Now the support of $\xi_{k, q_{p+1}, 1}^{\prime \prime}$ is contained in the preimage under $\left(\sigma_{\beta_{r}} \circ s\right)^{k-2 p-2}$ of the support of $\xi_{2 p+2, q_{p}}^{\prime \prime}$. Since the support of $\xi_{2 p+2, q_{p}}^{\prime \prime}$ is disjoint from X_{1}, the support of $\xi_{2 p+3, q_{p+1}, 1}^{\prime \prime}$ is disjoint from $\overline{\beta_{q_{p+1}}} * \beta_{q_{p}}$. The support of $\psi_{2 p+3, q_{p+1}}$ is the preimage under $\sigma_{\beta_{r}} \circ s$ of an annulus which intersects the unit disc between the leaves with endpoints $e^{ \pm 2 \pi i q_{p+1}}$ and $e^{ \pm 4 \pi i q_{p+1}}$. The preimage is disjoint from X_{2} So now the supports of $\xi_{2 p+4, q_{p+1}, 1}^{\prime \prime}$ and $\xi_{2 p+4,2}^{\prime \prime}$ are obtained by taking preimages under $\sigma_{\beta_{r}} \circ s$ again, and must be disjoint from X_{2}.

This completes the proof of (7.3.5) for q_{p+1}.

7.4. Hard part of the fundamental domain: the first few cases

In this subsection, we describe the part of the fundamental domain corresponding to $V_{3, m}\left(a_{1},+\right)$ for $m \leq 5$, with some partial information in the cases $m=6,7$. To do this, we shall describe the set $\Omega_{m}\left(a_{1},+\right)$ in terms of its image $R_{m}\left(a_{1},+\right)$ under ρ. Three paths in $\Omega_{m}\left(a_{1},+\right)$ (for any m) have already been chosen: $\omega_{1}, \omega_{1}^{\prime}$ and ω_{∞}. The images under $\rho(., s)$ are, respectively, $\beta_{2 / 7}, \beta_{5 / 7}$ and $\beta_{1 / 3}$, or equivalently, $\beta_{2 / 3}$, since $\beta_{1 / 3}$ and $\beta_{2 / 3}$ are homotopic under a homotopy moving the second endpoint along $\gamma_{1 / 3}$. Here, $\gamma_{1 / 3}$ denotes the closed loop $\ell_{1 / 3} \cup \ell_{1 / 3}^{-1}$, where $\ell_{1 / 3}$ is the leaf of $L_{3 / 7}$ with endpoints $e^{ \pm 2 \pi i(1 / 3)}$. As in the proof of the easy cases in 6.3 , we need to describe matched pairs of adjacent pairs in $R_{m}\left(a_{1},+\right)$. As in (6.3.1), the adjacent pairs $\left(\beta_{1}, \beta_{2}\right)$ and $\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}\right)$ in $R_{m}\left(a_{1},+\right)$ are matched if there is $[\psi] \in \operatorname{MG}\left(\overline{\mathbb{C}}, Y_{m}(s)\right)$ and $\alpha \in \pi_{1}\left(\overline{\mathbb{C}} \backslash Z_{m}(s), v_{2}\right)$ such that

$$
\begin{align*}
& \left(s, Y_{m}(s)\right) \simeq \psi\left(\sigma_{\alpha} \circ s, Y_{m}(s)\right) \tag{7.4.1}\\
& \beta_{i}=\alpha * \psi\left(\beta_{i}^{\prime}\right) \text { rel } Y_{m}(s), i=1,2
\end{align*}
$$

In particular, $\overline{\beta_{1}} * \beta_{2}$ and $\psi\left(\overline{\beta_{1}^{\prime}} * \beta_{2}^{\prime}\right)$ are homotopic via a homotopy preserving Z_{m}. We are going to try to make choices so that $\overline{\beta_{1}} * \beta_{2}$ and $\psi\left(\overline{\beta_{1}^{\prime}} * \beta_{2}^{\prime}\right)$ are disjoint arcs, after arbitrarily small perturbation near v_{2}, bounding an open disc disjoint from m.

If $\left(\beta_{2 / 7}, \beta_{2}\right)$ and $\left(\beta_{5 / 7}, \beta_{2}^{\prime}\right)$ are adjacent pairs in $R_{m}\left(a_{1},+\right)$, then these are always matched by $[\psi]=\left[\psi_{m, 2 / 7}\right]$ and $\alpha_{m, 2 / 7}$, where $\alpha_{m, 2 / 7}$ and $\psi_{m, 2 / 7}$ are as in 7.2. For $m \leq 2, \psi_{m, 2 / 7}$ is the identity on $\beta_{5 / 7}$ and $\alpha_{m, 2 / 7}$ is an arbitrarily small perturbation of $\beta_{2 / 7} * \psi_{m, 2 / 7}\left(\beta_{5 / 7}\right)$.

We are now ready to start an inductive construction of $R_{m}\left(a_{1},+\right)$ with a matching of pairs of adjacent pairs. After homotopy preserving endpoints if necessary, $\beta_{2 / 7}$ and $\beta_{5 / 7}$ are disjoint from $\gamma_{1 / 3}$ and also from $\beta_{1 / 3}$, apart from the common endpoint at v_{2}. Also, after homotopy preserving endpoints if necessary, $\beta_{1 / 3}$ is disjoint from $\gamma_{1 / 3}$, apart from the second endpoint being in $\gamma_{1 / 3}$. Then $\beta_{2 / 7} \cup \beta_{5 / 7} \cup \beta_{1 / 3} \cup \gamma_{1 / 3}$ bounds an open topological disc containing just one point of $Z_{2}(s)$, namely the common endpoint of $\beta_{9 / 28}$ and $\beta_{19 / 28}$. (The boundary of this disc is not an embedded circle.)

