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1. Introduction

The study of Heegaard splittings of 3-manifolds is now nearly a century old [He]. (See
also [Prz] for a translation of the relevant parts). Such a splitting is deceptively simple
to describe: a closed 3-manifold is regarded as the union of two handlebodies glued
together along their boundaries. Although any 3-manifold can be described this way,
the description is not unique. The relationship between the various possible Heegaard
splittings that a single manifold may have is often difficult to understand.

Much progress on understanding Heegaard splittings has occurred in the last decade,
beginning with the work of Casson and Gordon [CG]. For example, Heegaard splittings
of Seifert manifolds can be characterized in a way that makes the classification problem
at least accessible (see [MS]). Something of the complexity of Heegaard splittings of hy-
perbolic manifolds is demonstrated in [LM]. For manifolds which are split up by essential
tori into Seifert and hyperbolic pieces, there is some understanding of the relationship
between the pieces that can occur and the Heegaard splitting (see [SS]). The remain-
ing (very special) geometric structure which a closed 3-manifold may possess is that of
a solvmanifold. Here we completely characterize, up to isotopy, the possible irreducible
Heegaard structures on orientable 3-manifolds of this last type.

We will show that, except for precisely two solvmanifolds (those whose monodromy has
trace ±3), any two irreducible Heegaard splittings of the same solvmanifold are isotopic.
Depending on the type of solvmanifold, the genus of the Heegaard splitting will be either
2 or 3. In each of the two exceptional cases there are exactly two non-isotopic splittings.

Some of what appears here, including a characterization of when a solvmanifold has
Heegaard genus two and, for this case, uniqueness up to homeomorphism (via examination
of the quotient of the hyperelliptic involution), was developed earlier by Takahashi and
Ochiai (see [TO]) and Sakuma (see [Sa]). Our viewpoint will be somewhat different
and takes advantage of the notion, developed by Casson and Gordon [CG], of strong
irreducibility. Michel Boileau offered several useful comments, including one pointing us
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In this paper we only consider solvmanifolds which are torus bundles over the circle, not those obtained
by conjoining two twisted I-bundles over the Klein bottle.

1



COOPER and SCHARLEMANN

toward the main argument used here in the proof of Theorem 4.2. We are also indebted
to Darren Long and Alan Reid for advice on the special difficulties that arise when m = 3.

2. Review of Heegaard splittings

Definition 2.1. A compression body H is a connected 3-manifold obtained from a closed
surface ∂−H by attaching 1-handles to ∂−H×{1} ⊂ ∂−H×I. Dually, a compression body
is obtained from a connected surface ∂+H by attaching 2-handles to ∂+H×{1} ⊂ ∂+H×I
and 3-handles to any 2-spheres thereby created. The cores of the 2-handles are called
meridian disks

A Heegaard splitting M = A ∪S B of a compact orientable 3-manifold consists of an
orientable surface S in M , together with two compression bodies A and B so that S =
∂+A = ∂+B and M = A ∪S B. S itself is called the splitting surface. The genus of the
splitting is defined to be the genus of S.

A stabilization of A ∪S B is the Heegaard splitting obtained by adding to A a regular
neighborhood of a proper arc in B which is parallel in B to an arc in S. A stabilization
has genus one larger and, up to isotopy, is independent of the choice of arc in B. If the
construction is done symmetrically to an arc in A instead, the two splittings are isotopic.

Recall the following (see e. g. [CG]): If there are meridian disks DA and DB in A and
B respectively so that ∂DA and ∂DB intersect in a single point in S, then A ∪S B can
be obtained by stabilizing a lower genus Heegaard splitting. We then say that A ∪S B
is stabilized. If there are meridian disks DA and DB in A and B respectively so that
∂DA and ∂DB are disjoint in S, then (see [CG]) A ∪S B is weakly reducible. If there
are meridian disks so that ∂DA = ∂DB , then A ∪S B is reducible. It is easy to see that
reducible splittings are weakly reducible and that (except for the genus one splitting of
S3) any stabilized splitting is reducible. It is a theorem of Haken [Ha] that any Heegaard
splitting of a reducible 3-manifold is reducible and it follows from a theorem of Waldhausen
[W] that a reducible splitting of an irreducible manifold is stabilized. It is an important
theorem of [CG] that if a splitting is irreducible but weakly reducible, then maximal
simultaneous compression into A and B will create an incompressible surface in M .

3. Some relevant examples

Consider Heegaard splittings of T 2 × I. An easy splitting T 2 × I = A ∪S B is ob-
tained by taking S = T 2 × {1/2}. This surface divides T 2 × I into two homeomorphs of
T 2 × I , each of which can be regarded as a trivial compression body. In this splitting the
components of ∂T 2 × I lie in different compression bodies.

The easiest splitting for which both components of ∂(T 2 × I) lie in the same com-
pression body, is given by the following construction: Begin with two copies of the
torus, S′ = T 2 × {1/3, 2/3} dividing T 2 × I into three product regions, and set A′ =
T 2 × [0, 1/3]∪ T 2 × [2/3, 1] and B′ = T 2 × [1/3, 2/3]. For E a disk in T 2, add a vertical
tube E× [1/3, 2/3] to A′ (so deleting it from B′). This changes A′ to a compression body
A and, by deleting the tube, changes B′ into a genus two handlebody B. See Figure 1.
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This construction could be generalized to give higher genus Heegaard splittings. For
example, begin with the union of three parallel tori S′ = T 2 × {1/4, 1/2, 3/4}, dividing
T 2 × I into four product regions, and set A′ = (T 2 × [0, 1/4]) ∪ (T 2 × [1/2, 3/4]) and
B′ = (T 2 × [1/4, 1/2])∪ (T 2 × [3/4, 1]). Then choose disjoint disks EA and EB in T 2 and
attach the tube EA× [1/4, 1/2] to A′ and the tube EB × [1/2, 3/4] to B′ (simultaneously
deleting the tubes from B′ and A′ respectively). The result is a genus three Heegaard
splitting T 2 × I = A ∪S B, but it is easy to see that it is reducible: Let cA and cB be
simple closed curves in T 2 with three properties: They intersect in a single point, they
pass through EB and EA respectively, and they are disjoint from EA and EB respectively.
Then cB× [1/4, 1/2] and cA× [1/2, 3/4] are annuli in B′ and A′ respectively that intersect
in a single point (in T 2 × {1/2}). When the tubes are deleted to create A and B, the
annuli become disks DB and DA in B and A respectively, and these disks intersect in
a single point. (See Figure 2.) So T 2 × I = A ∪S B is a stabilized, hence a reducible
splitting.
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It is an important and sophisticated theorem of Boileau and Otal ([BO]) that in fact
the two elementary examples first given are the only irreducible splittings of T 2 × I. The
argument that the third and last example is reducible is particularly important as we now
discuss Heegaard splittings of closed orientable 3-manifolds that are torus bundles over
the circle.

We review elementary facts and notation about torus bundles over the circle. Any
matrix L ∈ SL(2, Z) induces an orientation preserving homeomorphism on T 2 = R2/Z2.
Unless it is critical, we will not distinguish between L as a matrix and L as a homeomor-
phism. Points on T 2 will be parameterized by ordered pairs (x1, x2), xi ∈ R/Z. Isotopy
classes of simple closed curves on R2 are distinguished by their slopes. A circle with slope
n/m in T 2 is the projection of a line in R2 with slope n/m which in turn is determined

by the vectors ±
(
m
n

)
. So in this way we can regard vectors of the form

(
m
n

)
, with

m, n relatively prime, as parameterizing simple closed curves. With this convention, the

minimal number of points in which two curves c =
(
m
n

)
and c′ =

(
p
q

)
intersect is

given simply by |det
(
m p
n q

)
|, and this is denoted c · c′.

Let ML be the mapping cylinder of L : T 2→T 2. Put another way,ML is the quotient of
T 2×R under the identification (x1, x2, t) ∼ (L(x1, x2), t+1) or, alternatively, the quotient
of T 2 × I under the identification (x1, x2, 0) ∼ (L(x1, x2), 1). The homeomorphism L is
called the monodromy of ML.

The Heegaard splittings of T 2 × I discussed above suggest Heegaard splittings of ML.
Choose disjoint disks EA and EB and curves cA and cB in the torus T 2 as described in
the third example above, making sure also that EB is disjoint from L(EA). Let A′ ⊂ML

be the image of T 2× [0, 1/2] and B′ ⊂ML be the image of T 2× [1/2, 1]. Attach the tube
EA × [1/2, 1] to A′ and the tube EB × [0, 1/2] to B′, simultaneously deleting them from
B′ and A′ respectively. The result is a genus three splitting ML = A ∪S B. Call this the
standard genus three splitting of ML. The splitting is weakly reducible, since EA×{3/4}
and EB × {1/4} are disjoint meridian disks.

The disks DA ⊂ A and DB ⊂ B, constructed as in the third example above, will
intersect in at least one point (in T 2×{1/2}), but may also intersect in T 2×{0} = T 2×{1}.
Indeed, it will be possible to isotope them so that they are disjoint on T 2 × {0} if and
only if cB = L(cA). Put succinctly: the standard genus three splitting of ML is reducible
if there is a curve cA in T 2 so that cA · L(cA) = 1.

We could generalize this construction, as we did that for T 2 × I, by starting with more
tori, e. g. the images of the four tori T 2 × {0, 1/4, 1/2, 3/4}. But, just as we argued in
the third example above, the result is always a reducible splitting.

Proposition 3.1. Suppose ML is a closed orientable torus bundle over the circle, with
monodromy given by L ∈ SL(2, Z). The standard genus three splitting is weakly reducible.
If the splitting is irreducible, then c · L(c) 6= 1 for any simple closed curve c ⊂ T 2.
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One way to construct a fiber-preserving homeomorphism from ML to itself is to begin
with a matrix K ∈ SL(2, Z) that commutes with L. Then the automorphism

K × 1R : T 2 ×R→T 2 × R
commutes with the covering translation ((x1, x2), t)→(L(x1, x2), t+1) so it induces a well-
defined automorphism of the quotient space ML. We will denote such an automorphism
by K : ML→ML. A useful example later will be the central involution −I corresponding
to the central element −I of SL(2, Z).

The following straightforward observation will be important later:

Proposition 3.2. If K = Ln then K : ML→ML is isotopic to the identity.

Proof: The isotopy hs : T 2 ×R→T 2 ×R given by hs(((x1, x2), t)) = ((x1, x2), t− ns)
also commutes with the covering translation and so induces an isotopy hs : ML→ML.
The maps h0 and h1 are clearly the identity and Ln respectively.

4. Solvmanifolds

We now specialize to the case of solvmanifolds. These are torus bundles over the circle
in which the monodromy L ∈ SL(2, Z) is Anosov (that is, if it is neither periodic nor
does it fix a circle). Equivalent formulations are that |trace(L)| > 2 or that L has two
irrational eigenvalues or that L is hyperbolic. See [Sco].

Proposition 4.1. If ML is a solvmanifold, then the only irreducible and weakly reducible
Heegaard splitting is the standard genus three splitting.

Proof: Suppose ML = A ∪S B is a weakly reducible splitting. The main theorem of
[CG] shows that, a maximal family of disjoint compressions of S into A and B creates
an incompressible surface T ⊂ML, and ML is the union of two distinct submanifolds A′

and B′ of ML along T . The only incompressible surfaces in ML are fibers, so T is the
union of an even number of fibers and each component of A′ and B′ is homeomorphic to
torus× I.

The reverse construction is easy to describe: A and B can be recovered from A′ and
B′ by attaching tubes through B′ and A′ respectively. In particular, each component
B0
∼= T 2 × I of B′ has some proper tubes removed in the process of recovering B. (Each

tube is dual to a meridian disk forA that was compressed in creating A′.) The complement
of the tubes in B0 then must be a handlebody. In particular, the same tubes could
have been removed from T 2 × [1/3, 2/3] in the second construction of section 3 to give
a Heegaard splitting of T 2 × I. But, according to [BO], the result would be reducible
unless the removed tubes consist precisely of a single vertical tube. So the result is that
in each component of A′ (resp. B′), a single vertical tube is attached to B′ (resp. A′)
to recover B (resp. A). In other words, if A′ and B′ are each connected, we have the
standard genus three splitting; otherwise we have a generalization of this construction,
using more fibers, and this was shown in Section 3 to be reducible.

5



COOPER and SCHARLEMANN

Theorem 4.2. Suppose a solvmanifold ML is constructed as the mapping cylinder of
L : T 2→T 2. Then the following are equivalent:

1. There is a simple closed curve c in T 2 so that c · L(c) = 1.
2. L is conjugate to a matrix of the form(

±m −1
1 0

)
, m ≥ 3.

3. Any irreducible splitting of ML is strongly irreducible.
4. Any irreducible splitting of ML is of genus 2.
5. Some irreducible splitting of ML is of genus 2.
6. Some splitting of ML is strongly irreducible.

Proof: 1)⇔ 2): If there are curves c and L(c) which intersect in a single point, vectors
v and v′ in Z2 corresponding to c and L(c) form a basis for Z2 and their signs can be
chosen so that L(v) = −v′. Then the matrix of L with respect to the basis (v′, v) is of
the required form. The reverse implication is immediate.

1)⇒ 3) This follows immediately from 4.1 and 3.1.
4)⇒ 5) Obvious.
5)⇒ 6) It is easy to see that a weakly reducible genus two splitting of any 3-manifold

is reducible.
3) ⇒ 4) and 6) ⇒ 1). We will show that if ML has a strongly irreducible splitting

A ∪S B, then the splitting is of genus two and there is a curve c in T 2 so that c ·L(c) = 1.
The argument is an easy variation of the central argument of [RS], to which we refer

for details. Here we present only a sketch. Inside the handlebody A (resp B)there is a
1-complex ΣA (resp ΣB) to which A (resp B) deformation retracts. Then ML−(Σ1∪Σ2)
is just a product S× int(I). This parameterization of ML− (Σ1 ∪Σ2) is sometimes called
a “sweep-out” by S since S sweeps between one spine and the other.

To each point (z, t) ∈ (S1× I) we can associate a positioning in ML of a torus (namely
the fiber Tz over z) and of S (namely its position St during the sweep-out at time t). For
t = 0, 1 we use the spines S0 = ΣA or S1 = ΣB respectively instead of a copy of S. Put
the spines and the sweep-out in general position with respect to the fibering. The result
is that at generic points of (z, t) ∈ S1 × I the surfaces Tz and St are transverse. Over a
1-dimensional complex Γ in S1 × I (called the graphic) the surfaces have a single point
of tangency, and over the vertices of this complex there are either two points of tangency
or a “birth-death” singularity. These last play no important role in the argument.

The goal is to understand closed curves of intersection of St and Tz . We can ignore
curves that are inessential in both, and, since T is incompressible, no curve can be essential
in Tz and inessential in St. The important curves will be those that are essential in St
and inessential in Tz . A generic positioning that gives rise to such curves can be labelled
A or B depending on whether there is a circle of intersection that bounds a meridian disk
of A or B. Only one label can occur, since A ∪S B is strongly irreducible, and, indeed, if
two generic regions of S1 × I share a common 1-dimensional edge of the graphic Γ, they
can have at most one label A or B. (Again, see [RS] for details.)
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Next observe what happens when one passes across an edge in Γ, from one unlabelled
region of (S1 × I) − Γ to another. Since neither A nor B contains an incompressible
surface, each Tz must intersect each St. Because both regions are unlabelled, in each the
intersection curves St ∩ Tz must be essential in Tz . But passing from one region to the
other through an edge in Γ changes the intersection via at most one critical point, and
this can’t change the slope of the curves St∩Tz (but could only transform a pair of curves
into an inessential curve). So, although the number of curves may change, their slope in
Tz does not.

This has the following consequence: There cannot be an essential circle σ ⊂ S1 × I
with the properties that it passes only through unlabelled regions and avoids all vertices
of the graphic. For if such a curve existed then, following the remarks of the previous
paragraph, one could sweep a torus all the way around the circle (maneuvering St as one
goes) always keeping the slope of intersection with St constant. This would imply that
the monodromy would fix a slope on T 2, a contradiction.

So now consider what labellings must appear. Near S1 × {1} each St will be very
near ΣA and so will intersect any Tz so that some curve of intersection is a meridian
of A. Similarly, near S1 × {1} there will always be a curve of intersection bounding a
meridian of B. In other words, near the former all generic regions will be labelled A
and near the latter B. On the other hand, we have just seen that two adjacent regions
cannot be labelled A and B, and there cannot be an essential circle σ ⊂ S1 × I with
the properties that it passes only through unlabelled regions and avoids all vertices of
the graphic. So this means that there must be four regions meeting at a vertex of the
graphic, two opposite ones labelled A and B and the other two unlabelled. (See Figure
3.)

This describes a specific situation (see the remarks preceding [RS, Lemma 5.6]) which,
at the vertex of the graphic, can be described as illustrated in Figure 4 ambiently (cf.
Figure 5 for the pictures of St in Tz in the four different quadrants). St and Tz have
two points of tangency, connected by four arcs of intersection, to form a diamond in Tz .
Of the four possible generic intersections that can be created by perturbing the critical
points, two give rise to single closed curves, meridians of A and B respectively, and two
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give rise to pairs of curves with slope c and c′ respectively, c · c′ = 1. Put another way,
a small collar neighborhood η(T ) of Tz in ML will contain meridian disks of both A and
B. The bottom of the collar will intersect St in curves of slope c and the top in curves of
slope c′.

Now consider how St intersects the closure M− of ML − η(T ), which is also homeo-
morphic to T 2 × I. St ∩M− cannot be compressible, since any compressing disk would
be disjoint from both meridian disks, for A and for B, that lie in η(T ) and this would
violate strong irreducibility. Hence St ∩M− cannot be ∂-compressible in M−, since ∂M−
consists of tori. (We can ignore or remove ∂-parallel annuli in St ∩M−.) Hence St ∩M−
consists entirely of spanning annuli. The only way these spanning annuli can attach to
the appropriate curves in St ∩ η(T ) is if L carries c to c′, as required.

It is a formal consequence of Theorem 4.2 that, when condition 1) applies, ML has a
genus two splitting. This can be demonstrated explicitly (see also [TO, Proposition 3]):
Let ΣA ⊂ML be the join of two circles: c×{0} ⊂ T 2×{0} and the quotient in ML of the
vertical line {0, 0}×R. Then a neighborhood A of ΣA is clearly a genus two handlebody
in ML.

Less obvious is the fact that B = ML − int(A) is also a genus two handlebody. To
see this, note that B can be obtained as follows: Remove a neighborhood of a vertical
spanning arc from T 2× I. The result is a genus two handlebody H . Now glue an annular
neighborhood of a curve c ⊂ (T 2 × {0} ∩ ∂H) (disjoint from the neighborhood of the
vertical spanning arc that has been removed) to an annular neighborhood of a similar
curve c′ ⊂ (T 2 × {1} ∩ ∂H) whose slope intersects that of c in a single point. This last
property makes it easy to find disjoint meridian disks D and D′ so that D (resp. D′) in
H intersects c (resp. c′) in a single point and is disjoint from c′ (resp. c). Hence B is
obtained from the genus two handlebody H by identifying a longitude of one solid torus
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summand of H with a longitude of the other solid torus summand. The result is a genus
two handlebody.

5. Isotopy uniqueness for trace 6= ±3.

The following algebraic lemma will be essential in verifying when two strongly irre-
ducible splittings of the same solvmanifold are isotopic.

Lemma 5.1. Suppose m is an integer with |m| ≥ 3 and K ∈ SL(2, Z) and the matrix

L =
(
m −1
1 0

)
.

If L and K commute then K = ±Ln for some integer n. If instead KLK−1 = L−1 then
m = ±3.
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Proof: There is a direct numerical proof that exploits the simple structure of the
eigenvectors of L, but we present a geometric argument that we believe is more conceptual
and informative.

The modular group PSL(2, Z) acts by Möbius transformations on the upper half plane,
U, and these are isometries of the hyperbolic metric ds/y. Since trace(L) = m and |m| > 2
it follows that L is a hyperbolic isometry with some axis `. Since K commutes with L
it follows that K preserves ` and its orientation. Thus if K is not ±I then K is also
hyperbolic with axis `. The quotient of the upper half plane by PSL(2, Z) is the modular
space M, and we have a branched covering

p : U −→M.

NowM is an orbifold which is topologically a disc with two cone points and one cusp. A
fundamental domain for this action is

D = { x+ iy ∈ U | − 1/2 ≤ x ≤ 1/2 x2 + y2 ≥ 1 }

shown as the shaded region in Figure 6 [M, Theorem 3.2]. It is bounded by two vertical
lines and an arc of a circle. The vertical sides of D are identified under z 7→ z + 1 to
create the cusp. For each integer n define Cn to be the semi-circle in the upper half plane
of radius 1 centered on the point n on the x-axis. The circular side, D∩C0, of D is folded
in half by the map z 7→ −1/z. This creates a cone point of order 2 which is the image,
p(i), of i and a cone point of order 3 which is the image, p(exp(πi/3)), of exp(πi/3).

We will now describe `. The Möbius transformation corresponding to L is

τ (z) = m− 1/z.

The fixed points of this are

z± =
1
2

(
m±

√
m2 − 4

)
.

Thus ` is the semi-circle orthogonal to the x-axis with endpoints z±. The center of this
semi-circle is m/2. If m = ±3 then ` contains the points 1 + i and 2 + i labelled a and
b in Figure 7. These points are in the orbit of i and therefore project on M to the cone
point of order 2. However if |m| > 3 then the projection of ` to M is disjoint from the
cone points. This latter point can be verified as follows.

There is a subarc, α, of ` which is a fundamental domain for the action of τ on
`. Thus the hyperbolic length of α is the hyperbolic translation length of τ which is
2cosh−1(|tr(L)|/2). Now z 7→ −1/z maps C0 to itself, reversing the endpoints. Since τ is
the composition of this with z 7→ z + m it follows that τ (C0) = Cm and this map sends
the counterclockwise orientation on C0 to the clockwise orientation on Cm. The three
semi-circles C0, `, Cm are symmetric about m/2. We claim that α may be chosen as the
subarc of ` with endpoints on C0 and Cm. This is indicated for m = 4 in Figure 6. The
justification for this as a choice for α is simply that since τ (C0) = Cm it follows that τ
does indeed map the endpoint C0 ∩ ` of α to the other endpoint Cm ∩ `.
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When m = 4 one checks that z− is so close to 0 that the endpoint of α on C0 is in
the interior of D ∩C0. This is illustrated for m = 4 in Figure 6, which has been drawn to
scale. Observe that |z−| is a decreasing function of |m|. It then follows that for |m| ≥ 4
that the endpoint of α on C0 is in the interior of D ∩ C0. The situation for |m| = 3 is
anomalous in this respect, since as shown in Figure 7 the endpoints of α are both outside
D.
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From the symmetry about m/2 mentioned before, and the fact that τ (C0) = Cm it
follows that C0, `, Cm are orthogonal. Hence when α is projected into M one obtains a
geodesic. The fact that ` is orthogonal to both C0 and Cm ensures that the two ends
of p(α) meet on M along a geodesic arc. (In fact the projection of ` to M must be a
geodesic onM since the image of a hyperbolic geodesic in a hyperbolic orbifold is always
a geodesic, and so the previous reasoning could be omitted.) In the case that m = ±3
this geodesic is an arc with both endpoints on the cone point of order 2. Otherwise the
geodesic is disjoint from both cone points and is thus a closed geodesic.

The orbit of the fundamental domain D under PSL(2, Z) tiles U . Define V to be the
orbit of D under the group generated by z 7→ z+1. Then V is the closure of the subset of
U lying above the union of the circles ∪Cn. The description of the fundamental domain
D shows that no element of PSL(2, Z) maps C0 to a vertical side of D. Hence the orbit
of C0 is disjoint from the interior of V. For |m| ≥ 4 it follows that α meets the orbit of
C0 only at its endpoints. The projection p(C0) of C0 to modular space is the shortest
geodesic arc, γ, onM connecting the two cone points. Thus the projection of the interior
of α is disjoint from γ. Hence the geodesic, p(α), on M corresponding to L is primitive
in other words p is injective on the interior of α.

If K and L commute then K also has axis ` and thus there is an arc β of ` which is
a fundamental domain for the action of K on `. For |m| ≥ 4 the projection p(β) of β
to M must wrap around p(α) an integral number of times, say n. This implies that the
Möbius transformation corresponding to K is τn. Since the map from SL(2, Z) to Möbius
transformations has kernel ±I it follows that K = ±Ln . This argument must be modified
for |m| = 3 since in this case p maps α by a map which is 2 : 1 onto the arc p(α) in M.
The reasoning above then says that p must map β an integral number of times over the
arc p(α). This means that length(β) = (t/2)length(α) for some integer t. If t = 2n + 1
then KL−n maps a to b and has fundamental domain on ` the arc with endpoints a
and b. This is a hyperbolic transformation. It must preserve the tiling of the hyperbolic
plane. The shaded translate of D in Figure 7 which contains a must be mapped by this
hyperbolic to the adjacent translate of D containing b. It is geometrically clear that a
hyperbolic element can’t do this (but the parabolic z 7→ z + 1 does.) This contradicts
that t is odd. Hence t = 2n and for |m| = 3 one thus also obtains that K = L±n.

To prove the final assertion, suppose that K ∈ SL(2, Z) and that KLK−1 = L−1.
Then K maps ` to itself reversing endpoints. Hence there is a fixed point, z, of K on `.
Thus K is elliptic and p(z) is the cone point of order 2 on M. If |m| ≥ 4 then p(`) is
disjoint from the cone points onM and it follows that |m| = 3.

The proof shows that the case m = ±3 is different from the other cases because there
is a rotation of order 2 in SL(2, Z) with fixed point, a, on the axis of τ. This rotation
(elliptic) conjugates τ to its inverse. The Möbius transformation z 7→ m − z is a half-
rotation about m/2 which swaps the upper and lower half planes and also conjugates τ
to its inverse. Therefore the composition of these rotations commutes with τ. The square
of this composition is τ. This leads to:

12
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Corollary 5.2. Suppose that L is as in the previous lemma and K ∈ GL(2, Z) and K
commutes with L. If det(K) = 1 then K = ±Ln. If det(K) = −1 then m = ±3 and

m = 3 =⇒ K = ±
(
−2 1
−1 1

)
Ln m = −3 =⇒ K = ±

(
2 1
−1 −1

)
Ln.

Proof: We may assume that det(K) = −1, for otherwise the lemma gives the result.
The Möbius transformation z 7→ m − z swaps the endpoints of `. It corresponds to a
matrix

A =
(
−1 m
0 1

)
in GL(2, Z) with determinant −1. Thus AK is in SL(2, Z) and maps ` to itself reversing
endpoints. Hence AK conjugates L to L−1. By the lemma it follows that m = ±3.

Suppose now that m = 3. Let G be the subgroup of GL(2, Z) consisting of all elements
which commute with L. The intersection of G with SL(2, Z) is a subgroup, H, of index
2 and consists of ±Ln. It is readily verified that

B =
(
−2 1
−1 1

)
commutes with L, and that det(B) = −1. Thus G is the union of the two cosets H and
BH. A similar analysis applies to the case m = −3.

Theorem 5.3. If the monodromy L of a solvmanifold ML has |trace(L)| > 3, then any
two irreducible Heegaard splittings of ML are isotopic.

Proof: We have seen that there are two types of solvmanifolds, those whose mon-

odromy matrix can be written L =
(
m −1
1 0

)
and those that cannot. For those that

cannot, it follows from 4.2 that any irreducible splitting is weakly reducible, and from
4.1 that the splitting is then the standard genus three splitting, which is unique up to
isotopy.

So we focus entirely on the case in which

L =
(
m −1
1 0

)
, |m| ≥ 4.

In this case, the discussion following Theorem 4.2 describes a particular genus two split-
ting, in which ΣA is the join of two circles: λ, which is the quotient in ML of the vertical
line {0, 0} ×R ⊂ T 2 × R, and (

0
1

)
× {0} ⊂ T 2 × {0}.

Any other irreducible splitting ML = X ∪Q Y must, by Theorem 4.2, be strongly irre-
ducible and, by the last argument in the proof of that theorem, can then be isotoped so
that the spine ΣX of one of its handlebodies is the join of λ and the curve(

a
b

)
× {0} ⊂ T 2 × {0},

13
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where the curves
(
a
b

)
and

(
u
v

)
= L

(
a
b

)
intersect in a single point. In particular

K(ΣA) = ΣX .
In other words the matrix

K =
(
u a
v b

)
is unimodular and conjugates L to a matrix of the form

KLK−1 =
(
m′ −1
1 0

)
.

But since trace is preserved by conjugation, m′ = m and so K and L commute.
It follows from Cor. 5.2 that ±K is a power of L. Hence by Proposition 3.2, ±K is

isotopic to the identity, and so ΣA is isotopic to ΣX .

6. When trace is ±3

The exceptional cases m = ±3 can be conjugated to

±
(

2 1
1 1

)
.

These are well known as the monodromies of the manifolds obtained by zero Dehn-filling
the figure eight knot complement and its sister respectively.

In fact these are the only two solvmanifolds with trace ±3 since there is only one
conjugacy class in SL(2, C) with each of these traces. This seems to be well-known (e. g.
see [Ra, Section 14]) but we present a geometric proof, shown to us by D. Long and A.
Reid, which is in the spirit of the preceding arguments.

Lemma 6.1. There is only one conjugacy class in SL(2, Z) for each of the traces ±3.

Proof: We consider the case that trace(A) = 3, referring again to Figure 7. Let ` be
the axis of A, then p(`) must intersect p(C0). Otherwise p(`) is contained in the cusp of
M which implies that A is parabolic, contradicting trace(A) = 3. This means that we
may conjugate A so that ` intersects D ∩ C0. Set

A =
(
a b
c d

)
.

The fixed points of the corresponding Möbius transformation are given by

z =
az + b

cz + d
equivalently cz2 + (d− a)z − b = 0.

The (Euclidean) distance along the x-axis between these two fixed points is√
(d− a)2 + 4bc

c
=

√
(d+ a)2 + 4(bc− ad)

c
=
√

5/c.
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The lowest point on D ∩ C0 is exp(πi/3) which has y-coordinate
√

3/2. Since ` is a
semi-circle of Euclidian radius |

√
5/2c|, it follows that

√
5

2|c| ≥
√

3
2

hence |c| ≤
√

5/
√

3 < 2. If c = 0 then A is upper triangular hence parabolic, which is a
contradiction. Thus c = ±1. Thus

A =
(

a ±(−1 + 3a− a2)
±1 3− a

)
.

The fixed points are then

±2a− 3±
√

5
2

.

The semi-circle with these endpoints must intersect C0 thus one of these points has
absolute value at most 1. Hence a = 0, 1, 2, 3. One now checks that these four matrices
are conjugate. The case trace(A) = −3 now follows from multiplication by the central
element −I.

Theorem 6.2. If the monodromy L of a solvmanifold ML has trace(L) = ±3, then ML

has precisely two isotopy classes of irreducible Heegaard splittings. These are strongly
irreducible, genus two, and the product of their associated hyperelliptic involutions is the
central involution.

Proof: According to Lemma 6.1, we may as well take

L =
(
±3 −1
1 0

)
,

so much of the argument used in proving Theorem 5.3 applies. The cases are symmetric,
so we will take m = 3, and, following the argument of Theorem 5.3, we need to consider

exactly the case when det(K) = −1 and K = ±
(
−2 1
−1 1

)
. In particular, a possibly

alternative Heegaard splitting is one which replaces the simple closed curve
(

0
1

)
×{0} ⊂

ΣA with
(

1
1

)
×{0} ⊂ T 2×{0}. We will call the resulting spine of the possibly alternate

Heegaard splitting ΣX .
In order to examine these two potentially different Heegaard splittings more carefully,

it will be convenient to isotope ΣX a bit and introduce some helpful notation. Recall that
λ is the “vertical” circle in ML that is the quotient of the line {0, 0}×R. Let α ⊂ T 2 be

the curve
(

0
1

)
, β ⊂ T 2 be the curve

(
1
1

)
and γ ⊂ T 2 be the curve

(
2
3

)
. Then we

take, as before, ΣA = λ ∪ (α× {0}) and move ΣX to λ ∪ (β × {1/2}).
Let ρ : T 2→T 2 be the involution ρ(x1, x2) = (x2, x1). Since ρLρ = L−1, or, equiva-

lently (ρL)2 = I, the orientation preserving involution ρ̂ of T 2 × I given by ρ̂(x1, x2, t) =
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(x2, x1, 1−t) descends to an involution of ML. The fixed point set of ρ̂ : ML→ML consists
of two circles β × {1/2} ⊂ T 2 × {1/2}, and γ ×{0} ⊂ T 2 × {0}. The first is obvious, and
the latter follows since L(γ) = ρ(γ). Similarly, note that ρ̂ takes both ΣX and ΣA to
themselves, the latter because ρ(α) = −L(α). The first fixed curve β×{1/2} ⊂ T 2×{1/2}
intersects the spine ΣA in a single point and the second γ × {0} ⊂ T 2 × {0} intersects
it twice. So ρ̂ is the hyperelliptic involution induced by the Heegaard splitting A ∪S B.
Note that it preserves the splitting X ∪Q Y .

If we replace ρ by −ρ in the above argument, much remains the same. Again we get
an involution ρ̂′ : ML→ML but now instead of fixing β×{1/2}, ρ̂′ reflects it and so there
are two fixed points on that circle. Similarly, instead of reflecting α×{1/2}, ρ̂′ fixes it. In
other words ρ̂′(x1, x2, t) is the hyperelliptic involution on ΣX and fixes ΣA. The product
ρ̂ · ρ̂′ = −I is the central involution.

All that remains is to show that the splittings A ∪S B and X ∪Q Y described above
are not isotopic. But clearly isotopic Heegaard splittings will have isotopic hyperelliptic
involutions, so their product will be isotopic to the identity. But the product of these
hyperelliptic involutions is

−I : ML→ML

and this cannot be isotopic to the identity. For if it were, the lift of the isotopy to T 2×R
would force −I = Ln for some n, and this is clearly impossible (since an eigenvalue of L
is > 1).

7. Commensurability Relations between Solvmanifolds.

For three-dimensional solvmanifolds we have seen that if the monodromy has a special
form then the Heegaard genus is 2 and otherwise it is 3. In the process we have noted that
there is only one solvmanifold of trace 3. In this section we show that such uniqueness is
”virtually” true for all other traces. That is, up to taking finite covers, a three-dimensional
solvmanifold is determined by the trace of the monodromy.

We will say that two self-homeomorphisms φ1, φ2 of a torus are virtually conjugate
if there is a self-homeomorphism φ of a torus which covers both φ1 and φ2 under suitable
coverings. An equivalent way to say this is that, taking lifts of φ1, φ2 to suitable finite
coverings, the lifts are conjugate. This is an equivalence relation.

Theorem 7.1. Suppose that A,B ∈ SL(2, Z) both have trace equal to m and that |m| ≥ 3.
Then the corresponding linear self-homeomorphisms of the torus are virtually conjugate.
Conversely, if two linear self-homeomorphisms of the torus are virtually conjugate, then
they have equal traces.

Proof: Suppose that f, g are self-homeomorphisms of the torus corresponding to A,B
in SL(2, Z) and that there is a finite cover of the torus for which g covers f. Then f, g
are both covered by the same linear automorphism of R2. The trace of this linear map
equals the trace of both f and g.

Conversely, suppose trace(A) = trace(B) = m and that |m| ≥ 3. Then A and B
represent translations in the hyperbolic plane by equal distances. There is an isometry
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of the hyperbolic plane taking the oriented axis of A to that of B. Thus A and B are
conjugate in SL(2, R). Thus there is P in SL(2, R) with PA = BP. This may be thought
of as a linear system of equations with integer coefficients and the entries in P are the
unknowns. It follows that there is P ∈ GL(2, Q) satisfying this equation. We may thus
take P to have integer entries and det(P ) 6= 0. Regarding P as a monomorphism of
the group Z2 we see that Λ, the image of P, is a subgroup of finite index in Z2. Since
PA = BP it follows that B(Λ) = Λ. Regard B as a homeomorphism of a torus T. Let T̃
be the covering of T corresponding to the subgroup Λ of π1T. Then B is covered by an
automorphism B̃ of T̃ . Then P may be regarded as a homeomorphism from T to T̃ which
conjugates A to B̃.

The following provides a strong form of commensurability:

Theorem 7.2. Suppose that A,B ∈ SL(2, Z) satisfy |trace(A)|, |trace(B)| ≥ 3. Let MA

and MB be the solvmanifolds with these monodromies. Then MA has a finite cover home-
omorphic to MB and vice versa if and only if trace(A) = trace(B).

Proof: If trace(A) = trace(B) then there is a finite cover M̃B obtained by taking the
finite cover, T̃B , of the fiber torus, TB, in MB used in the previous proof. Since B is
covered by the map B̃ of T̃B , this provides the covering M̃B . It is now clear that MA is
homeomorphic to M̃B . For the converse, one shows that if MA covers MB then there is
n ≥ 1 with trace(An) = trace(B).
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