Weak Lyapunov functions for differential inclusions

Definition. A scalar function V is a weak Lyapunov function if

- V is continuous on \mathcal{N}, and continuously differentiable on $\mathcal{N} \backslash\{\bar{x}\}$.
- $V(\bar{x})=0$ while $V(x)>0$ for all $x \neq \bar{x}$.
- For each $\delta>0$ sufficiently small, the sublevel set $\{x ; V(x) \leq \delta\}$ is compact.
- At each $x \neq \bar{x}$ one has

$$
\inf _{y \in F(x)} \nabla V(x) \cdot y \leq 0
$$

