_{\mathrm{a}_{1}}\right.
\end{array}\right)\right), ~\left(\frac{1}{(2 t+2)!}\left(\varepsilon^{r_{\mathrm{a}_{0}}}\right)^{2 l+2}+\frac{2 l+1}{(2 l+2)!}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{2 l+2}\right) .
$$

Using $k=2 l$, we have

ÖZEL

$$
\begin{equation*}
\varepsilon^{r_{\mathbf{a}_{0}}} \cdot\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+1}=\frac{1}{k+2}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+2}+\frac{k+1}{k+2}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+2} . \tag{4.38}
\end{equation*}
$$

When the last result is placed in the equation Eq.(4.30), we have

$$
\begin{aligned}
\varepsilon^{r_{\mathbf{a}_{1}}} \cdot\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+1} & =\frac{k}{k+1}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+2}+\frac{1}{k+1}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+1} \cdot \varepsilon^{r_{\mathbf{a}_{0}}} \\
& =\frac{k}{k+1}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+2}+\frac{1}{k+1}\left(\frac{1}{k+2}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+2}+\frac{k+1}{k+2}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+2}\right) \\
& =\left(\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}\right)\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+2}+\frac{1}{k+2}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+2} \\
& =\frac{k+1}{k+2}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{k+2}+\frac{1}{k+2}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{k+2} .
\end{aligned}
$$

The induction on n is completed. Thus, we proved that the equation holds for $m=1$.
We assume that equation holds for $m=s$. Then, we will verify that it holds for $m=s+1$. By assumption,

$$
\begin{aligned}
\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{n} \cdot\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{s+1}= & \left(\frac{n}{n+s}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{n+s}+\frac{s}{n+s}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{n+s}\right) \cdot \varepsilon^{r_{\mathbf{a}_{1}}} \\
= & \frac{n}{n+s}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{n+s} \cdot \varepsilon^{r_{\mathbf{a}_{1}}}+\frac{s}{n+s}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{n+s+1} \\
= & \frac{n}{n+s}\left(\frac{n+s}{n+s+1}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{n+s+1}+\frac{1}{n+s+1}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{n+s+1}\right)+ \\
& \frac{s}{n+s}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{n+s+1} \\
= & \frac{n}{n+s+1}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{n+s+1}+\left(\frac{n}{(n+s) \cdot(n+s+1)}+\frac{s}{n+s}\right)\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{n+s+1} \\
= & \frac{n}{n+s+1}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{n+s+1}+\frac{s^{2}+s(n+1)+n}{(n+s)(n+s+1)}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{n+s+1} \\
= & \frac{n}{n+s+1}\left(\varepsilon^{r_{\mathbf{a}_{0}}}\right)^{n+s+1}+\frac{s+1}{(n+s+1)}\left(\varepsilon^{r_{\mathbf{a}_{1}}}\right)^{n+s+1} .
\end{aligned}
$$

Thus, the induction is completed.

Let R be a commutative ring with unit and let $\Gamma_{R}\left(x_{0}, x_{1}\right)$ be the divided power algebra over R, where $\operatorname{deg} x_{0}=\operatorname{deg} x_{1}=2$.

ÖZEL

Theorem 4.5. Then, $H^{*}\left(L S U_{2} / T, R\right)$ is graded isomorphic to $\Gamma_{R}\left(x_{0}, x_{1}\right) / I_{R}$ where the ideal I_{R} is given by

$$
I_{R}=\left(x_{0}^{[n]} x_{1}^{[m]}-\binom{n+m-1}{m} x_{0}^{[n+m]}-\binom{n+m-1}{n} x_{1}^{[n+m]}: m, n \geq 1\right),
$$

and which has the R-module basis $\left\{x_{0}^{[n]}, x_{1}^{[n]}\right\}$ in each degree $2 n$ for $n \geq 1$.
Proof. Since the odd dimensional cohomology is trivial, by the universal coefficient theorem, it suffices to prove this for $R=\mathbb{Z}$. The Schubert classes $\left\{\varepsilon^{w}\right\}_{w \in \widetilde{W}_{L S U(2)}}$ form a basis of the integral cohomology $H^{*}\left(L S U_{2} / T, \mathbb{Z}\right)$ such that $\varepsilon^{w} \in H^{2 \ell(w)}\left(L S U_{2} / T, \mathbb{Z}\right)$. Since the cohomology module basis is indexed by the affine Weyl group \widetilde{W}, the Poincaré series over \mathbb{Z} of cohomology of $L S U_{2} / T$ is

$$
P(t, \mathbb{Z})=1+\sum_{k=1}^{\infty} 2 t^{2 k}
$$

Now we will show that the integral cohomology algebra $H^{*}\left(L S U_{2} / T, \mathbb{Z}\right)$ is isomorphic to the quotient of divided power algebra $\Gamma_{\mathbb{Z}}\left(x_{0}, x_{1}\right) / I_{\mathbb{Z}}$. Then, we define a \mathbb{Z}-algebra homomorphism ψ from the divided power algebra $\Gamma_{\mathbb{Z}}\left(x_{0}, x_{1}\right)$ to the integral cohomology of $L S U_{2} / T$ as follows.

$$
\begin{aligned}
& \text { For } U=\sum_{i=0}^{n} u_{i} x_{0}^{[i]} x_{1}^{[n-i]} \text { with } u_{i} \in \mathbb{Z} \text {, let } \\
& \begin{aligned}
\psi(U) & =u_{n} X(n)+u_{0} Y(n)+\sum_{i=1}^{n-1}\left[\binom{n-1}{n-i} X(n)+\binom{n-1}{i} Y(n)\right] u_{i},
\end{aligned}
\end{aligned}
$$

where

$$
\begin{aligned}
& X(n)= \begin{cases}\varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l}} & \text { for } n=2 l \\
\varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{l} r_{\mathbf{a}_{0}}} & \text { for } n=2 l+1\end{cases} \\
& Y(n)= \begin{cases}\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{l}} & \text { for } n=2 l \\
\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)_{\mathbf{a}_{1}}^{r}} & \text { for } n=2 l+1 .\end{cases}
\end{aligned}
$$

We will show that ψ is a \mathbb{Z}-algebra homomorphism. Let

ÖZEL

$$
U=\sum_{i=0}^{n} u_{i} x_{0}^{[i]} x_{1}^{[n-i]} \quad V=\sum_{j=0}^{m} v_{j} x_{0}^{[j]} x_{1}^{[m-j]},
$$

where $u_{i}, v_{j} \in \mathbb{Z}$. First, let us calculate

$$
\begin{aligned}
& \psi(U) \cdot \psi(V)= \psi\left(\sum_{i=0}^{n} u_{i} x_{0}^{[i]} x_{1}^{[n-i]}\right) \cdot \psi\left(\sum_{j=0}^{m} v_{j} x_{0}^{[j]} x_{1}^{[m-j]}\right) \\
&=\left(u_{0} Y(n)+u_{n} X(n)+\sum_{i=1}^{n-1} u_{i}\left[\binom{n-1}{i-1} X(n)+\binom{n-1}{i} Y(n)\right]\right) . \\
&\left(v_{0} Y(m)+v_{m} X(m)+\sum_{j=1}^{m-1} v_{j}\left[\binom{m-1}{j-1} X(m)+\binom{m-1}{j} Y(m)\right]\right) \\
&= u_{0} v_{0} Y(n) Y(m)+u_{0} v_{m} Y(n) X(m)+\sum_{j=1}^{m-1} u_{0} v_{j}\left[\binom{m-1}{j-1} Y(n) X(m)+\binom{m-1}{j} Y(n) Y(m)\right] \\
&+ u_{n} v_{0} X(n) Y(m)+u_{n} v_{m} X(n) X(m)+\sum_{j=1}^{n-1} u_{n} v_{j}\left[\binom{m-1}{j-1} X(n) X(m)+\binom{m-1}{j} X(n) Y(m)\right] \\
& u_{i} v_{0}\left[\binom{n-1}{i-1} X(n) Y(m)+\binom{n-1}{i} Y(n) Y(m)\right]+ \\
& \sum_{i=1}^{n-1} u_{i} v_{m}\left[\binom{n-1}{i-1} X(n) X(m)+\binom{n-1}{i} Y(n) X(m)\right] \\
&+ \sum_{i=1}^{n-1} \sum_{j=1}^{m-1} u_{i} v_{j}\left[\binom{n-1}{i-1}\binom{m-1}{j-1} X(n) X(m)+\binom{n-1}{i-1}\binom{m-1}{j} X(n) Y(m)\right] \\
&+ \sum_{i=1}^{n-1} \sum_{j=1}^{m-1} u_{i} v_{j}\left[\binom{n-1}{i}\binom{m-1}{j-1} Y(n) X(m)+\binom{n-1}{i}\binom{m-1}{j} Y(n) Y(m)\right] .
\end{aligned}
$$

By equations Eq.(4.25), Eq.(4.26), Eq.(4.27), Eq.(4.28) and Eq.(4.4),

$$
\begin{aligned}
Y(n) Y(m) & =\binom{n+m}{n} Y(n+m) \\
X(n) X(m) & =\binom{n+m}{n} X(n+m),
\end{aligned}
$$

ÖZEL

$$
X(n) Y(m)=\binom{n+m-1}{m} X(n+m)+\binom{n+m-1}{n} Y(n+m)
$$

and

$$
Y(n) X(m)=\binom{n+m-1}{n} X(n+m)+\binom{n+m-1}{m} Y(n+m)
$$

If we put the last results in the equation, we have

$$
\begin{aligned}
& \psi(U) \cdot \psi(V)=X(n+m)\left\{u_{0} v_{m}\binom{m+n-1}{n}+\sum_{j=1}^{m-1} u_{0} v_{j}\binom{m-1}{j-1}\binom{m+n-1}{n}+u_{n} v_{0}\right. \\
& \binom{m+n-1}{m}+u_{n} v_{m}\binom{n+m}{n}+\sum_{j=1}^{m-1} u_{n} v_{j}\left[\binom{m-1}{j-1}\binom{n+m}{n}+\binom{m-1}{j}\binom{m+n-1}{m}\right]+ \\
& \sum_{i=1}^{n-1} u_{i} v_{0}\binom{n-1}{i-1}\binom{m+n-1}{m}+\sum_{i=1}^{n-1} u_{i} v_{m}\left[\binom{n-1}{i-1}\binom{n+m}{n}+\binom{n-1}{i}\binom{n+m-1}{n}\right]+ \\
& \sum_{i=1}^{n-1} \sum_{j=1}^{m-1} u_{i} v_{j}\left[\binom{n-1}{i-1}\binom{m-1}{j-1}\binom{n+m}{n}+\binom{n-1}{i-1}\binom{m-1}{j}\binom{n+m-1}{m}\right]+ \\
& \left.\sum_{i=1}^{n-1} \sum_{j=1}^{m-1} u_{i} v_{j}\left[\binom{n-1}{i}\binom{m-1}{j-1}\binom{n+m-1}{n}\right]\right\}+ \\
& Y(n+m)\left\{u_{0} v_{0}\binom{n+m}{n}+u_{0} v_{m}\binom{n+m-1}{m}+\right. \\
& \sum_{j=1}^{m-1} u_{0} v_{j}\left[\binom{m-1}{j-1}\binom{m+n-1}{m}+\binom{m-1}{j}\binom{n+m}{n}\right]+ \\
& u_{n} v_{0}\binom{m+n-1}{n}+\sum_{j=1}^{m-1} u_{n} v_{j}\binom{m-1}{j}\binom{m+n-1}{n}+ \\
& \sum_{i=1}^{n-1} u_{i} v_{0}\left[\binom{n-1}{i-1}\binom{n+m-1}{n}+\binom{n-1}{i}\binom{n+m}{n}\right] \\
& +\sum_{i=1}^{n-1} u_{i} v_{m}\binom{n-1}{i}\binom{n+m-1}{m}+\sum_{i=1}^{n-1} \sum_{j=1}^{m-1} u_{i} v_{j}\binom{n-1}{i-1}\binom{m-1}{j}\binom{n+m-1}{n}+ \\
& \left.\sum_{i=1}^{n-1} \sum_{j=1}^{m-1} u_{i} v_{j}\left[\binom{n-1}{i}\binom{m-1}{j-1}\binom{n+m-1}{m}+\binom{n-1}{i}\binom{m-1}{j}\binom{n+m}{n}\right]\right\} .
\end{aligned}
$$

ÖZEL

Now expanding,

$$
\begin{gathered}
U \cdot V=u_{0} v_{0}\binom{n+m}{n} x_{1}^{[n+m]}+u_{0} v_{m} x_{0}^{[m]} x_{1}^{[n]}+\sum_{j=1}^{m-1} u_{0} v_{j}\binom{n+m-j}{n} x_{0}^{[j]} x_{1}^{[n+m-j]} \\
+u_{n} v_{0} x_{0}^{[n]} x_{1}^{[m]}+u_{n} v_{m}\binom{n+m}{n} x_{0}^{[n+m]}+\sum_{j=1}^{m-1} u_{n} v_{j}\binom{n+j}{n} x_{0}^{[n+j]} x_{1}^{[m-j]} \\
+\sum_{i=1}^{n-1} u_{i} v_{0}\binom{n+m-i}{m} x_{0}^{[i]} x_{1}^{[n+m-i]}+\sum_{i=1}^{n-1} u_{i} v_{m}\binom{m+i}{i} x_{0}^{[m+i]} x_{1}^{[n-i]} \\
+\sum_{i=1}^{n-1} \sum_{j=1}^{m-1} u_{i} v_{j}\binom{i+j}{i}\binom{(n+m)-(i+j)}{n-i} x_{0}^{[i+j]} x_{1}^{[(n+m)-(i+j)]}
\end{gathered}
$$

Hence,

$$
\begin{array}{r}
\psi(U \cdot V)=X(n+m)\left\{u_{0} v_{m}\binom{n+m-1}{n}+\sum_{j=1}^{m-1} u_{0} v_{j}\binom{n+m-j}{n}\binom{n+m-1}{j-1}+\right. \\
u_{n} v_{0}\binom{n+m-1}{m}+u_{n} v_{m}\binom{n+m}{n}+\sum_{i=1}^{n-1} u_{i} v_{m}\binom{m+i}{i}\binom{m+n-1}{n-i}+ \\
\sum_{j=1}^{m-1} u_{n} v_{j}\binom{n+j}{n}\binom{n+m-1}{m-j}+\sum_{i=1}^{n-1} u_{i} v_{0}\binom{n+m-i}{m}\binom{n+m-1}{i-1} \\
\left.+\sum_{i=1}^{n-1} \sum_{j=1}^{m-1} u_{i} v_{j}\binom{i+j}{i}\binom{(n+m)-(i+j)}{n-i}\binom{n+m-1}{i+j-1}\right\} \\
+Y(n+m)\left\{u_{0} v_{0}\binom{n+m}{n}+u_{0} v_{m}\binom{n+m-1}{m}+\sum_{j=1}^{m-1} u_{0} v_{j}\binom{n+m-j}{n}\binom{n+m-1}{j}+\right. \\
u_{n} v_{0}\binom{n+m-1}{n}+\sum_{j=1}^{m-1} u_{n} v_{j}\binom{n+j}{n}\binom{n+m-1}{n+j}+\sum_{i=1}^{n-1} u_{i} v_{0}\binom{n+m-i}{m}\binom{n+m-1}{i}+ \\
\left.\sum_{i=1}^{n-1} u_{i} v_{m}\binom{i+m}{i}\binom{m+n-1}{m+i}+\sum_{i=1}^{n-1} \sum_{j=1}^{m-1} u_{i} v_{j}\binom{i+j}{i}\binom{(n+m)-(i+j)}{n-i}\binom{n+m-1}{i+j}\right\} .
\end{array}
$$

We show that $\psi(U \cdot V)=\psi(u) \cdot \psi(V)$ for all polynomials U, V. In order to verify this equation, we need the equality of the coefficients of $u_{i} v_{j}$ in the both sides of this

ÖZEL

equation. We see that the coefficients of $u_{i} v_{j}, i=0, \ldots, n$ and $j=0, \ldots, n$ in the both sides of the equation are equal for $X(n+m)$ as well as $Y(n+m)$. Then ψ is a \mathbb{Z}-algebra homomorphism.

We will show that the \mathbb{Z}-algebra homomorphism ψ is surjective. Because, for every element $a X(n)+b Y(n) \in H^{2 n}\left(L S U_{2} / T, \mathbb{Z}\right)$, we have $a x_{0}^{[n]}+b x_{1}^{[n]}$ such that $\psi\left(a x_{0}^{[n]}+b x_{1}^{[n]}\right)=a X(n)+b Y(n)$, where $a, b \in \mathbb{Z}$.

Now we want to find the kernel of the homomorphism ψ. For $n, m \geq 1$, let

$$
\begin{equation*}
u_{n, m}=x_{0}^{[n]} \cdot x_{1}^{[m]}-\binom{n+m-1}{m} x_{0}^{[n+m]}-\binom{n+m-1}{n} x_{1}^{[n+m]} . \tag{4.39}
\end{equation*}
$$

We claim that the kernel of the homomorphism ψ is equal to the following ideal $I_{\mathbb{Z}}$ generated by the elements $u_{n, m}$.

$$
I_{\mathbb{Z}}=\sum_{k \geq 2} I_{\mathbb{Z}}^{k}
$$

where

$$
I_{\mathbb{Z}}^{k}=\left\{\sum_{0<r<k} t_{r}^{k}\left(x_{0}^{[r]} x_{1}^{[k-r]}-\binom{k-1}{k-r} x_{0}^{[k]}-\binom{k-1}{r} x_{1}^{[k]}\right): t_{r}^{k} \in \Gamma_{\mathbb{Z}}\left(x_{0}, x_{1}\right)\right\} .
$$

Now we will prove that our claim is true. Let $U \in I_{\mathbb{Z}}^{k}$. Then

$$
\begin{aligned}
\psi(U) & =\psi\left(\sum_{0<r<k} t_{r}^{k}\left(x_{0}^{[r]} x_{1}^{[k-r]}-\binom{k-1}{k-r} x_{0}^{[k]}-\binom{k-1}{r} x_{1}^{[k]}\right)\right) \\
& =\sum_{0<r<k} \psi\left(t_{r}^{k}\right) \cdot \psi\left(x_{0}^{[r]} x_{1}^{[k-r]}-\binom{k-1}{k-r} x_{0}^{[k]}-\binom{k-1}{r} x_{1}^{[k]}\right) .
\end{aligned}
$$

Then $\psi(U)$ is equal to

$$
\sum_{0<r<k} \psi\left(t_{r}^{k}\right)\left(\binom{k-1}{k-r} X(k)+\binom{k-1}{r} Y(k)-\binom{k-1}{k-r} X(k)-\binom{k-1}{r} Y(k)\right) .
$$

Then $\psi(U)=0$. So, $U \in \operatorname{ker} \psi$.

ÖZEL

Conversely, let $U=\sum_{i=0}^{k} u_{i} x_{0}^{[i]} x_{1}^{[k-i]} \in \operatorname{ker} \psi$. Then,

$$
\psi(U)=u_{0} Y(k)+u_{k} X(k)+\sum_{i=1}^{k-1} u_{i}\left[\binom{k-1}{k-i} X(k)+\binom{k-1}{i} Y(k)\right]=0
$$

So, we have to determine the solution of the homogeneous linear equations system $A \cdot v=0$, where

$$
A=\left(\begin{array}{ccccccc}
1 & k-1 & \ldots & \binom{k-1}{i} & \ldots & 1 & 0 \\
0 & 1 & \ldots & \binom{k-1}{k-i} & \ldots & k-1 & 1
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{i} \\
\vdots \\
u_{k-1} \\
u_{k}
\end{array}\right) .
$$

The rank of the matrix A is 2 , so we have infinite solution vectors which have $k-1$ linear independent components and other two components depend these linear independent components. Then,

$$
v=\left(\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{i} \\
\vdots \\
u_{k-1} \\
u_{k}
\end{array}\right)=\left(\begin{array}{c}
-\sum_{i=1}^{k-1} t_{i}\binom{k-1}{i} \\
t_{1} \\
\vdots \\
t_{i} \\
\vdots \\
-\sum_{i=1}^{k-1} t_{i}\binom{k-1}{k-i}
\end{array}\right)
$$

where $t_{i} \in \mathbb{Z}$ for $i=1, \ldots, k-1$. So, $U \in \operatorname{ker} \psi$ is given by

$$
\begin{aligned}
U & =-\sum_{i=1}^{k-1} t_{i}\binom{k-1}{i} x_{1}^{[k]}-\sum_{i=1}^{k-1} t_{i}\binom{k-1}{k-i} x_{0}^{[k]}+\sum_{i=1}^{k-1} t_{i} x_{0}^{[i]} x_{1}^{[k-i]} \\
& =\sum_{i=1}^{k-1} t_{i}\left(x_{0}^{[i]} x_{1}^{[k-i]}-\binom{k-1}{k-i} x_{0}^{[k]}-\binom{k-1}{i} x_{1}^{[k]}\right)
\end{aligned}
$$

ÖZEL

for some $t_{i} \in \mathbb{Z}$. Thus, we have proved that $U \in I_{\mathbb{Z}}^{k}$.

Theorem 4.6. Under the isomorphism ψ, the \mathbb{Z}-module $B G G$-operator A^{i} of $H^{*}\left(L S U_{2} / T, \mathbb{Z}\right)$ corresponds to the partial derivation operator

$$
\begin{cases}\frac{\partial}{\partial x_{j}} & \text { for degree } 4 n \\ \frac{\partial}{\partial x_{i}} & \text { for degree } 4 n+2\end{cases}
$$

for $i \neq j, i=0,1$.
Proof. We will prove that \mathbb{Z}-cohomology operator A^{i} corresponds to the partial derivation operators as stated. By definition of A^{i}, we have

$$
\begin{aligned}
\left.A^{0} \varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right.}\right)^{n} & =0, \\
\left.A^{1} \varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right.}\right)^{n} & =\varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n-1} r_{\mathbf{a}_{0}}}, \\
\left.A^{0} \varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right.}\right)^{n} r_{\mathbf{a}_{0}} & =\varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}}, \\
A^{1} \varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}} & =0, \\
\left.A^{0} \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right.}\right)^{n} & =\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n-1} r_{\mathbf{a}_{1}}}, \\
\left.A^{1} \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right.}\right)^{n} & =0, \\
A^{0} \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}} & =0, \\
A^{1} \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}} & =\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}} .
\end{aligned}
$$

By ψ isomorphism, we have the following correspondences:

$$
\begin{array}{ll}
\varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n}} \longleftrightarrow x_{0}^{[2 n]}, & \varepsilon^{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}} \longleftrightarrow x_{0}^{[2 n+1]}, \\
\varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n}} \longleftrightarrow x_{1}^{[2 n]}, & \varepsilon^{\left(r_{\mathbf{a}_{1}} r_{\mathbf{a}_{0}}\right)^{n} r_{\mathbf{a}_{1}}} \longleftrightarrow x_{1}^{[2 n+1]} .
\end{array}
$$

The last equations and correspondences verify our claim.

ÖZEL

Corollary 4.7. The partial derivation operator $\frac{\partial}{\partial x_{0}}+\frac{\partial}{\partial x_{1}}$ on the divided power algebra induces a derivation on cohomology of $L S U_{2} / T$.

Now we will discuss cohomology of ΩG respect to $L G / T$ and G / T where G is a compact semi-simple Lie group. Since ΩG is homotopic to Ω_{pol}, the discussion can be restricted to the Kac̆-Moody groups and homogeneous spaces. The Lie algebras of $L_{\mathrm{pol}} G_{\mathbb{C}} / B^{+}, L_{\mathrm{pol}} G_{\mathbb{C}} / G_{\mathbb{C}}$ and $G_{\mathbb{C}} / B$ are $\mathbf{g}\left[\mathbf{t}, \mathbf{t}^{-\mathbf{1}}\right] / \mathbf{b}^{+}, \mathbf{g}\left[\mathbf{t}, \mathbf{t}^{-\mathbf{1}}\right] / \mathbf{g}$ and \mathbf{g} / \mathbf{b} respectively. There is a surjective homomorphism

$$
\mathrm{ev}_{t=1}: \mathbf{g}\left[\mathbf{t}, \mathbf{t}^{-\mathbf{1}}\right] / \mathbf{b}^{+} \rightarrow \mathbf{g} / \mathbf{b},
$$

with $\mathrm{ker}^{\mathrm{ev}} \mathrm{t}_{t=1}=\mathbf{g}\left[\mathbf{t}, \mathbf{t}^{-\mathbf{1}}\right] / \mathbf{g}$. Since the odd cohomology groups of $\mathbf{g}\left[\mathbf{t}, \mathbf{t}^{-\mathbf{1}}\right] / \mathbf{b}^{+}$ and \mathbf{g} / \mathbf{b} are trivial, the second term $E_{2}^{* *}$ of the Leray-Serre spectral sequence collapses and hence we have

Theorem 4.8. Let R is a commutative ring with unit. Then there exists an injective homomorphism $j: H^{*}(G / T, R) \rightarrow H^{*}(L G / T, R)$ and a surjective homomorphism i : $H^{*}(L G / T, R) \rightarrow H^{*}(\Omega G, R)$. In particular, $J=i m j^{+}$is an ideal of $H^{*}(L G / T, R)$ and

$$
H^{*}(\Omega G, R) \cong H^{*}(L G / T, R) / / J
$$

Theorem 4.9.

$$
H^{*}\left(\Omega S U_{2}, R\right) \cong \Gamma_{R}(x, y) /\left(I_{R}, a\left(x^{[1]}-y^{[1]}\right)\right) \cong \Gamma_{R}(x)
$$

where $a \in R$.
Now we will give a different approach to determine the cohomology ring of based loop group ΩG using the Schubert calculus. For a compact simply-connected semi-simple Lie group G, we have from [13].

Theorem 4.10. The natural map

$$
G \rightarrow L G \rightarrow L G / G \cong \Omega G
$$

is a split extension of Lie groups.

ÖZEL

Theorem 4.11. Let G be a compact simply-connected semi-simple Lie group and let T be a maximal torus of G. Then $\pi: L G / T \rightarrow L G / G$ is a fiber bundle with the fibre G / T. Proof. Since $L G \rightarrow L G / G$ is a principal G-bundle and G / T is a left G-space by the action $g_{1} \cdot g_{2} T=g_{1} g_{2} T$ for $g_{1}, g_{2} \in G$, we have a fibration

$$
G / T \rightarrow L G \times{ }_{G} G / T \rightarrow \Omega G .
$$

Therefore, we have to show that $L G \times_{G} G / T$ is diffeomorphic to $L G / T$. Since $L G \times_{G} G / T$ is equal to

$$
\left\{[\gamma, g T]:[\gamma, g T]=\left[\gamma h, h^{-1} g T\right] \forall g, h \in G, \gamma \in L G\right\}
$$

we define a smooth map $\tau: L G \times_{G} G / T \rightarrow L G / T$ given by $[\gamma, g T] \rightarrow \gamma g T$. It is well-defined because for $h \in G$,

$$
\begin{aligned}
\tau\left(\left[\gamma h, h^{-1} g T\right]\right) & =\gamma h h^{-1} g T \\
& =\gamma g T \\
& =\tau([\gamma, g T])
\end{aligned}
$$

For every γT, we can find an element $[\gamma, T] \in L G \times{ }_{G} G / T$ such that $\tau([\gamma, T])=\gamma T$. So, τ is a surjective map. Now, we will show that τ is an injective map. Let $\left[\gamma_{1}, g_{1} T\right],\left[\gamma_{2}, g_{2} T\right] \in$ $L G \times{ }_{G} G / T$ such that

$$
\begin{equation*}
\tau\left(\left[\gamma_{1}, g_{1} T\right]\right)=\tau\left(\left[\gamma_{2}, g_{2} T\right]\right) \tag{4.40}
\end{equation*}
$$

The equation Eq.(4.40) gives

$$
\gamma_{1} g_{1} T=\gamma_{2} g_{2} T
$$

So, $\left(\gamma_{1} g_{1}\right)^{-1}\left(\gamma_{2} g_{2}\right),\left(\gamma_{2} g_{2}\right)^{-1}\left(\gamma_{1} g_{1}\right) \in T$. Then,

$$
\left[\gamma_{1}, g_{1} T\right]=\left[\gamma_{1} g_{1}, g_{1}^{-1} g_{1} T\right]
$$

ÖZEL

$$
\begin{aligned}
& =\left[\gamma_{1} g_{1}, T\right] \\
& =\left[\left(\gamma_{1} g_{1}\right)\left(\gamma_{1} g_{1}\right)^{-1}\left(\gamma_{2} g_{2}\right),\left(\gamma_{2} g_{2}\right)^{-1}\left(\gamma_{1} g_{1}\right) T\right] \\
& =\left[\gamma_{2} g_{2}, T\right] \\
& =\left[\gamma_{2} g_{2} g_{2}^{-1}, g_{2} T\right] \\
& =\left[\gamma_{2}, g_{2} T\right] .
\end{aligned}
$$

Thus, we proved that τ is an injective map and it's inverse is given by $\gamma T \rightarrow[\gamma, T]$ which is smooth map. Then, $\pi: L G / T \rightarrow L G / G=\Omega G$ given by $\gamma T \rightarrow \gamma G$ is a fiber bundle map.

Since $L G / T$ is a fiber bundle over ΩG with the fiber G / T, by the Leray-Serre spectral sequence of the fibration and Corollary (5.13) of Kostant and Kumar [9], θ : $H^{*}(\Omega G, \mathbb{Z}) \rightarrow H^{*}(L G / T, \mathbb{Z})$ is injective and $\theta\left(H^{*}(\Omega G, \mathbb{Z})\right)$ is generated by the Schubert classes $\left\{\varepsilon^{w}\right\}_{w \in \widehat{W}}$ in the cohomology of $L G / T$ and hence we can determine the cohomology ring of ΩG.

Let R be a commutative ring with unit and let $\Gamma_{R}(\gamma)$ be the divided power algebra with $\operatorname{deg} \gamma=2$.

Theorem 4.12. $H^{*}(\Omega S U(2), R)$ is isomorphic to $\Gamma_{R}(\gamma)$ with the R-module basis $\gamma^{[n]}$ in each degree $2 n$ for $n \geq 1$.

Proof. Since the odd cohomology is trivial, by the universal coefficient theorem, it suffices to prove this for $R=\mathbb{Z}$. The integral cohomology of $\Omega S U_{2}$ is generated by the Schubert classes indexed

$$
\widehat{W}=\{\overline{\ell(w)}: w \in \widetilde{W}\}=\left\{\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n},\left(r_{\mathbf{a}_{0}} r_{\mathbf{a}_{1}}\right)^{n} r_{\mathbf{a}_{0}}: n \geq 0\right\} .
$$

Then, we define a \mathbb{Z}-algebra homomorphism η from $\Gamma_{\mathbb{Z}}(\gamma)$ to $H^{*}\left(\Omega S U_{2}, \mathbb{Z}\right)$ given as follows. For $n \geq 0, u_{n} \in \mathbb{Z}, \eta\left(u_{n} \gamma^{[n]}\right)=u_{n} X(n)$. Now, we will show that η is a \mathbb{Z}-algebra homomorphism. We have

$$
\eta\left(\gamma^{[n]} \cdot \gamma^{[m]}\right)=\eta\left(\binom{n+m}{n} \gamma^{[n+m]}\right)
$$

ÖZEL

$$
=\binom{n+m}{n} X(n+m)
$$

Let us calculate $\eta\left(\gamma^{[n]}\right) \cdot \eta\left(\gamma^{[m]}\right)=X(n) \cdot X(m)$. By equations Eq.(4.25) and Eq.(4.27), we have

$$
X(n) \cdot X(m)=\binom{n+m}{n} X(n+m)
$$

So,

$$
\eta\left(\gamma^{[n]}\right) \cdot \eta\left(\gamma^{[m]}\right)=\binom{n+m}{n} X(m+n) .
$$

Then, we have shown that η is a \mathbb{Z}-algebra homomorphism.
Also, it is surjective and injective. Because, for every element $u_{n} X(n) \in H^{*}\left(\Omega S U_{2}, \mathbb{Z}\right)$, we have $u_{n} \gamma^{n}$ such that $\eta\left(u_{n} \gamma^{n}\right)=u_{n} X(n)$ and

$$
\begin{aligned}
\operatorname{ker} \eta & =\left\{u_{n} \gamma^{n}: \eta\left(u_{n} \gamma^{n}\right)=u_{n} X(n)=0\right\} \\
& =\left\{u_{n} \gamma^{n}: u_{n}=0\right\} \\
& =0
\end{aligned}
$$

We have completed the proof.

References

[1] N. Bourbaki, Groupes et Algebras de Lie,Hermann (1968).
[2] O. Gabber \& V. G. Kac̆, On defining relations of certain infinite dimensional Lie algebras, Bull. Amer. Math. Soc. 5 (1981), 185-189.
[3] H. Garland \& M. S. Raghunathan, A Bruhat decomposition for the loop space of a compact group:a new approach to results of Bott, Proc. Nat. Acad. Sci. U.S. A. 72 (1975), 47164717.

ÖZEL

[4] A. Grothendieck, Éléments de géométrie algébrique, Publ. Math. I.H.E.S. 11 (1961).
[5] H. L. Hiller, Geometry of Coxeter Groups, Pitman (1982).
[6] J. E. Humphreys, Introduction to Lie algebras and Representation Theory, Springer-Verlag (1972).
[7] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press (1990).
[8] V. G. Kac̆, Infinite Dimensional Lie algebras, 3rd Ed. Cambridge University Press (1990).
[9] B. Kostant \& S. Kumar, The nil Hecke ring and cohomology of G / P for a Kac̆-Moody group G, Advances in Math. 62 (1986), 187-237.
[10] S. Kumar, Geometry of Schubert cells and cohomology of Kač-Moody Lie-algebras, Journ. Diff. Geo. 20 (1984), 389-431.
[11] S. A. Mitchell, A filtration of the loops on $S U_{n}$ by Schubert varieties, Math. Zeitsch. 193 (1986), 347-362.
[12] C. Özel, On the Complex Cobordism of Flag Varieties Associated to Loop Groups, PhD thesis, University of Glasgow (1998).
[13] A. Pressley \& G. Segal, Loop Groups, Oxford University Press (1986).

Cenap ÖZEL
Received 07.07.1998
AIBU Golkoy Kampusu, Bolu 14280, Turkey.
cenap@tore.ibu.edu.tr

[^0]: * I wish to give my deepest thanks to my supervisor Dr. A. J. Baker for his inspiration, guidance, and encouragement during my research and preparation of this paper. I am also very grateful to the Mathematics Department of the University of Glasgow for its hospitality. I am also indebted to Bolu Abant Izzet Baysal University for their financial support during my research.

