2.3. Koszul case and cohomology operations
2.4. Definition à la Quillen
3. Examples of deformation theories
3.1. Associative algebras
3.2. Poisson structures
3.3. Associative bialgebras
3.4. Twisted L_{∞}-algebras and dg prop(erad)s

Appendix A. Model category structure for prop(erad)s
A.1. Model category structure on \mathbb{S}-bimodules
A.2. Transfer theorem
A.3. Limits and colimits of prop(erad)s
A.4. Model category structure
A.5. Cofibrations and cofibrant objects

References

1. L_{∞}-algebras, dg manifolds, dg affine schemes and morphisms of prop(erad)s

1.1. L_{∞}-algebras, $\mathbf{d g}$ manifolds and dg affine schemes. Structure of an L_{∞}-algebra on a \mathbb{Z}-graded vector space \mathfrak{g} is, by definition, a degree -1 coderivation, $Q: \odot^{\geq 1} s \mathfrak{g} \rightarrow \odot^{\geqq 1} s \mathfrak{g}$, of the free cocommutative coalgebra without counit,

$$
\odot^{\geqq 1} s \mathrm{~g}:=\bigoplus_{n \geqq 1} \odot^{n}(s \mathrm{~g}) \subset \odot^{\cdot} s \mathrm{~g}:=\bigoplus_{n \geqq 0} \odot^{n}(s \mathrm{~s}),
$$

which satisfies the condition $Q^{2}=0$. It is often very helpful to use geometric intuition and language when working with L_{∞}-algebras. Let us view the vector space $s g$ as a formal graded manifold (so that a choice of a basis in \mathfrak{g} provides us with natural smooth coordinates on $s \mathfrak{g})$. If \mathfrak{g} is finite-dimensional, then the structure ring, $\mathcal{O}_{\mathfrak{s g}}$, of formal smooth functions on the formal manifold $s g$ is equal to the completed graded commutative algebra $\widehat{\odot^{\circ}}(s \mathrm{~g})^{*}:=\prod_{n \geq 0} \odot^{n}(s \mathrm{~g})^{*}$ which is precisely the dual of the coalgebra $\odot^{\bullet} s \mathrm{~g}$. This dualization sends the augmentation $\odot^{\geqq 1} s \mathfrak{s g}$ of the latter into the ideal $I:=\prod_{n \geq 1} \odot^{n}(s \mathfrak{s})^{*}$ of the distinguished point $0 \in s \mathrm{~g}$, while the coderivation Q into $\boldsymbol{\|}$ as a degree -1 derivation of $\mathcal{U}_{\mathrm{sg}}$, i.e. into a formal vector field (denoted by the same letter Q) on the manifold $s g$ which vanishes at the distinguished point (as $Q I \subset I$) and satisfies the condition $[Q, Q]=2 Q^{2}=0$. Such vector fields are often called homological.

In this geometric picture of L_{∞}-algebra structures on \mathfrak{g}, the subclass of dg Lie algebra structures gets represented by at most quadratic homological vector fields Q, that is $Q\left((s \mathrm{~g})^{*}\right) \subset(\mathrm{sg})^{*} \oplus \odot^{2}(\mathrm{sg})^{*}$. Such a vector field has a well-defined value at an arbitrary point $s \gamma \in s \mathfrak{g}$, not only at the distinguished point $0 \in s \mathfrak{g}$, i.e. it defines a smooth homological vector field on $s g$ viewed as an ordinary (non-formal) graded manifold. Given a particular dg Lie algebra $(\mathfrak{g}, d,[]$,$) , the associated homological vector field Q$ on $s g$ has the value at a point $s \gamma \in s g$ given explicitly by

$$
\begin{equation*}
Q(\gamma):=d \gamma+\frac{1}{2}[\gamma, \gamma], \tag{1}
\end{equation*}
$$

where we used a canonical identification of the tangent space \mathscr{T}_{γ} at $s \gamma \in s \mathfrak{g}$ with \mathfrak{g}. One checks

