Tr. J. of Mathematics
22 (1998) , 449 - 459.
© TÜBİTAK

FUZZY IDEALS IN GAMMA NEAR-RINGS

Y. B. Jun, M. Sapanci & M. A. Öztürk

Abstract

The aim of this paper is to introduce the notion of fuzzy left (resp. right) ideals of Γ -near-rings, and to study the related properties.

1. Introduction

Γ-near-rings were defined by Bh. Satyanarayana [18], and the ideal theory in Γnear-rings was studied by Bh. Satyanarayana [18] and G. L. Booth [1, 2]. Fuzzy ideals of rings were introduced by W. Liu [13], and it has been studied by several authors [4, 10, 11, 19]. The notion of fuzzy ideals and its properties were applied to various areas: semigroups [6, 12, 14], BCK-algebras [9, 16], and semirings [8]. In this paper we consider the fuzzification of left (resp. right) ideals of Γ-near-rings, and investigate the related properties.

2. Preliminaries

We first recall some basic concepts for the sake of completeness. Recall from [15, p.3] that a non-empty set R with two binary operations "+"(addition) and " \cdot " (multiplication) is called a *near-ring* if it satisfies the following axioms:

- (i) (R, +) is a group,
- (ii) (R, \cdot) is a semigroup,
- (iii) $(x+y) \cdot z = x \cdot z + y \cdot z$ for all $x, y, z \in R$.

Precisely speaking, it is a right near-ring because it satisfies the right distributive law. We will use the word "near-ring" to mean "right near-ring". We denote xy instead of $x \cdot y$.

- A Γ -near-ring ([18]) is a triple $(M, +, \Gamma)$ where
- (i) (M, +) is a group,
- (ii) Γ is a nonempty set of binary operators on M such that for each $\alpha \in \Gamma$, $(M, +, \alpha)$ is a near-ring,
- (iii) $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

A subset A of a Γ -near-ring M is called a *left* (resp. *right*) *ideal* of M if

- (i) (A, +) is a normal divisor of (M, +),
- (ii) $u\alpha(x+v) u\alpha v \in A$ (resp. $x\alpha u \in A$) for all $x \in A$, $\alpha \in \Gamma$ and $u, v \in M$.

We now review some fuzzy logic concepts. A fuzzy set in a set M is a function μ : $M \to [0,1]$. We shall use the notation μ_t , called a *level subset* of μ , for $\{x \in M | \mu(x) \ge t\}$ where $t \in [0,1]$. If μ is a fuzzy set in M and f is a function defined on M, then the fuzzy set ν in f(M) defined by

$$\nu(y) = \sup_{x \in f^{-1}(y)} \mu(x)$$

for all $y \in f(M)$ is called the *image* of μ under f. Similarly if ν is a fuzzy set in f(M), then the fuzzy set $\mu = \nu \circ f$ in M (that is, the fuzzy set defined by $\mu(x) = \nu(f(x))$) for all $x \in M$) is called the *preimage* of ν under f (see [17]). We say that a fuzzy set μ in M has the *sup property* ([17]) if, for any subset T of M, there exists $t_0 \in T$ such that

$$\mu(t_0) = \sup_{t \in T} \mu(t).$$

3. Fuzzy ideals of Γ -near-rings

Definition 3.1 A fuzzy set μ in a Γ -near-ring M is called a fuzzy left (resp. right) ideal of M if

- (i) μ is a fuzzy normal divisor with respect to the addition,
- (ii) $\mu(u\alpha(x+v) u\alpha v) \ge \mu(x)$ (resp. $\mu(x\alpha u) \ge \mu(x)$) for all $x, u, v \in M$ and $\alpha \in \Gamma$.

The condition (i) of Definition 3.1 means that μ satisfies:

- (i) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\},\$
- (ii) $\mu(y + x y) \ge \mu(x)$,

for all $x, y \in M$.

Note that if μ is a fuzzy left (resp. right) ideal of a Γ -near-ring M, then $\mu(0) \ge \mu(x)$ for all $x \in M$, where 0 is the zero element of M.

Theorem 3.2 Let M be a Γ -near-ring and μ be a fuzzy left (resp. right) ideal of M. Then the set

$$M_{\mu} := \{ x \in M | \mu(x) = \mu(0) \}$$

is a left (resp. right) ideal of M.

Proof. Let μ be a fuzzy left ideal and let $x, y \in M_{\mu}$. Then

$$\mu(x - y) \ge \min\{\mu(x), \mu(y)\} = \mu(0)$$

and so $\mu(x-y) = \mu(0)$ or $x-y \in M_{\mu}$. For every $y \in M$ and $x \in M_{\mu}$, we have $\mu(y+x-y) \ge \mu(x) = \mu(0)$. Hence $y+x-y \in M_{\mu}$, which shows that M_{μ} is a normal divisor of M with respect to the addition. Let $x \in M_{\mu}$, $\alpha \in \Gamma$ and $u, v \in M$. Then

$$\mu(u\alpha(x+v) - u\alpha v) \ge \mu(x) = \mu(0),$$

and hence $\mu(u\alpha(x+v) - u\alpha v) = \mu(0)$, i.e., $u\alpha(x+v) - u\alpha v \in M_{\mu}$. Therefore M_{μ} is a left ideal of M. Similarly we have the desired result for the right case. \Box

Theorem 3.3 Let A be a non-empty subset of a Γ -near-ring M and μ_A be a fuzzy set in M defined by

$$\mu_A(x) := \begin{cases} s, & \text{if } x \in A, \\ t, & \text{otherwise,} \end{cases}$$

for all $x \in M$ and $s, t \in [0, 1]$ with s > t. Then μ_A is a fuzzy left (resp. right) ideal of if and only M if A is a left (resp. right) ideal of M. Moreover $M_{\mu_A} = A$.

Proof. Let μ_A be a fuzzy left (resp. right) ideal of M and let $x, y \in A$. Then

$$\mu_A(x-y) \ge \min\{\mu_A(x), \mu_A(y)\} = s_A$$

and so $\mu_A(x-y) = s$. This implies $x-y \in A$. For any $y \in M$ and $x \in A$, we have $\mu_A(y+x-y) \ge \mu_A(x) = s$ and so $y+x-y \in A$. Now let $x \in A$, $\alpha \in \Gamma$ and $u, v \in M$. Then $\mu_A(u\alpha(x+v) - u\alpha v) \ge \mu_A(x) = s$ (resp. $\mu_A(x\alpha u) \ge \mu_A(x) = s$), and hence $\mu_A(u\alpha(x+v) - u\alpha v) = s$ (resp. $\mu_A(x\alpha u) = s$). Thus $u\alpha(x+v) - u\alpha v \in A$ (resp. $x\alpha u \in A$). This shows that A is a left (resp. right) ideal of M. Conversely assume that A is a left (resp. right) ideal of M. Let $x, y \in M$. If at least one of x and y does not belong to A, then $\mu_A(x-y) \ge t = \min\{\mu_A(x), \mu_A(y)\}$. If $x, y \in A$, then $x-y \in A$ and so $\mu_A(x-y) = s = \min\{\mu_A(x), \mu_A(y)\}$. If $x \in A$, then $y+x-y \in A$ and hence $\mu_A(y+x-y) = s = \mu_A(x)$. Clearly $\mu_A(y+x-y) \ge t = \mu_A(x)$ for all $x \notin A$ and $y \in M$. This shows that μ_A is a fuzzy normal divisor with respect to the addition. Now let $x, u, v \in M$ and $\alpha \in \Gamma$. If $x \in A$, then $u\alpha(x+v) - u\alpha v \in A$ (resp. $u\alpha u \in A$) and thus $\mu_A(u\alpha(x+v) - u\alpha v) \ge s = \mu_A(x)$ (resp. $\mu_A(x\alpha u) \ge s = \mu_A(x)$). If $x \notin A$, then clearly $\mu_A(u\alpha(x+v) - u\alpha v) \ge t = \mu_A(x)$ (resp. $\mu_A(x\alpha u) \ge t = \mu_A(x)$). Hence μ_A is a fuzzy left (resp. right) ideal of M. Moreover

$$M_{\mu_A} = \{x \in M | \mu_A(x) = \mu_A(0)\} \\ = \{x \in M | \mu_A(x) = s\} \\ = \{x \in M | x \in A\} \\ = A.$$

Corollary 3.4 Let M be a Γ -near-ring and χ_A be the characteristic function of a subset $A \subset M$. Then χ_A is a fuzzy left (resp. right) ideal if and only if A is a left (resp. right) ideal.

Theorem 3.5 Let μ be a fuzzy set in a Γ -near-ring M. Then μ is a fuzzy left (resp. right) ideal of M if and only if each level subset μ_t , $t \in \text{Im}(\mu)$, of μ is a left (resp. right) ideal of M.

We then call μ_t a *level left* (resp. *right*) *ideal* of μ .

Proof. Let μ be a fuzzy left (resp. right) ideal of M and let $t \in \text{Im}(\mu)$. For any $x, y \in \mu_t$, we have

$$\mu(x-y) \ge \min\{\mu(x), \mu(y)\} \ge t$$

and so $x - y \in \mu_t$. Let $y \in M$ and $x \in \mu_t$. Then $\mu(y + x - y) \ge \mu(x) \ge t$; whence $y + x - y \in \mu_t$. Now let $x \in \mu_t$, $\alpha \in \Gamma$ and $u, v \in M$. Then

$$\mu(u\alpha(x+v) - u\alpha v) \ge \mu(x) \ge t$$

(resp. $\mu(x\alpha u) \ge \mu(x) \ge t$), which implies that $u\alpha(x+v) - u\alpha v \in \mu_t$ (resp. $x\alpha u \in \mu_t$). Hence μ_t is a left (resp. right) ideal of M. Conversely assume that μ_t is a left (resp. right) ideal of M for every $t \in \text{Im}(\mu)$. If $\mu(x_0 - y_0) < \min\{\mu(x_0), \mu(y_0)\}$ for some $x_0, y_0 \in M$, then by taking

$$t_0 = \frac{1}{2}(\mu(x_0 - y_0) + \min\{\mu(x_0), \mu(y_0)\})$$

we have $\mu(x_0 - y_0) < t_0$, $\mu(x_0) > t_0$ and $\mu(y_0) > t_0$. Hence $x_0 - y_0 \notin \mu_{t_0}$, $x_0 \in \mu_{t_0}$ and $y_0 \in \mu_{t_0}$. This is a contradiction, and so $\mu(x - y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in M$. Assume that $\mu(y_0 + x_0 - y_0) < \mu(x_0)$ for some $x_0, y_0 \in M$. Putting

$$s_0 = \frac{1}{2}(\mu(y_0 + x_0 - y_0) + \mu(x_0));$$

then $\mu(y_0 + x_0 - y_0) < s_0 < \mu(x_0)$. It follows that $x_0 \in \mu_{s_0}$ and $y_0 + x_0 - y_0 \notin \mu_{s_0}$ which is impossible. Hence $\mu(y + x - y) \ge \mu(x)$ for all $x, y \in M$. If the condition (ii) of Definition 3.1 is not true, then for a fixed $\alpha \in \Gamma$ there exist $x, u, v \in M$ such that $\mu(u\alpha(x+v)-u\alpha v) < \mu(x)$ (resp. $\mu(x\alpha u) < \mu(x)$). Let $p_0 = \frac{1}{2}(\mu(u\alpha(x+v)-u\alpha v)+\mu(x))$

(resp. $q_0 = \frac{1}{2}(\mu(x\alpha u) + \mu(x))$). Then $u\alpha(x+v) - u\alpha v \notin \mu_{p_0}$ and $x \in \mu_{p_0}$ (resp. $x\alpha u \notin \mu_{q_0}$) and $x \in \mu_{q_0}$). This is a contradiction, and we are done.

Theorem 3.6 Let A be a left (resp. right) ideal of a Γ -near-ring M. Then for any $t \in (0,1]$ there exists a fuzzy left (resp. right) ideal μ of M such that $\mu_t = A$.

Proof. Let $\mu: M \to [0,1]$ be a fuzzy set defined by

$$\mu(x) = \begin{cases} t, & \text{if } x \in A, \\ 0, & \text{otherwise} \end{cases}$$

for all $x \in M$, where $t \in (0, 1]$. Then clearly $\mu_t = A$. It is easy to prove that

$$\mu(x-y) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in M$$

Assume that $\mu(y + x - y) < \mu(x)$ for some $x, y \in M$. Since μ is two-valued, i.e., $|Im(\mu)| = 2, \ \mu(y + x - y) = 0$ and $\mu(x) = t$ and hence $y + x - y \notin A$ and $x \in A$. This contradicts the fact that (A, +) is a normal divisor of (M, +). Hence $\mu(y + x - y) \ge \mu(x)$ for all $x, y \in M$. Now assume that $\mu(u\alpha(x + v) - u\alpha v) < \mu(x)$ (resp. $\mu(x\alpha u) < \mu(x)$) for some $x, u, v \in M$ and $\alpha \in \Gamma$. Since $|Im(\mu)| = 2$, we have $\mu(u\alpha(x + v) - u\alpha v) = 0$ and $\mu(x) = t$ (resp. $\mu(x\alpha u) = 0$ and $\mu(x) = t$); whence $u\alpha(x + v) - u\alpha v \notin A$ and $x \in A$ (resp. $x\alpha u \notin A$ and $x \in A$). This is impossible because A is a left (resp. right) ideal of M, which proves the theorem. \Box

Theorem 3.7 If μ is a fuzzy left (resp. right) ideal of a Γ -near-ring M, then $\mu(x) = \sup\{t \in [0,1] | x \in \mu_t\}, \forall x \in M.$

Proof. Let $s := \sup\{t \in [0,1] | x \in \mu_t\}$ and let $\varepsilon > 0$ be given. Then $s - \varepsilon < t$ for some $t \in [0,1]$ such that $x \in \mu_t$, and so $s - \varepsilon < \mu(x)$. Since ε is arbitrary, it follows that $s \le \mu(x)$. Now let $\mu(x) = u$. Then $x \in \mu_u$ and so $u \in \{t \in [0,1] | x \in \mu_t\}$. Hence $\mu(x) = u \le \sup\{t \in [0,1] | x \in \mu_t\} = s$. Therefore $\mu(x) = s$, as desired. \Box

We now consider the converse of Theorem 3.7. Let Λ be a non-empty subset of [0, 1]. Without loss of generality, we may use Λ as an index set in the following:

Theorem 3.8 Let $\{A_t | t \in \Lambda\}$ be a collection of left (resp. right) ideals of a Γ -near-ring M such that

- (i) $M = \bigcup_{t \in \Lambda} A_t$, (ii) s > t if and only if $A_s \subset A_t$ for all $s, t \in \Lambda$.

Define a fuzzy set μ in M by

$$\mu(x) = \sup\{t \in \Lambda | x \in A_t\}, \forall x \in M.$$

Then μ is a fuzzy left (resp. right) ideal of M.

Proof. Using Theorem 3.5, it is sufficient to show that $\mu_p \ (\neq \emptyset)$ is a left (resp. right) ideal of M for every $p \in [0, 1]$. We consider the following two cases:

(1)
$$p = \sup\{t \in \Lambda | t < p\}$$
 and (2) $p \neq \sup\{t \in \Lambda | t < p\}.$

Case (1) implies that

$$\begin{aligned} x \in \mu_p &\Leftrightarrow x \in A_t \text{ for all } t$$

whence $\mu_p = \bigcap_{t < p} A_t$, which is a left (resp. right) ideal of M. For the case (2), there exists $\varepsilon > 0$ such that $(p - \varepsilon, p) \cap \Lambda = \emptyset$. We claim that $\mu_p = \bigcup_{t \ge p} A_t$. If $x \in \bigcup_{t \ge p} A_t$, then $x \in A_t$ for some $t \ge p$. It follows that $\mu(x) \ge t \ge p$ so that $x \in \mu_p$. Conversely if $x \notin \bigcup_{t \ge p} A_t$, then $x \notin A_t$ for all $t \ge p$, which implies that $x \notin A_t$ for all $t > p - \varepsilon$, that is, if $x \in A_t$ then $t \leq p - \varepsilon$. Thus $\mu(x) \leq p - \varepsilon$ and so $x \notin \mu_p$. Consequently $\mu_p = \bigcup_{t \geq p} A_t$ which is a left (resp. right) ideal of M. This completes the proof. Π

Definition 3.9 ([2]) Let M and N be Γ -near-rings. A map $\theta: M \to N$ is called a Γ -near-ring homomorphism if $\theta(x+y) = \theta(x) + \theta(y)$ and $\theta(x\alpha y) = \theta(x)\alpha\theta(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

Theorem 3.10 A Γ -near-ring homomorphic preimage of a fuzzy left (resp. right) ideal is a fuzzy left (resp. right) ideal.

Proof. Let $\theta: M \to N$ be a Γ -near-ring homomorphism, ν a fuzzy left (resp. right) ideal of N and μ the preimage of ν under θ . Then

$$\begin{split} \mu(x-y) &= \nu(\theta(x-y)) \\ &= \nu(\theta(x) - \theta(y)) \\ &\geq \min\{\nu(\theta(x)), \nu(\theta(y)) \\ &= \min\{\mu(x), \mu(y), \end{split}$$

$$\begin{split} \mu(y+x-y) &= \nu(\theta(y+x-y)) \\ &= \nu(\theta(y)+\theta(x)-\theta(y)) \\ &\geq \nu(\theta(x)) \\ &= \mu(x), \end{split}$$

and

$$\mu(u\alpha(x+v) - u\alpha v) = \nu(\theta(u\alpha(x+v) - u\alpha v))$$

= $\nu(\theta(u)\alpha(\theta(x) + \theta(v)) - \theta(u)\alpha\theta(v))$
 $\ge \nu(\theta(x))$
= $\mu(x)$

(resp. $\mu(x\alpha u) = \nu(\theta(x\alpha u)) = \nu(\theta(x)\alpha\theta(u)) \ge \nu(\theta(x)) = \mu(x)$) for all $x, y, u, v \in M$ and $\alpha \in \Gamma$. Hence μ is a fuzzy left (resp. right) ideal of M. \Box

Let $\theta: M \to N$ be a Γ -near-ring homomorphism. Assume that μ is a fuzzy left ideal of M with the sup property and let ν be the image of μ under θ . Given $\theta(x), \theta(y) \in \theta(M)$, let $x_0 \in \theta^{-1}(\theta(x)), y_0 \in \theta^{-1}(\theta(y)), u_0 \in \theta^{-1}(\theta(u))$ and $v_0 \in \theta^{-1}(\theta(v))$ be such that $\mu(x_0) = \sup_{z \in \theta^{-1}(\theta(x))} \mu(z), \ \mu(y_0) = \sup_{z \in \theta^{-1}(\theta(y))} \mu(z), \ \mu(u_0) = \sup_{z \in \theta^{-1}(\theta(u))} \mu(z)$, respectively. Then

$$\begin{split} \nu(\theta(x) - \theta(y)) &= \sup_{z \in \theta^{-1}(\theta(x) - \theta(y))} \mu(z) \\ &\geq \mu(x_0 - y_0) \\ &\geq \min\{\mu(x_0), \mu(y_0) \\ &= \min\{\sup_{z \in \theta^{-1}(\theta(x))} \mu(z), \sup_{z \in \theta^{-1}(\theta(y))} \mu(z)\} \\ &= \min\{\nu(\theta(x)), \nu(\theta(y)), \end{split}$$

$$\begin{split} \nu(\theta(y) + \theta(x) - \theta(y)) &= \sup_{z \in \theta^{-1}(\theta(y) + \theta(x) - \theta(y))} \mu(z) \\ &\geq \mu(y_0 + x_0 - y_0) \\ &\geq \mu(x_0) \\ &= \sup_{z \in \theta^{-1}(\theta(x))} \mu(z) \\ &= \nu(\theta(x)), \end{split}$$

and for any $\alpha \in \Gamma$,

$$\begin{split} \nu(\theta(u)\alpha(\theta(x) + \theta(v)) - \theta(u)\alpha\theta(v)) \\ &= \sup_{z \in \theta^{-1}(\theta(u)\alpha(\theta(x) + \theta(v)) - \theta(u)\alpha\theta(v))} \mu(z) \\ \geq & \mu(u_0\alpha(x_0 + v_0) - u_0\alpha v_0) \\ \geq & \mu(x_0) \\ &= \sup_{z \in \theta^{-1}(\theta(x))} \mu(z) \\ &= & \nu(\theta(x)). \end{split}$$

This proves that ν is a fuzzy left ideal of N. Similarly if μ is a fuzzy right ideal of M with the sup property, then the image ν of μ under θ is a fuzzy right ideal of N. Hence we have the following result.

Theorem 3.11 A Γ -near-ring homomorphic image of a fuzzy left (resp. right) ideal possessing the sup property is a fuzzy left (resp. right) ideal.

Acknowledgement

The authors are deeply grateful to the referee for the valuable suggestions.

References

- [1] G. L. Booth A note on Γ -near-rings Stud. Sci. Math. Hung. 23 (1988) 471-475.
- [2] G. L. Booth Jacobson radicals of Γ-near-rings Proceedings of the Hobart Conference, Longman Sci. & Technical (1987) 1-12.
- [3] P. S. Das Fuzzy groups and level subgroups J. Math. Anal. and Appl. 84 (1981) 264-269.
- [4] V. N. Dixit, R. Kumar and N. Ajal On fuzzy rings Fuzzy Sets and Systems 49 (1992) 205-213.
- [5] S. M. Hong and Y. B. Jun A note on fuzzy ideals in Γ-rings Bull. Honam Math. Soc. 12 (1995) 39-48.
- [6] Y. B. Jun and S. Lajos Fuzzy (1,2)-ideals in semigroups PU. M. A. 8(1) (1997) 67-74.
- [7] Y. B. Jun and C. Y. Lee Fuzzy Γ-rings Pusan Kyongnam Math. J. 8(2) (1992) 163-170.
- [8] Y. B. Jun, J. Neggers and H. S. Kim Normal L-fuzzy ideals in semirings Fuzzy Sets and Systems 82 (1996) 383-386.
- Y. B. Jun and E. H. Roh Fuzzy commutative ideals of BCK-algebras Fuzzy Sets and Systems 64 (1994) 401-405.
- [10] R. Kumar Fuzzy irreducible ideals in rings Fuzzy Sets and Systems 42 (1991) 369-379.
- [11] R. Kumar Certain fuzzy ideals of rings redefined Fuzzy Sets and Systems 46 (1992) 251-260.
- [12] N. Kuroki On fuzzy ideals and fuzzy bi-ideals in semigroups Fuzzy Sets and Systems 5 (1981) 203-205.
- [13] W. Liu Fuzzy invariant subgroups and fuzzy ideals Fuzzy Sets and Systems 8 (1982) 133-139.

- [14] R. G. Mclean and H. Kummer Fuzzy ideals in semigroups Fuzzy Sets and Systems 48 (1992) 137-140.
- [15] J. D. P. Meldrum Near-rings and their links with groups Pitman Advanced Publishing Program, Boston-London-Melbourne (1985).
- [16] J. Meng, Y. B. Jun and H. S. Kim Fuzzy implicative ideals of BCK-algebras Fuzzy Sets and Systems 89 (1997) 243-248.
- [17] A. Rosenfeld Fuzzy groups J. Math. Anal. Appl. 35 (1971) 512-517.
- [18] Bh. Satyanarayana Contributions to near-ring theory Doctoral Thesis, Nagarjuna Univ. (1984).
- [19] Z. Yue Prime L-fuzzy ideals and primary L-fuzzy ideals Fuzzy Sets and Systems 27 (1988) 345-350.
- [20] L. A. Zadeh Fuzzy sets Inform. & Control 8 (1965) 338-353.

Y. B. JUN Department of Mathematics Education Gyeongsang National University Chinju 660-701, KOREA E-mail: ybjunnongae.gsnu.ac.kr M. SAPANCİ Mathematics Department Ege University Science Faculty, Bornova 35100, İZMİR-TURKEY E-mail: sapancifenfak.ege.edu.tr M. A. ÖZTÜRK Department of Mathematics Faculty of Arts and Sciences Cumhuriyet University 58140 Sivas-TURKEY

Received 07.07.1998