Tr. J. of Mathematics
22 (1998) , 461 - 473.
© TÜBİTAK

ON 3 DIMENSIONAL ISOTROPIC SUBMANIOLDS OF A SPACE FORM

Takehiro Itoh*& Koichi Ogiue*

Abstract

We study 3-dimensional isotropic submanifolds of a space form with low-dimensional first normal space

1. Introduction

B. O'Neill [3] introduced first the notion of isotropic submanifold of a Riemannian manifold. Many differential-geometrs have studied isotropic submanifolds of spheres. In particular, L. Vrancken [10] proved recently the following results.

Proposition 1. Let M be a 3-dimensional constant isotropic submanifold in an n-dimensional unit sphere $S^n(1)$. If the dimension of the first normal space of M is ≤ 3 at every point, then one of the following holds.

(1) M is totally geodesic in $S^n(1)$.

(2) There exists a totally geodesic $S^4(1)$ in $S^n(1)$ such that the image of M is (a part of) a small hypersphere of $S^4(1)$.

(3) There exists a totally geodesic $S^7(1)$ in $S^n(1)$ such that the image of M is congruent to (a part of) $R \times S^2\left(\frac{3}{2}\right)$ in $S^7(1)$.

^{*} Work done under partial support by the Grant-in-Aid for Scientific Research No. 09440038, Japan Ministry of Education.

Proposition 2. A 3-dimensional minimal isotropic submanifold in S^n is of constant curvature.

In the present paper, we will study a 3-dimensional isotropic submanifolds in an *n*-dimensional space form $\tilde{M}^n(c)$ of constant curvature c and at first prove the following.

Theorem 1. Let M be a 3-dimensional isotropic submanifold in an n-dimensional space form $\tilde{M}(c)$. If the dimension of the first normal space of M is ≤ 3 at every point, then M is constant isotropic.

By Theorem 1, we have the following result which can be considered as a hyperbolic version of Proposition 1.

Theorem 2. Let M be a 3-dimensional isotropic submanifold in an n-dimensional hyperblic space \mathbf{H}^n . If the dimension of the first normal space of M is ≤ 3 at every point, then one of the following holds.

(1) M is totally geodesic in \mathbf{H}^n ,

(2) There exists a totally geodesic \mathbf{H}^4 in \mathbf{H}^n such that M is a geodesic sphere, a horosphere or a hypersphere in \mathbf{H}^4 .

Moreover, we have the following generalization of Proposition 2.

Theorem 3. A 3-dimensional minimal isotropic submanifold in a space form is of constant curvature.

2. Preliminaries

Let $\tilde{M}(c)$ be an *n*-dimensional space form of constant curvature *c*, that is, an *n*-dimensional Riemannian manifold of cosntant curvature *c*. Let *M* be a 3-dimensional submanifold in $\tilde{M}(c)$. We denote by *g* (resp. \tilde{g}) the Riemannian metric of *M* (resp. $\tilde{M}^n(c)$). Let $T_p(M)$ be the tangent space of *M* at $p \in M$ and $\nu_p(M)$ be the normal space to *M* at $p \in M$. We denote by ∇ (resp. $\tilde{\nabla}$) the covariant differentiation on *M* (resp. $\tilde{M}^n(c)$) and ∇^{\perp} the covariant differentiation on the normal bumdle $\nu(M)$. Then, for vector field *X*, *Y* tangent to *M* and a vector field ξ normal to *M*, the formulas of Gauss and Weingarten are

$$\begin{cases} \tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y), \\ \tilde{\nabla}_X \xi = -A_\xi X + \nabla_X^{\perp} \xi, \end{cases}$$
(2.1)

where σ is the second fundamental form and A is the shape operator which are related by $\sigma(X,Y) = g(AX,Y)$. We define the covariant derivative $\nabla \sigma$ of σ by

$$(\nabla_X \sigma)(Y, Z) = \nabla_X^{\perp}(\sigma(Y, Z)) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z).$$

Since the ambient space is of constant curvature c, the equations of Gauss, Codazzi and Ricci are given respectively by

$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y\} + A_{\sigma(Y,Z)}X - A_{\sigma(X,Z)}Y,$$
(2.2)

$$(\nabla_X \sigma)(Y, Z) = (\nabla_Y \sigma)(X, Z), \qquad (2.3)$$

$$\tilde{g}(R^{\perp}(X,Y)\xi,\eta) = g([A_{\xi},A_{\eta}]X,Y), \qquad (2.4)$$

for tangent (rep. normal) vector fields X, Y and Z (resp. ξ and η), where R (resp. R^{\perp}) denotes the Riemannian (resp. normal) curvature tensor of M.

We choose a local field of orthonormal frames $e_1, e_2, e_3, e_4, \ldots, e_n$ in $\tilde{M}(c)$ in such a way that, restricted to M, e_1, e_2, e_3 are tangent to M and consequently, the remaining vectors are normal to M. Let $\tilde{\omega}^1, \tilde{\omega}^2, \tilde{\omega}^3, \tilde{\omega}^4, \ldots, \tilde{\omega}^n$ be the field of duat frames. We use the following convention on the range of indices unless otherwise stated: $A, B, C, \ldots =$ $1, 2, \ldots, n; i, j, k, \ldots = 1, 2, 3; \alpha, \beta, \gamma, \ldots = 4, 5, \ldots, n$. We agree that repeated indices under a summation sign without indication are summed over the respective range. Then the structure equations of $\tilde{M}(c)$ are given by

$$\begin{cases} d\tilde{\omega}^A = -\sum \tilde{\omega}^A_B \wedge \tilde{\omega}^B, \quad \tilde{\omega}^A_B + \tilde{\omega}^B_A = 0, \\ d\tilde{\omega}^A_B = -\sum \tilde{\omega}^A_C \wedge \tilde{\omega}^C_B + c\tilde{\omega}^A \wedge \tilde{\omega}^B. \end{cases}$$
(2.5)

Restricting these forms to M, we have the structure equations of M:

$$\begin{cases} \omega^{\alpha} = 0, \ \omega_{i}^{\alpha} = \sum h_{ij}^{\alpha} \omega^{j}, \ h_{ij}^{\alpha} = h_{ji}^{\alpha}, \\ d\omega^{i} = -\sum \omega_{j}^{i} \wedge \omega^{j}, \ \omega_{j}^{i} + \omega_{i}^{j} = 0, \\ d\omega_{j}^{i} = -\sum \omega_{k}^{i} \wedge \omega_{j}^{k} + \Omega_{j}^{i}, \ \Omega_{j}^{i} = \frac{1}{2} \sum R_{jkl}^{i} \omega^{k} \wedge \omega^{l}, \\ R_{jkl}^{i} = c \left(\delta_{k}^{i} \delta_{jl} - \delta_{l}^{i} \delta_{jk} \right) + \sum \left(h_{ik}^{\alpha} h_{jl}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha} \right). \end{cases}$$

$$(2.6)$$

The last equation of (2.6) is nothing but the Gauss equation (2.2).

$$\begin{cases}
d\omega_{\beta}^{\alpha} = -\sum \omega_{\gamma}^{\alpha} \wedge \omega_{\beta}^{\gamma} + \Omega_{\beta}^{\alpha}, \quad \Omega_{\beta}^{\alpha} = \frac{1}{2} \sum R_{\beta i j}^{\alpha} \omega^{i} \wedge \omega^{j}, \\
R_{\beta i j}^{\alpha} = \sum \left(h_{i k}^{\alpha} h_{k j}^{\beta} - h_{j k}^{\alpha} h_{k i}^{\beta}\right).
\end{cases}$$
(2.7)

Then the second fundamental form σ may be expressed by

$$\sigma(X,Y) = \sum h^{\alpha}_{ij} \omega^i(X) \omega^j(Y) e_{\alpha}$$

and the last equation of (2.7) is nothing but the Ricci equation (2.4). Define $h_{ijk}^{\alpha}(i, j, k = 1, 2, 3)$ by

$$\sum h_{ijk}^{\alpha}\omega^{k} = dh_{ij}^{\alpha} - \sum h_{kj}^{\alpha}\omega_{i}^{k} - \sum h_{ik}^{\alpha}\omega_{j}^{k} + \sum h_{ij}^{\beta}\omega_{\alpha}^{\beta}$$

Then we have $(\nabla_X \sigma)(Y, Z) = \sum h_{ijk}^{\alpha} \omega^i(Y) \omega^j(Z) \omega^k(X)$ and $h_{ijk}^{\alpha} = h_{ikj}^{\alpha}$, i, j, k = 1, 2, 3, which is nothing but the Codazzi equation (2.3).

At a point $p \in M$, let ν_p^1 be the space spanned by all vectors $\sigma(u, v), u, v \in T_p(M)$, which is called the *first normal space* of M at p.

The vector $\sigma(X, X)$ is called the *normal curvature vector* in the direction of $X \in T_p(M)$. M is said to be *isotropic* at $p \in M$ if $\| \sigma(X, X) \| / \| X \|^2$ is independent of the choice of $X \in T_p(M)$ and, in particular, λ -*isotropic* at $p \in M$ if $\| \sigma(X, X) \| / \| X \|^2 = \lambda$ for all $X \in T_p(M)$. M is said to be *isotropic* if M is isotropic at every point. In such a case, λ is considered as a differentiable function on M and M is said to be *constant isotropic* if λ is constant on M. In particular, M is 0-isotropic if and only if it is totally geodesic.

If M is λ -isotropic, then we have the following equations ([9]):

$$\tilde{g}(\sigma(X,X),\sigma(X,Y)) = 0, \qquad (2.9)$$

$$\lambda^2 - \tilde{g}(\sigma(X, X), \sigma(Y, Y)) - 2\tilde{g}(\sigma(X, Y), \sigma(X, Y)) = 0, \qquad (2.10)$$

$$\tilde{g}(\sigma(X,X),\sigma(Y,Z) + 2\tilde{g}(\sigma(X,Y),\sigma(X,Z) = 0,$$
(2.11)

$$\tilde{g}(\sigma(X,Y),\sigma(Z,W) + \tilde{g}(\sigma(X,Z),\sigma(W,Y) + \tilde{g}(\sigma(X,W),\sigma(Y,Z) = 0,$$
(2.12)

for orthnormal X, Y, Z, W.

3. Proof of Theorems.

Let M be a 3-dimensional λ -isotropic submanifold in a space form $\tilde{M}^n(c)$.

Lemma 3.1. If dim $\nu_p^1 \leq 3$ at a point $p \in M$, then there exists an orthonormal basis $\{e_1, e_2, e_3\}$ of $T_p(M)$ with respect to which one of the following holds:

$$\begin{cases} \sigma(e_1, e_1) = \sigma(e_2, e_2) = \sigma(e_3, e_3) = 0, \\ \sigma(e_1, e_2) = \sigma(e_1, e_3) = \sigma(e_2, e_3) = 0, \end{cases}$$
(3.1)

$$\begin{cases} \sigma(e_1, e_1) = \sigma(e_2, e_2) = \sigma(e_3, e_3) = \lambda e_4, \\ \sigma(e_1, e_2) = \sigma(e_1, e_3) = \sigma(e_2, e_3) = 0, \end{cases}$$
(3.2)

$$\begin{cases} \sigma(e_1, e_1) &= -\sigma(e_2, e_2) = \sigma(e_3, e_3) = \lambda e_4, \\ \sigma(e_1, e_2) &= \lambda e_5, \\ \sigma(e_1, e_3) &= 0, \\ \sigma(e_2, e_3) &= \lambda e_6, \end{cases}$$
(3.3)

where e_4, e_5, e_6 are orthonormal normal vectors at p and $\lambda \neq 0$.

Proof. In the case dim $\nu_p^1 = 0$ *M* is geodesic at *p*, hence (3.1) holds for an arbitrary $\{e_1, e_2, e_3\}$.

We next consider the case where $\dim \nu_p^1 = 1$. Since p is not a geodesic point, $\lambda(p) \neq 0$. For an arbitrary orthonormal basis $\{e_1, e_2, e_3\}$ of $T_p(M)$, (2.9) implies that $\sigma(e_1, e_2)$ is orthogonal to $\sigma(e_1, e_1)$ so that it follows from $\dim \nu_p^1 = 1$ and $\lambda(p) \neq 0$ that $\sigma(e_1, e_2) = 0$. We similarly have $\sigma(e_1, e_3) = \sigma(e_2, e_3) = 0$. Then from (2.10) we have

 $\lambda^2 = \tilde{g}(\sigma(e_1, e_1), \sigma(e_2, e_2))$, which, together with the Cauchy-Schwarz inequility, implies $\sigma(e_1, e_1) = \sigma(e_2, e_2)$. By the same way, we have $\sigma(e_1, e_1) = \sigma(e_3, e_3)$. Then we have (3.2).

Let $S_p = \{(u,v)|u,v \in T_p(M), g(u,v) = 0, || u ||=|| v ||=1\}$ and consider a function f on S_p defined by

$$f(u,v) = \parallel \sigma(u,v) \parallel^2.$$

Since S is compact, we can choose $(e_1, e_2) \in S_p$ at which f takes its maximum. We choose furthermore $e_3 \in T_p(M)$ in such a way that e_1, e_2, e_3 are orthonormal. Since f takes its maximum at (e_1, e_2) , we have

$$\frac{d}{d\theta}f(e_1,\cos\theta e_2+\sin\theta e_3)=\frac{d}{d\theta}f(\cos\theta e_1+\sin\theta e_3,e_2)=0$$

at $\theta = 0$ so that we get

$$\begin{cases} \tilde{g}(\sigma(e_1, e_2), \sigma(e_1, e_3)) = 0\\ \tilde{g}(\sigma(e_1, e_2), \sigma(e_2, e_3)) = 0. \end{cases}$$
(3.4)

We consider the case where $\dim v_p^1 = 2$. If f = 0 holds identically, then we easily see that (3.2) holds so that $\dim v_p^1 \leq 1$. This contradicts the assumption that $\dim v_p^1 = 2$. Therefore f is not identically zero so that $\parallel \sigma(e_1, e_2) \parallel \neq 0$. Then $\sigma(e_1, e_1)$ and $\sigma(e_1, e_2)$ span ν_p^1 . On the other hand, it follows from (2.9), (2.11) and (3.4) that $\sigma(e_1, e_3)$ and $\sigma(e_2, e_3)$ are orthogonal to $\sigma(e_1, e_1)$. Since $\dim v_p^1 = 2$, we get $\sigma(e_1, e_3) = \sigma(e_2, e_3) = 0$. This, together with (2.10) and the Cauchy-Schawarz inequality, implies $\sigma(e_1, e_1) = \sigma(e_2, e_2) = \sigma(e_3, e_3)$. Thus, using (2.10), we get $\parallel \sigma(e_1, e_2) \parallel = 0$. This is a contradiction so that this case does not occur.

Finally, we consider the case where dim $v_p^1 = 3$. It is clear that f is not identically zero so that $\| \sigma(e_1, e_2) \| \neq 0$. It follows from (2.11) and (3.4) that

$$\tilde{g}(\sigma(e_1, e_3), \sigma(e_2, e_2)) = -2\tilde{g}(\sigma(e_1, e_2), \sigma(e_2, e_3)) = 0,$$

which, together with (2.9), (2.11) and (3.4), implies that $\sigma(e_1, e_3)$ and $\sigma(e_2, e_3)$ are orthogonal to $\sigma(e_1, e_1)$, $\sigma(e_2, e_2)$ and $\sigma(e_1, e_2)$. Suppose that $\sigma(e_1, e_1)$, $\sigma(e_2, e_2)$ and

 $\sigma(e_1, e_2)$ span ν_p^1 . Then $\sigma(e_1, e_3) = \sigma(e_2, e_3) = 0$. Using (2.10) and the Cuchy-Schwarz inequality, we have

$$\begin{aligned} \lambda^2 &= \tilde{g}(\sigma(e_i, e_i), \sigma(e_3, e_3)) + 2\tilde{g}(\sigma(e_i, e_3), \sigma(e_i, e_3)) \\ &= \tilde{g}(\sigma(e_i, e_i), \sigma(e_3, e_3)) \leq \lambda^2, \qquad (i = 1, 2), \end{aligned}$$

so that $\sigma(e_1, e_1), \sigma(e_2, e_2)$ and $\sigma(e_3, e_3)$ are proportional. This contradicts the assumption that $\sigma(e_1, e_1), \sigma(e_2, e_2)$ and $\sigma(e_1, e_2)$ span 3-dimensional space ν_p^1 . Therefore $\sigma(e_1, e_1), \sigma(e_2, e_2)$ and $\sigma(e_1, e_2)$ must be linearly dependent. Since $\sigma(e_1, e_2)$ is orthogonal to $\sigma(e_1, e_1)$ and $\sigma(e_2, e_2)$, it follows from (2.9) and (2.10) that $\sigma(e_1, e_1) = -\sigma(e_2, e_2)$ and $\parallel \sigma(e_1, e_2) \parallel = \lambda$. Moreover, since dim $\nu_p^1 = 3$, it follows from (3.4) that there exist orthonormal normal vectors ξ_1, ξ_2, ξ_3 satisfying

$$\begin{aligned} \sigma(e_1, e_1) &= \lambda \xi_1, \quad \sigma(e_2, e_2) = -\lambda \xi_1, \quad \sigma(e_1, e_2) = \lambda \xi_2, \\ \sigma(e_1, e_1) &= \mu \xi_3, \quad \sigma(e_2, e_3) = \mu \xi_3, \quad \sigma(e_3, e_3) = \alpha \xi_1 + \beta \xi_2, \end{aligned}$$

for constants μ_1, μ_2, α and β . It follows from (2.9) ~ (2.11) that

$$\beta\lambda + 2\mu_1\mu_2 = 0, \quad 2\mu_1^2 = \lambda^2 - \alpha\lambda, \quad 2\mu_2^2 = \lambda^2 + \alpha\lambda$$

From the last two equations, we have $\mu_1^2 + \mu_2^2 = \lambda^2$. We may put $\mu_1 = \lambda \sin \theta$ and $\mu_2 = \lambda \cos \theta$ so that we have $\alpha = \lambda \cos 2\theta$ and $\beta = -\lambda \sin 2\theta$. Put $\tilde{e}_1 = (\cos \theta)e_1 - (\sin \theta)e_2$, $\tilde{e}_2 = (\sin \theta)e_1 + (\cos \theta)e_2$, $e_4 = (\cos 2\theta)\xi_1 - (\sin 2\theta)\xi_2$, $e_5 = (\sin 2\theta)\xi_1 + (\cos 2\theta)\xi_2$, $e_6 = \xi_3$. Then $\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4, \tilde{e}_5$ and \tilde{e}_6 satisfy (3.3).

We see in the proof of Lemma 3.1 that if $\dim \nu_p^1 \leq 3$, then $\dim \nu_p^1 = 0, 1$ or 3. Let K denote the sectional curvature of M. Then we have

Lemma 3.2. (1) If dim $\nu_p^1 = 0$, then $K \equiv c$. (2) If dim $\nu_p^1 = 1$, then $K \equiv c + \lambda^2$. (3) If dim $\nu_p^1 = 3$, then $c - 2\lambda^2 \leq K \leq c + \lambda^2$.

Proof. (1) is clear.

If dim $\nu_p^1 = 1$, then it follows from the equation of Gauss and (3.2) that

$$g(R(X,Y)Y,X) = c + \lambda^2$$

for an arbitrary orthnormal X and Y in $T_p(M)$.

If dim $\nu_p^1 = 3$, then it follows from the equation of gauss and (3.3) that, for an arbitrary orthonormal $X = \sum_i^3 x_i e_i$ and $Y = \sum_i^3 y_i e_i$,

$$g(R(X,Y)Y,X) = c - 2\lambda^2 + 3\lambda^2(x_1y_3 - x_3y_1)^2.$$

Since $0 \leq (x_1y_3 - x_3y_1)^2 \leq 1$, we have

$$c - 2\lambda^2 \leq g(R(X, Y)Y, X) \leq c + \lambda^2$$

Proof of Theorem 1. Let $M_k = \{p \in M | \dim \nu_p^1 = k\}$. Then Lemma 3.1 implies that k = 0, 1 or 3. It is clear that M_3 is an open subset of M.

We first consider the case $M_3 \neq \phi$. There exists a neighborhood U of a point $p \in M_3$ such that $U \subset M_3$ and we can take a local field of orthonormal framess $\{e_1, e_2, e_3, e_4, e_5, e_6, \ldots, e_n\}$ on U satisfing (3.3) in Lemma 3.1. With respect to such a frame field, we have

$$\begin{cases}
h_{11}^{4} = -h_{22}^{4} = h_{33}^{4} = \lambda, \quad h_{ij}^{4} = 0 \ (i \neq j), \\
h_{12}^{5} = \lambda, \quad h_{ij}^{5} = 0 \ (\{i, j\} \neq \{1, 2\}), \\
h_{23}^{6} = \lambda, \quad h_{ij}^{6} = 0 \ (\{i, j\} \neq \{2, 3\}), \\
h_{ij}^{\alpha} = 0 \ (\alpha \ge 7; i, j = 1, 2, 3)
\end{cases}$$
(3.5)

or equivalently

$$\begin{cases} \omega_1^4 = \lambda \omega^1, \ \omega_2^4 = -\lambda \omega^2, \ \omega_3^4 = \lambda \omega^3, \\ \omega_1^5 = \lambda \omega^2, \ \omega_2^5 = \lambda \omega^1, \ \omega_3^5 = 0, \\ \omega_1^6 = 0, \ \omega_2^6 = \lambda \omega^3, \ \omega_3^6 = \lambda \omega^2, \\ \omega_1^\alpha = \omega_2^\alpha = \omega_3^\alpha = 0 \ (\alpha \ge 7). \end{cases}$$

$$(3.5)'$$

It follows from (2.8) and (3.5)' that

$$\omega_5^4 = \omega_2^1, \ \omega_6^4 = -\omega_3^2, \ \omega_6^5 = \omega_3^1.$$
(3.6)

It follows from (3.5)' that, for $\alpha \ge 7$,

$$\begin{cases} 0 = d\omega_1^{\alpha} = -\lambda(\omega_4^{\alpha} \wedge \omega^1 + \omega_5^{\alpha} \wedge \omega^2) \\ 0 = \alpha\omega_2^{\alpha} = \lambda(\omega_4^{\alpha} \wedge \omega^2 - \omega_5^{\alpha} \wedge \omega^1 - \omega_6^{\alpha} \wedge \omega^3) \\ 0 = d\omega_3^{\alpha} = -\lambda(\omega_4^{\alpha} \wedge \omega^3 + \omega_6^{\alpha} \wedge \omega^2), \end{cases}$$

which implies,

$$\omega_4^{\alpha} = f_{\alpha}\omega^2, \ \omega_5^{\alpha} = f_{\alpha}\omega^1, \ \omega_6^{\alpha} = f_{\alpha}\omega^3, \tag{3.7}$$

 $f_{\alpha}(\alpha = 7, 8, \dots, n)$ are differentiable functions on U.

Using (2.6), (2.7), (3.5), (3.6) and (3.7), we have

$$\begin{cases} \sum f_{\alpha}^2 = c \\ \sum f_{\alpha}^2 + c - 4\lambda^2 = 0. \end{cases}$$
(3.8)

Therefore we have

$$2\lambda^2 = c, \tag{3.9}$$

which implies that $\lambda = \sqrt{c/2}$ on U. Since M is connected, $\lambda = \sqrt{c/2}$ on M and $M_3 = M$. We have proved that if $M_3 \neq \phi$, then $\dim \nu_p^1 = 3$ every where on M and M is constant isotropic.

We must now remark the following.

Remark. The case $M_3 \neq \phi$ does not occur when c < 0 by (3.9).

We next consider the case where $M_3 = \phi$ and $M_1 \neq \phi$. Since $M_2 = \phi, M_1$ is open in M. (3.2) of Lemma 3.1 implies that M is umbilic on M_1 so that $M_1 = M$ by the connectedness of M, that is, M is a totally umbilic submanifold of $\tilde{M}^n(c)$, and hence M is constant isotropic.

We finally consider the case where $M_1 = M_3 = \phi$ and $M_0 \neq \phi$, that is, $M_0 = M$. If this is the case, M is totally geodesic in $M^n(c)$ so that M is clearly constant isotropic.

Thus we have proved Theorem 1.

Now we review a hyperbolic space \mathbf{H}^n and totally umbilic hypersurfaces of \mathbf{H}^n . An *n*-dimensional hyperbolic space \mathbf{H}^n is an *n*-dimensional complete, connected and simply connected Riemannian manifold of constant curvature -1. A model space of \mathbf{H}^n is the half-space of an \mathbb{R}^n given by $\mathbf{H}^n = \{x_1, x_2, \dots, x_n\} \in \mathbb{R}^n | x_n > 0\}$ with metric $\tilde{g} = \sum_{i=1}^n dx_i^2 / x_n^2$.

Let $(\mathbb{R}^n, \overline{g})$ be an *n*-dimensional Euclidean space with the Euclidean metric \overline{g} and its Riemannian connection $\overline{\nabla}$. A hypersurface M in $(\mathbb{R}^n, \overline{g})$ is said to be *umbilic* if, at each point $p \in M$,

$$\bar{g}(\bar{\nabla}_x\xi, Y) = \kappa \bar{g}(X, Y)$$

holds for all $X, Y \in T_p(M)$ and a unit normal vector field ξ where κ is a constant on M.

Consider a conformal change $\tilde{g} = \mu \bar{g}$ of metric and denote the Riemannian connection of \tilde{g} by $\tilde{\nabla}$. Then we have

$$\tilde{\nabla}_{\bar{X}}\bar{Y} = \bar{\nabla}_{\bar{X}}\bar{Y} + S(\bar{X},\bar{Y}) \tag{3.10}$$

for al \bar{X} and \bar{Y} , where $S(\bar{X}, \bar{Y}) = \frac{1}{2\mu} \{ (\bar{X}\mu)\bar{Y} + (\bar{Y}\mu)\bar{X} - \bar{g}(\bar{X}, \bar{Y}) \text{ grad } \mu \}$ and grad μ is calcuated with respect to the metric \bar{g} , that is, $\bar{X}(\mu) = \bar{g}(\bar{X}, \text{ grad } \mu)$. If M is umbiling in (R^n, \bar{g}) , that is, $\bar{g}(\bar{\nabla}_X \xi, Y) = \kappa \bar{g}(X, Y)$, using (3.10), then at each point $p \in M$ we have

$$\tilde{g}(\tilde{\nabla}_X(\frac{\xi}{\sqrt{\mu}}), Y) = \frac{2\kappa\mu + \xi(\mu)}{2\mu\sqrt{\mu}}\tilde{g}(X, Y), \text{ for all } X, Y \in T_p(M).$$

which implies that M is also umbilic in $(\mathbb{R}^n, \tilde{g})$.

The hyperbolic space \mathbf{H}^n is considered an open submanifold of R^n with the metric \tilde{g} of $R^n.$

Since umbilic hypersurface in $(\mathbb{R}^n, \tilde{g})$ are (n-1)-planes or (n-1)-spheres, umbilic hypersurfaces of \mathbb{H}^n are therefore the intersections with \mathbb{H}^n of (n-1)-planes or (n-1)-

spheres of \mathbb{R}^n , and so totally umbilic hypersurfaces of \mathbb{H}^n are the geodesic spheres, the horospheres and the hyperspheres.

Proof of Theorem 2. Since \mathbf{H}^n is of negative curvature -1, as stated in Remark above, $M_3 = \phi$ so that the dimension of the first normal space of M is everywhere 0 or 1. Since M is constant isotropic by Theorem 1, $M_0 = M$ or $M_1 = M$.

If $M_0 = M$ is the case, then M is totally geodesic in \mathbf{H}^n .

We consider next the case $M_1 = M$, as stated in the proof of Theorem 1, M is totally umbilic in \mathbf{H}^n , and hence M is a totally umbilic hypersurface in a 4-dimensional hyperbolic space \mathbf{H}^4 , which is totally geodesic in \mathbf{H}^n . Therefore, as stated above, M is a geodesic sphere, a horosphere or a hypersphere of \mathbf{H}^4 .

Proof of Theorem 3. We may assume that M has no geodesic points. It follows from Lemma 3.1 and the minimality of M that the dimension of the first normal space of M is 4 or 5.

Let $\{e_1, e_2, e_3\}$ be an orthonormal basis of $T_p(M)$ which satisfies (3.4). Since $\sigma(e_1, e_3)$ is orthogonal to $\sigma(e_1, e_1,)$ and $\sigma(e_3, e_3)$ from (2.9), $\sigma(e_1, e_3)$ is also orthogonal to $\sigma(e_2, e_2)$ by the minimality of M. By (3.4), furthermore, $\sigma(e_1, e_3)$ is orthogonal to $\sigma(e_1, e_2)$, too. By the same reason as above, $\sigma(e_2, e_3)$ is orthogonal to $\sigma(e_1, e_1)$, $\sigma(e_2, e_1)$, $\sigma(e_1, e_2)$ and $\sigma(e_3, e_3)$. It follows from (2.9), (2.11) and the minimality that

$$2\tilde{g}(\sigma(e_1, e_3), \sigma(e_2, e_3)) = -\tilde{g}(\sigma(e_1, e_2), \sigma(e_3, e_3))$$

= $\tilde{g}(\sigma(e_1, e_2), \sigma(e_1, e_1) + \sigma(e_2, e_2))$
= 0.

On the other hand, we see from (2.10) and the minimality of M that $\sigma(e_1, e_3) \neq 0$ and $\sigma(e_2, e_3) \neq 0$.

Therefore we have orthonormal normal vector fields e_4, e_5, e_6, e_7, e_8 satisfing

$$\begin{cases} \sigma(e_1, e_1) = \lambda e_4, \\ \sigma(e_1, e_2) = \mu_1 e_5, \\ \sigma(e_1, e_3) = \mu_2 e_6, \\ \sigma(e_2, e_3) = \mu_3 e_7, \\ \sigma(e_2, e_2) = \mu_4 e_4 + \mu_5 e_8, \end{cases}$$
(3.11)

Then we have

$$\mu_4^2 + \mu_5^2 = \lambda^2. \tag{3.12}$$

Moreover it follows from the minimality that $\sigma(e_3, e_3) = -(\lambda + \mu_4)e_4 - \mu_5 e_8$ which implies

$$2\lambda\mu_4 + \mu_4^2 + \mu_5^2 = 0. \tag{3.13}$$

On the other hand, we see from (2.10) and (3.11) that

$$\lambda^2 - \lambda \mu_4 - 2\mu_1^2 = 0, \qquad (3.14)$$

$$2\lambda^2 + \lambda\mu_4 - 2\mu_2^2 = 0, \qquad (3.15)$$

$$\lambda^2 + \lambda \mu_4 + \mu_4^2 + \mu_5^2 - 2\mu_3^2 = 0.$$
(3.16)

It follows from (3.12), (3.13), (3.14), (3.15) and (3.16) that

$$\mu_4 = -\frac{\lambda}{2} \tag{3.17}$$

and

$$\mu_1^2 = \mu_2^2 = \mu_3^2 = \mu_5^2 = \frac{3}{4}\lambda^2.$$

We may assume without loss of generality that

$$\mu_1 = \mu_2 = \mu_3 = \mu_5 = \frac{\sqrt{3}}{2}\lambda. \tag{3.18}$$

Using (2.2), (3.11), (3.17) and (3.18), we have

$$g(R(e_1, e_2)e_2, e_1) = g(R(e_1, e_3)e_3)e_3, e_1) = g(R(e_2, e_3)e_3, e_2) = c - \frac{5}{4}\lambda^2,$$

which implies that M is of constant curvature.

References

- [1] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
- [2] M. P. Do Carmo, Geometria Riemannian, Impa, Rio de Janeiro, 1979.
- [3] M. P. Do Carmo, Riemannian Geometry, Birkhäuser, Boston, Basel, Berlin, 1992.
- [4] J. Erbacher, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
- [5] Y. Maeda, Reduction of the codimension of an isometric immersion, J. Diff. Geometry 5 (1971), 333-340.
- [6] T. Itoh, Isotropic minimal submanifolds in a apre form, Tsukuba J. Math. 12 (1988), 497-505.
- T. Itoh and K. Ogiue, *Isotropic immersions and Veronese submanifolds*, Trans. Amer. Math. Soc. 209 (1975), 109-117.
- [8] H. Nakagawa and T. Itoh, On Isotropic immersions of apce forms into a space form, Minimal submanifolds and Geodesics, Kaigai Publications, Tokyo 12 (1978), 255-271.
- [9] B. O'Neill, İsotropic and Kaehler immersions, Can. J. Math. 17 (1965), 905-915.
- [10] L. Vrancken, 3-dimensional sotropic submanifolds of spheres, Tsukuba J. Math. 14 (1990), 279-292.

Takehiro ITOHReceived 29.07.1998Department of Mathematics, Faculty of education,Shinshu university, Nagano 380-0871 JAPANKoichi OGIUEDepartment of Mathematics, Tokyo Metropolitan university,Tokyo 192-0397 JAPAN

CONTENTS

On the Differential Prime Radical of a Differential Ring D. KHADJIEV, F. ÇALLIALP	355
Normal Subgroups of Hecke Groups on Sphere and Torus İ. N. CANGÜL, O. BİZİM	369
Dynamical System Topology Preserved in the Presence of Noise J. A. KENNEDY, J. A. YORKE	379
On the Cohomology Ring of the Infinite Flag Manifold \mathbf{LG}/\mathbf{T} C. ÖZEL	415
Fuzzy Ideals in Gamma Near-rings Y. B. JUN, M. SAPANCİ, M. A. ÖZTÜRK	449
On 3 Dimensional Isotropic Submaniolds of a Space Form T. ITOH, K. OGIUE	461

Abstracted/Indexed in:

Current Mathematical Publications, Mathematical Reviews, MathSci, Zent.Math.