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1. Introduction

Let Y be a compact oriented smooth 3-manifold with nonzero first Betti number. Two
nonzero vector fields on Y are called homologous if they are homotopic over the com-
plement of a ball in Y . An Euler structure on Y is an equivalence class of homologous
vector fields (see Turaev [33]). Let E(Y ) denote the space of Euler structures on Y . If Y
carries a Riemannian metric then an Euler structure can also be defined as a cohomology
class e ∈ H2(SY ; Z) on the unit sphere bundle SY in TY which restricts to a positive
generator on each fiber (with the orientation given by the complex structure η 7→ v × η).
The correspondence assigns to each unit vector field v : Y → SY the Euler structure

ev = PD(v∗[Y ]) ∈ H2(SY ; Z).

With the second description it follows that there is a free and transitive action of H2(Y ; Z)
on the space of Euler structures, given by

H2(Y ; Z) × E(Y ) → E(Y ) : (h, e) 7→ h · e = e + π∗h.

Moreover there is a natural map

E(Y ) → H2(Y ; Z) : e 7→ c(e)

which assigns to e = PD([v]) the Euler class of the normal bundle v⊥. These maps are
related by c(h · e) = c(e) + 2h. Turaev introduces a torsion invariant

T : E(Y ) → Z

which is a kind of refinement of the Reidemeister-Milnor torsion. In the case b1(Y ) = 1
this function depends on a choice of orientation of H1(Y ).

A unit vector field v : Y → SY also determines a spinc structure γv on Y (see Ex-
ample 3.1 below). Turaev [33] observes that two such spinc structures γv0 and γv1 are
isomorphic if and only if the vector fields v0 and v1 are homologous, and hence there
is a natural bijection between E(Y ) and the set Sc(Y ) of isomorphism classes of spinc

structures on Y (see also [26]). Now the Seiberg-Witten invariants of Y take the form of
a function

SW : Sc(Y ) → Z
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As above, this function depends on a choice of orientation of H1(Y ) whenever b1(Y ) = 1.
In [33] Turaev conjectures that the Seiberg-Witten invariants and the torsion invariants
of Y should agree under the natural identification of E(Y ) with Sc(Y ). The purpose of
this paper is to outline a proof of this conjecture for mapping tori.1

Theorem 1.1. Let Σ be a compact oriented Riemann surface and f : Σ → Σ be an
orientation preserving diffeomorphism. Denote by Yf the mapping torus of f. Then

SW(Yf , γv) = T (Yf , ev)

for every nonzero vector field v on Yf .

The horizontal vector field ∂/∂t determines a canonical Euler structure ef ∈ E(Yf).
Likewise, there is a canonical spinc structure γf ∈ Sc(Yf ) which corresponds to ef under
the isomorphism E(Yf) ∼= Sc(Yf ). Hence both E(Yf) and Sc(Yf ) can be naturally iden-
tified with H2(Yf ;Z). A cohomology class in H2(Yf ;Z) can be represented as the first
Chern class of a complex line bundle over Yf . Every such line bundle is isomorphic to the
mapping torus of a lift f̃ : E → E of f to a unitary bundle automorphism of a Hermitian
line bundle over Σ:

E
f̃−→ E

↓ ↓
Σ f−→ Σ

.

Let d = deg(E) := 〈c1(E), [Σ]〉 and denote by ed,f̃ ∈ E(Yf) and γd,f̃ ∈ Sc(Yf ) the Euler
and spinc structures induced by f̃ . Then the assertion of Theorem 1.1 can be restated in
the form

SW(Yf , γd,f̃ ) = T (Yf , ed,f̃ )

for every Hermitian line bundle E → Σ and every automorphism f̃ : E → E that descends
to f .

2. Lefschetz numbers

Let M be a compact smooth manifold and φ : M →M be a continuous map. Denote
by Ωφ the space of continuous paths x : R→M such that x(t +1) = φ(x(t)). For x ∈ Ωφ
denote by [x] ∈ π0(Ωφ) the homotopy class of the path. Two pairs (φ0,P0) and (φ1,P1)
with Pi ∈ π0(Ωφi) are called conjugate if there exists a homeomorphism ψ : M → M
such that φ1 = ψ−1 ◦ φ0 ◦ ψ and P1 = ψ∗P0. They are called homotopic if there exist
a homotopy s 7→ φs from φ0 to φ1 and a continuous map [0, 1]× R→ M : (s, t) 7→ xs(t)
such that xs ∈ Ωφs for all s and [x0] = P0, [x1] = P1. Every fixed point x = φ(x)
determines a constant path in Ωφ. For P ∈ π0(Ωφ) let Fix(φ,P) denote the set of all

1While this paper was written the author received a message that Turaev had proved the conjecture
for general 3-manifolds [34]. Turaev’s proof is based on the work by Meng-Taubes [20].
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fixed points x ∈ Fix(φ) with [x] = P. If φ is smooth then a fixed point x ∈ Fix(φ) is
called nondegenerate if det(1l− dφ(x)) 6= 0. In this case the number

ind(x, φ) = sign det(1l− dφ(x))

is called the fixed point index of x.
The Lefschetz invariant assigns an integer to every pair (φ,P) where φ : M → M is

a continuous map and P ∈ π0(Ωφ). It is characterized by the following axioms.

(Fixed point index): If φ is smooth and the fixed points in Fix(φ,P) are all nonde-
generate then

L(φ,P) =
∑

x∈Fix(φ,P)

ind(x, φ).

(Homotopy): Homotopic pairs have the same Lefschetz invariant.
(Naturality): Conjugate pairs have the same Lefschetz invariant.
(Trace formula): The Lefschetz number of φ is given by

L(φ) :=
∑

P∈π0(Ωφ)

L(φ,P) =
∑
i

(−1)itrace(φ∗ : Hi(M)→ Hi(M)).

(Zeta function): The zeta function of φ is given by

ζφ(t) := exp

( ∞∑
k=1

tk

k
L(φk)

)

=
dimM∏
i=0

det(1l− tHi(φ))(−1)i+1
(1)

=
∞∑
d=0

tdL(Sdφ).

Here φk denotes the k-th iterate of φ and Sdφ : SdM → SdM denotes the homeo-
morphism of the d-fold symmetric product SdM induced by φ.

(Product formula): If the periodic points of φ are all nondegenerate then

ζφ(t) =
∞∏
k=1

∏
x̄∈P(φ,k)/Zk

(1 − ε(x, φk)tk)−ε(x,φ
k)ind(x,φk).

Here ε(x, φk) = sign det(1l + dφk(x)) and P(φ, k) denotes the set of periodic points
of minimal period k.

The Lefschetz invariant is uniquely determined by the “homotopy” and “fixed point index”
axioms. The “trace formula” is the Lefschetz fixed point theorem. The “product formula”
is due to Ionel–Parker [16] and also plays a crucial role in the work of Hutchings–Lee [14,
15].
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Proof of (1) and the product formula. The second equation in (1) follows from the trace
formula and the identity

det(1l− A)−1 = exp

∑
k≥1

Ak

k

 .

The third equation follows from the identities

L(Sdφ) =
d∑
j=0

(−1)jtrace(ΛjHodd(φ))trace(Sd−jHev(φ)),

det(1l− A) =
∑
j≥0

(−1)jtrace(ΛjA), det(1l− A)−1 =
∑
k≥0

(−1)ktrace(SkA).

To prove the product formula note that the indices of the iterated periodic points are
given by

ind(x, φk`) = ind(x, φk)ε(x, φk)`−1.

Let p±(φ, k) denote the sum of the fixed point indices of the periodic orbits in P(φ, k)/Zk
which satisfy ε(x, φk) = ±1. Then

L(φk) =
∑
n|k

k

n

(
p+(φ, k/n) + (−1)n−1p−(φ, k/n)

)
.

This implies
∞∑
k=1

tkL(φk) =
∞∑
k=1

(
p+(φ, k)

ktk

1− tk
+ p−(φ, k)

ktk

1 + tk

)
.

Divide by t, integrate, and exponentiate to obtain the product formula.

Let us now return to the case of a diffeomorphism f : Σ→ Σ of a Riemann surface and
a lift f̃ : E → E to an automorphism of a line bundle of degree d. For d ≥ 2 such a lift
determines a homotopy class Pd,f̃ ∈ π0(ΩSdf ) (Lemma 7.1). If d = 1 then P1,f̃ denotes a
union of connected components of ΩSdf .

Theorem 2.1. Let Σ be a compact oriented Riemann surface, E → Σ be a Hermitian
line bundle of degree d, f : Σ → Σ be an orientation preserving diffeomorphism and
f̃ : E → E be an automorphism that descends to f. Then

SW(Yf , γd,f̃ ) = L(Sdf,Pd,f̃).

The proof of Theorem 2.1 is outlined below. Full details will appear elsewhere.

Theorem 2.1 implies Theorem 1.1. In [14, 15] Hutchings and Lee proved that

T (Yf , ed,f̃) = L(Sdf,Pd,f̃ ).
Their proof is based on a comparison between the topological torsion and the torsion
of the Morse complex of a closed 1-form α, twisted by a suitable Novikov ring. The
quotient is the zeta function given by counting the periodic solutions of the gradient flow
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of α. In the case of mapping tori the proof can be thought of as an interpolation between
a representative of α without periodic solutions (giving the torsion invariant) and one
without critical points (giving the Lefschetz invariant).

Corollary 2.2. Let Σ be a compact oriented Riemann surface of genus g and f : Σ→ Σ
be an orientation preserving diffeomorphism. Then∑

γ∈Sc(Yf)

SW(Yf , γ)tc(γ)·Σ/2 = t1−gζf (t),

Proof. The characteristic class of the spinc structure γd,f̃ satisfies c(γd,f̃ ) ·Σ = 2d+2−2g.
Hence the result follows from Theorem 2.1 and (1).

Note that ζf is a polynomial if and only if 1 is an eigenvalue of the automorphism
f∗ : H1(Σ)→ H1(Σ) or, equivalently, b1(Yf) ≥ 2.

3. Seiberg-Witten invariants

Fix a Riemannian metric on Y . A spinc structure on Y is a pair (W, γ) where W → Y
is a Hermitian rank-2 bundle and γ : TY → End(W ) is a bundle homomorphism which
satisfies

γ(v)γ(w) = γ(v ×w)− 〈v, w〉1l
for v, w ∈ TyY . The characteristic class of γ is defined by c(γ) = c1(W ) ∈ H2(Y ;Z).

Example 3.1. A unit vector field v : Y → TY determines a spinc structure (Wv, γv) where
Wv = C⊕ v⊥ and

γv(η)
(

θ0

θ1

)
=
(

−i〈η, v〉θ0 + 〈η, θ1〉 + i〈v × η, θ1〉
〈η, v〉v × θ1 − (Re θ0)(η − 〈η, v〉v) − (Im θ0)v × η

)
for θ0 ∈ C, θ1 ∈ v⊥, and η ∈ TY . The characteristic class of this structure is c(γv) =
c1(v⊥).

Let A(γ) denote the space of connections on the square root det(W )1/2 of the de-
terminant bundle of W . Every connection A ∈ A(γ) determines a spinc connection ∇A
on W which is compatible with the Levi-Civita connection on TY . The Seiberg-Witten
equations on Y take the form

DAΘ = 0, γ(∗FA + ∗η) = (ΘΘ∗)0, (2)

for A ∈ A(γ) and Θ ∈ C∞(Y, W ). Here DA : C∞(Y, W )→ C∞(Y, W ) denotes the Dirac
operator induced by ∇A, FA ∈ Ω2(Y, iR) denotes the curvature form of A, and (ΘΘ∗)0 ∈
C∞(Y, End(W )) is defined by (ΘΘ∗)0θ = 〈Θ, θ〉Θ − |Θ|2θ/2 for θ ∈ C∞(Y, W ). The
metric identifies TY with T ∗Y and so γ induces a bundle isomorphism between T ∗Y ⊗C
and the bundle End0(W ) of traceless endomorphisms of W . This isomorphism identifies
the imaginary valued 1-forms with the traceless Hermitian endomorphisms of W . The
2-form η ∈ Ω2(Y, iR) represents a perturbation. Since d∗γ−1((ΘΘ∗)0) = iIm 〈DAΘ, Θ〉
equation (2) has no solutions unless η is closed.
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Remark 3.2. (i) The solutions of (2) are the critical points of the Chern-Simons-Dirac
functional CSDη : A(γ) ×C∞(Y, W )→ R given by

CSDη(A, Θ) = −1
2

∫
Y

(A− A0) ∧ (FA + FA0 + 2η)− 1
2

∫
Y

Re 〈DAΘ, Θ〉dvol.

(ii) Every solution (A, Θ) of (2) with Θ 6≡ 0 satisfies

sup
Y
|Θ|2 ≤ sup

Y

(
2|η| − s

2

)
,

where s : Y → R denotes the scalar curvature [17]. This implies that the space of gauge
equivalence classes of solutions of (2) is compact.

(iii) The augmented Hessian of the Chern-Simons-Dirac functional is the self-adjoint
operator HA,Θ on the space Ω0(Y, iR) ⊕Ω1(Y, iR) ⊕C∞(Y, W ) given by

HA,Θ

 ψ
α
θ

 =

 d∗α− iIm 〈Θ, θ〉
dψ + ∗dα− γ−1((θΘ∗ + Θθ∗)0)

−DAθ− γ(α)Θ− ψΘ

 .

If (A, Θ) is a solution of (2) with Θ 6= 0 then

HA,ΘHA,Θ

 ψ
α
θ

 =

 ∆ψ + |Φ|2ψ
∆α + |Θ|2α− 2iIm 〈∇AΘ, θ〉
DADAθ + |Θ|2θ − 2∇A,αΘ


(see [26]). Hence every triple (ψ, α, θ) ∈ ker HA,Θ satisfies ψ = 0. It follows that the kernel
of the augmented Hessian agrees with the kernel of the actual Hessian d2CSDη(A, Θ) on
the quotient Ω1(Y, iR)× C∞(Y, W )/{(dξ,−ξΘ) | ξ ∈ Ω0(Y, iR)}.

A solution (A, Θ) of (2) with Θ 6= 0 is called nondegenerate if HA,Θ is bijective.
In [9] Froyshov proved that for a generic closed perturbation η the solutions of (2) are
all nondegenerate, and hence form a finite set of gauge equivalence classes (see also [26]).
Perturbations with this property are called regular. Let (A, Θ) be a nondegenerate
solution of (2). Then the index µSW(A, Θ) is defined as the spectral flow of the operator
family [−1, 1] 3 s 7→ Hs where Hs = HA,sΘ for 0 ≤ s ≤ 1 and

Hs =

 sπ0 d∗ 0
d ∗d + sπ1 0
0 0 DA

 , −1 ≤ s ≤ 0.

This operator is injective for s < 0. (See [23] for an exposition of the spectral flow.) The
index µSW(A, Θ) is well defined whenever the Hessian HA,Θ is injective. It satisfies

µSW(u∗A, u−1Θ) − µSW(A, Θ) =
[
u−1du

2πi

]
· c1(W )
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for every gauge transformation u : Y → S1. This number is always even. The Seiberg-
Witten invariant of (Y, γ) is defined by

SW(Y, γ) =
∑

[A,Θ]∈Crit(CSDη)

(−1)µ
SW(A,Θ) (3)

for every regular perturbation η, where the sum runs over all gauge equivalence classes of
solutions of (2). If b1(Y ) > 1 then the right hand side of (3) is independent of η and the
metric and depends only on the isomorphism class of the spinc structure γ (see [26] for
details).

Remark 3.3. Care must be taken when b1(Y ) = 1. In this case the right hand side of (3) is
not independent of η but may change when η passes through the codimension-1 subspace
for which there are solutions of (2) with Θ = 0. This is the case whenever[

iη

π

]
+ c1(W ) = 0

(in deRham cohomology). To avoid this it is convenient to fix an orientation of H1(Y )
and, for each metric g on Y , denote by αg ∈ Ω1(Y ) the unique harmonic 1-form which
has norm 1 and represents the given orientation of H1(Y ). Then we impose the condition

εγ(g, η) := −
∫
Y

iη

π
∧ αg − c1(W ) · [αg] < 0

in the definition (3) of the Seiberg-Witten invariant.

4. Vortex equations

Let Σ be a compact oriented 2-manifold of genus g. Fix a volume form ω ∈ Ω2(Σ)
and denote by J (Σ) the space of complex structures on Σ that are compatible with the
orientation. Let E → Σ be a Hermitian line bundle of degree

d = 〈c1(E), [Σ]〉

and denote by A(E) the space of Hermitian connections on E. For every J ∈ J (Σ)
there is a natural bijection from A(E) to the space of Cauchy-Riemann operators on E.
The Cauchy-Riemann operator associated to A ∈ A(E) and J ∈ J (Σ) will be denoted
by ∂̄J,A : C∞(Σ, E) → Ω0,1

J (Σ, E). When the complex structure is understood from the
context we shall drop the subscript J . The vortex equations take the form

∂̄J,AΘ0 = 0, ∗iFA +
|Θ0|2

2
= τ (4)

for A ∈ A(E) and Θ0 ∈ C∞(Σ, E). Here τ : Σ→ R is a smooth function such that∫
Σ

τω > 2πd.
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The space of gauge equivalence classes of solutions of (4) will be denoted by

M(J, τ ) =MΣ,d(J, τ ) =
{(A, Θ0) ∈ A(E) ×C∞(Σ, E) | (4)}

Map(Σ, S1)
.

This space can be interpreted as a symplectic quotient as follows. The space A(E) ×
C∞(Σ, E) carries a symplectic form Ω given by

Ω((α, θ0), (α′, θ′0)) = −
∫

Σ

α ∧ α′ +
∫

Σ

Im 〈θ0, θ
′
0〉ω (5)

and a compatible complex structure (α, θ0) 7→ (∗α, iθ0). The gauge group G = Map(Σ, S1)
acts by Hamiltonian symplectomorphisms and it is a simple matter to check that the
moment map is given by

A(E) ×C∞(Σ, E)→ C∞(Σ) : (A, Θ0) 7→ ∗iFB + |Θ0|2/2.

Now the space
XJ =

{
(A, Θ0) | ∂̄AΘ0 = 0, Θ0 6≡ 0

}
is a complex submanifold of A(E) × C∞(Σ, E) and is invariant under the action of G.
Hence the moduli space M(J, τ ) of solutions of (4) can be interpreted as the Marsden-
Weinstein quotient XJ//G(τ ).

Remark 4.1. The tangent space of MΣ,d(J, τ ) at (A, Θ0) consists of all pairs (θ0, α1) ∈
C∞(Σ, E)×Ω0,1(Σ) that satisfy

∂̄J,Aθ0 + α1Θ0 = 0, ∂̄J
∗
α1 −

1
2
〈Θ0, θ0〉 = 0. (6)

Here α1 is the (0, 1)-part of an infinitesimal connection α ∈ Ω1(Σ, iR). Since 2∂̄∗α0,1 =
d∗α − ∗idα (cf. [26, Corollary 3.28]) the second equation in (6) decomposes into ∗idα +
Re 〈Θ0, θ0〉 = 0 and d∗α−iIm 〈Θ0, θ0〉 = 0. The first of these equations is the infinitesimal
version of the second equation in (4) and the second is the local slice condition for the
action of the gauge group. Now the left hand sides of the equations (6) determine an
operator DA,Θ0 which satisfies DA,Θ0

∗DA,Θ0 = ∆∂̄ + |Θ0|2/2 and hence is surjective.
This shows that the moduli space M(J, τ ) is smooth.

Remark 4.2. The Jacobian torus of E is the quotient

JacΣ,d(J) :=
Aω(E)
G

∼=
A(E)
Gc , Aω(E) =

{
A | ∗ iFA =

2πd

Vol(Σ)

}
.

Here the complexified gauge group Gc = Map(Σ,C∗) acts on A(E) by

u∗A = A + u−1∂̄u− ū−1∂ū.

With u = e−f : Σ → R we obtain u∗A = A + ∗idf and ∗iFu∗A − ∗iFA = d∗df . Hence
u∗A ∈ Aω(E) if and only if d∗df = 2πd/Vol(Σ) − ∗iFA. This equation has a unique
solution f with mean value zero. Hence each complex gauge orbit of A(E) intersects
Aω(E) in precisely one unitary gauge orbit.
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Remark 4.3. The moduli spaceMΣ,d(J, τ ) can be identified with the GIT quotient XJ/Gc
(see Garćia-Prada [11]). To see this let u = e−f : Σ → R. Then, by Remark 4.2,
∗iFu∗A − ∗iFA = d∗df and hence the pair (u∗A, u−1Θ0) satisfies the second equation
in (4) if and only if

d∗df + e2f |Θ0|2
2

= τ − ∗iFA.

This is the Kazdan–Warner equation and, since the right hand side has positive mean
value, it has a unique solution f : Σ→ R [26, Appendix D]. This establishes the bijection

MΣ,d(J, τ ) = XJ//G(τ ) ∼= XJ/Gc.
There is a holomorphic projection

MΣ,d(J, τ )→ JacΣ,d(J)

given by [A, Θ0]c 7→ [A]c. This is an embedding whenever dim ker ∂̄A ≤ 1 for every
A ∈ A(E).

Remark 4.4. The complex quotientMΣ,d(J, τ ) ∼= XJ/Gc is the set of effective divisors on
Σ and can be identified with the symmetric product

MΣ,d(J, τ ) ∼= SdΣ =
Σ× · · · ×Σ

Sd
.

The projection XJ → SdΣ assigns to a pair (A, Θ0) the set of zeros of Θ0. Thus every
complex structure J ∈ J (Σ) determines a smooth atlas on SdΣ. For different choices of
J the coordinate charts are not compatible but have only Lipschitz continuous transition
maps.

5. The universal connection

The next theorem shows that the moduli spaces MΣ,d(J, τ ) can be identified as sym-
plectic manifolds, and that the symplectic structure depends only on the mean value
of τ .

Theorem 5.1. Let [0, 1]→ J (Σ)× C∞(Σ) : t 7→ (Jt, τt) be a smooth function such that∫
Σ

τ̇tω = 0 and choose [0, 1] → Ω1(Σ) : t 7→ σt such that τ̇t + ∗dσt = 0. Then there is a
symplectomorphism

ψ = ψ{Jt,τt,σt} :M(J0, τ0)→M(J1, τ1)
defined by [A(0), Θ0(0)] 7→ [A(1), Θ0(1)], where

iȦ = Re 〈Θ0, Θ1〉 − σ, iΘ̇0 = ∂̄J,A
∗Θ1, (7)

and Θ1 = Θ1(t) ∈ Ω0,1
Jt

(Σ, E) is the unique solution of the elliptic equation

∂̄J,A ∂̄J,A
∗Θ1 +

|Θ0|2
2

Θ1 =
1
2
(∂J,AΘ0) ◦ J̇ + σ0,1Θ0. (8)

If J0 = J1, τ0 = τ1, and
∫ 1

0
σs ds = 0 then ψ is Hamiltonian.
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Choose σt = ∗tdft where ft : Σ → R is the unique function of mean value zero which
satisfies τ̇t = d∗tdft. The resulting symplectomorphisms ψ{Jt,τt} :M(J0, τ0)→M(J1, τ1)
determine a universal Hamiltonian connection on the fibre bundle over J (Σ)×C∞m (Σ)
with fibres M(J, τ ). Here C∞m (Σ) denotes the space of functions with fixed mean value
m > 2πd.

Remark 5.1. Suppose that A(t), Θ0(t), and Θ1(t) satisfy

i(Ȧ − dΨ) = Re 〈Θ0, Θ1〉 − σ, i(Θ̇0 + ΨΘ0) = ∂̄J,A
∗Θ1, (9)

and (8). Let [0, 1] → G : t 7→ u(t) be a solution of the ordinary differential equation
u−1u̇ + Ψ = 0. Then the functions

Ã = A + u−1du, Θ̃0 = u−1Θ0, Θ̃1 = u−1Θ1

satisfy (7) and (8).

Exercise 5.2. Suppose Jt ≡ J and τt ≡ τ . Let ψt :M(J, τ )→M(J, τ ) be defined by the
solutions of (7) and (8). If σt = dht prove that the ψt are generated by the Hamiltonian
functions Ht([A, Θ0]) = −

∫
Σ

ihtFA. In general, prove that Flux({ψt}) ∈ H1(M(J, τ )) is
the cohomology class of the 1-form

T[A,Θ0 ]M(J, τ )→ R : (α, θ0) 7→
∫

Σ

iσ ∧ α, σ =
∫ 1

0

σs ds.

Prove that the flux is zero if and only if σ is exact.

To prove Theorem 5.1 it is useful to examine the spaces

XJ,σ =
{
(A, Θ0) ∈ A(E)× C∞(X, E) | ∂̄J,A+iσΘ0 = 0, Θ0 6≡ 0

}
for J ∈ J (Σ) and σ ∈ Ω1(Σ). Suitable Sobolev completions of these spaces are Banach
manifolds.

Lemma 5.2. For every J ∈ J (Σ) and every α ∈ Ω1(Σ) the space XJ,σ is a complex sub-
manifold of A(E)×C∞(X, E) with respect to the complex structure (α, θ0) 7→ (∗Jα, iθ0).

Proof. The tangent space of XJ,σ at the point (A, Θ0) is the kernel of the operator
DJ,A+iσ,Θ0 : Ω1(Σ, iR)×C∞(Σ, E)→ Ω0,1(Σ, E) given by

DJ,A+iσ,Θ0 (α, θ0) = ∂̄J,A+iσθ0 + α0,1Θ0.

The identity (∗Jα)0,1 = iα0,1 shows that this operator is complex linear. Its L2-adjoint
DJ,A+iσ,Θ0

∗ : Ω0,1(Σ, E)→ Ω1(Σ, iR)× C∞(Σ, E) is given by

DJ,A+iσ,Θ0
∗θ1 = (iIm 〈Θ0, θ1〉, ∂̄J,A+iσ

∗
θ1).

Since (iIm 〈Θ0, θ1〉)0,1 = 〈Θ0, θ1〉/2 we obtain

DJ,A+iσ,Θ0DJ,A+iσ,Θ0
∗θ1 = ∂̄J,A+iσ ∂̄J,A+iσ

∗
θ1 +

1
2
|Θ0|2 θ1.

It follows from elliptic regularity that DJ,A+iσ,Θ0 is surjective and hence XJ,σ is an infinite
dimensional manifold.
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The required identification of the moduli spaces M(J, τ ) arises from a symplectic
connection on the universal bundle

E =
⋃
J,σ

{(J, σ)} × XJ,σ −→ J (Σ)× Ω1(Σ).

Think of E as a submanifold of the space J (Σ) × Ω1(Σ) × A(E) × C∞(Σ, E). The
formula (5) defines a closed 2-form on E which restricts to the given symplectic form
on each fibre. Hence it determines a symplectic connection on E , where the horizontal
subspace at (J, σ, A, Θ0) is the Ω-complement of the vertical space T(A,Θ0)XJ . We call
this the universal symplectic connection on E . The next proposition gives an explicit
formula for this connection.

Proposition 5.3. A smooth path [0, 1] → E : t 7→ (J(t), σ(t), B(t), Θ0(t)) is horizontal
with respect to the universal connection on E if and only if

iȦ = Re 〈Θ0, Θ1〉, iΘ̇0 = ∂̄J,A+iσ
∗Θ1, (10)

∂̄J,A+iσ ∂̄J,A+iσ
∗Θ1 +

|Θ0|2
2

Θ1 =
1
2
(∂J,A+iσΘ0) ◦ J̇ + σ̇0,1Θ0. (11)

Every horizontal path satisfies

d

dt

(
∗iFA +

|Θ0|2
2

)
= 0. (12)

Proof. A path t 7→ (J(t), σ(t), A(t), Θ0(t)) in E is horizontal with respect to the universal
connection if and only if

(∗JȦ, iΘ̇0) ⊥ ker DJ,A+iσ,Θ0

for every t. By the proof of Lemma 5.2, this holds if and only if

(∗JȦ, iΘ̇0) ∈ imDJ,A+iσ,Θ0
∗.

The formula for this operator in the proof of Lemma 5.2 shows that this means

∗JȦ = iIm 〈Θ0, Θ1〉, iΘ̇0 = ∂̄J,A+iσ
∗Θ1

for some Θ1 ∈ Ω0,1(Σ, E). Since ∗J Im 〈Θ0, Θ1〉 = Im 〈Θ0, iΘ1〉 = Re 〈Θ0, Θ1〉, this is
equivalent to (10). Since (A, Θ0) ∈ XJ,σ for every t we obtain

0 =
d

dt
∂̄J,A+iσΘ0

= ∂̄J,A+iσΘ̇0 + Ȧ0,1Θ0 + iσ̇0,1Θ0 +
i

2
(dA+iσΘ0) ◦ J̇

= −i∂̄J,A+iσ ∂̄J,A+iσ
∗Θ1 − i

|Θ0|2
2

Θ1 +
i

2
(∂J,A+iσΘ0) ◦ J̇ + iσ̇0,1Θ0

Hence Θ1 is given by (11).
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Conversely, suppose that the path t 7→ (J(t), σ(t), A(t), Θ0(t)) satisfies (10) and (11)
as well as (A(0), Θ0(0)) ∈ XJ(0),σ(0). Then the same argument as above shows that

d

dt
∂̄J,A+iσΘ0 =

i

2
(∂̄J,A+iσΘ0) ◦ J̇

and hence ∂̄J,A+iσΘ0 = 0 for all t. We prove directly that the path is horizontal. If
∂̄J,A+iσθ0 + α0,1Θ0 = 0 then, since ∗JȦ = iRe 〈iΘ0, Θ1〉,

Ω((Ȧ, Θ̇0), (α, θ0)) =
∫

Σ

(
Re 〈∗JȦ, α〉+ Re 〈iΘ̇0 , θ0〉

)
ω

=
∫

Σ

(
Re 〈iRe 〈iΘ0, Θ1〉, α〉+ Re 〈∂̄∗J,A+iσΘ1, θ0〉

)
ω

=
∫

Σ

Re 〈Θ1, ∂̄J,A+iσθ0 + α0,1Θ0〉ω

= 0.

To prove (12) note that d∗〈Θ0 , Θ1〉 = 〈Θ0, ∂̄J,A+iσ
∗Θ1〉 − 〈∂̄J,A+iσΘ0, Θ1〉. Using ∗idȦ =

d∗ ∗J iȦ = d∗Re 〈Θ0, iΘ1〉 we obtain

d

dt

(
∗iFA +

|Θ0|2

2

)
= ∗idȦ + Re 〈Θ0, Θ̇0〉

= d∗Re 〈Θ0, iΘ1〉 − Re 〈Θ0, i ∂̄J,A+iσ
∗Θ1〉

= −Re 〈∂̄J,A+iσΘ0, iΘ1〉
= 0.

This proves the proposition.

Proof of Theorem 5.1. Define A′(t) ∈ A(E) and σ′(t) ∈ Ω1(Σ, E) by

A′(t) = A(t) − iσ′(t), σ′(t) =
∫ t

0

σs ds.

Then the mapXJ(t) → XJ(t),σ′(t) : (A(t), Θ0(t)) 7→ (A′(t), Θ0(t)) is a Kähler isomorphism.
Now equations (7) and (8) show that

iȦ′ = iȦ + σ = Re 〈Θ0, Θ1〉, iΘ̇0 = ∂̄J,A
∗Θ1 = ∂̄J,A′+iσ′

∗Θ1

and Θ1 satisfies (11) with A and σ replaced by A′ and σ′. Hence, by Proposition 5.3, the
map XJ(0),σ′(0) → XJ(1),σ′(1) : (A′(0), Θ0(0)) 7→ (A′(1), Θ0(1)) defines a symplectomor-
phism which is Hamiltonian if the loop is closed (cf. McDuff–Salamon [19, Chapter 6]).
Now use the identification of XJ(t),σ′(t) with XJ(t) to deduce that there is a well defined
symplectomorphism

XJ(0)
ψ̃−→ XJ(1) : (A(0), Θ0(0)) 7→ (A(1), Θ0(1))
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that is Hamiltonian whenever J(0) = J(1) and σ′(0) = σ′(1). Since

d

dt

(
∗iFA′ +

|Θ0|2

2

)
= 0

we have

d

dt

(
τt − ∗iFA −

|Θ0|2

2

)
=

d

dt
(τt + ∗id(A′ − A)) =

d

dt
τt + ∗dσt = 0,

and hence the symplectomorphism ψ̃ maps the solutions of (4) with (J, τ ) = (J0, τ0) to
those with (J, τ ) = (J1, τ1). Let ψ : M(J0, τ0) → M(J1, τ1) denote the symplectomor-
phism induced by ψ̃. If J(0) = J(1) and

∫ 1

0
σs ds = 0 then σ′(0) = σ′(1) = 0. In this case

ψ̃ is a Hamiltonian symplectomorphism and hence, so is ψ. This proves the theorem.

6. Symmetric products

The rational cohomology of the symmetric product is well understood and can be
computed in terms of symmetric differential forms on Σd. For j ≤ d one obtains

Hj(SdΣ) ∼= Λj ⊕ Λj−2 ⊕ · · · ,
where Λj = ΛjH1(Σ). Hence

χ(SdΣ) =
d∑
j=0

(−1)j(d + 1− j)
(

2g

j

)
= (−1)d

(
2g − 2

d

)
.

This description of the cohomology is functorial with respect to the action of the mapping
class group of Σ. Hence

L(Sdf) =
d∑
j=0

(−1)j(d + 1− j)trace(Λjf∗)

where Sdf denotes the induced map on SdΣ and f∗ denotes the induced endomorphism
of H1(Σ).

For d = deg(E) > 2g − 2 the Riemann–Roch theorem asserts that the space of holo-
morphic 1-forms with values in any holomorphic line bundle E of degree d is zero. Hence
the space H0(Σ, E) of holomorphic sections has complex dimension d + 1 − g. It follows
that SdΣ is a fiber bundle over the Jacobian with fiber PH0(Σ, E) ∼= CP d−g:

CP d−g ↪→ SdΣ −→ JacΣ,d.

In particular, this shows that the first Chern class c1 = c1(TSdΣ) evaluates on the positive
generator A ∈ π2(SdΣ) by

c1(A) = d + 1− g

whenever d ≥ 2g − 1. (This continues to hold for all d ≥ 2.)
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Proposition 6.1. The space

M̃Σ,d = M̃Σ,d(J, τ ) = {(A, Θ0) ∈ A(E) ×C∞(Σ, E) | (4)}
is connected. If d ≥ 2 then M̃Σ,d is simply connected and

π1(MΣ,d) = π0(G) = Z2g.

If d = 1 then MΣ,1
∼= Σ and π1(M̃Σ,1/S1) is the Torelli group.

Proof. We prove that M̃Σ,d is connected. To see this note that there is a fibration

G ↪→ M̃Σ,d →MΣ,d. (13)

Fix a point (A, Θ0) ∈ M̃Σ,d such that Θ0 has d distinct zeros. Since MΣ,d is connected
it suffices to prove that, for every u ∈ G, the points (A, Θ0) and (u∗A, u−1Θ0) can be
connected by a path in M̃Σ,d. Moreover, it suffices to consider one gauge transformation
from each of 2g components that generate π0(G). Choose a circle C ⊂ Σ that contains
precisely one zero of Θ0 and choose a gauge transformation u : Σ → S1 such that u = 1
in the complement of a small neighbourhood of C and[

u−1du

2πi

]
= PD([C]).

Then the required path from (A, Θ0) to (u∗A, u−1Θ0) can be obtained by sliding the zero
of Θ0 once around C. This shows that M̃Σ,d is connected.

We prove that, for d ≥ 2,

π1(SdΣ) ∼= H1(Σ;Z) ∼= Z2g.

(This is well known and the first identity extends to symmetric products of any compact
manifold. We include a proof for the sake of completeness.) Fix a base point c ∈ Σ
and note that every loop in SdΣ has the form [γ1, . . . , γd] : S1 → SdΣ for d based loops
γi : S1 → Σ. Moreover,

[γ1, . . . , γd] ∼ [c, . . . , c, γ1 · · ·γd].
Since the ordering of the γi is immaterial it follows that π1(SdΣ) is abelian. If γ : S1 → Σ
is not homologous to zero then there is a cohomology class α ∈ H1(Σ;Z) such that
〈α, [γ]〉 = 1. This gives rise to a cohomology class on SdΣ which pairs nontrivially with
[c, . . . , c, γ]. Hence π1(SdΣ) = H1(Σ;Z).

We prove that, for d ≥ 2, there exists a pair (J, A) ∈ J (Σ)×A(E) such that

dimc ker ∂̄J,A ≥ 2.

(This is also well known.) Think of CP 1 as the space of complex lines in C2 and denote
by H → CP 1 the tautological bundle whose fibre over a line ` ∈ CP 1 is the dual space
`∗ = Hom(`,C). Then a holomorphic section of H has the form s(`) = φ|` where φ ∈
Hom(C2,C). This space has evidently dimension 2. Now choose a branched covering
u : Σ → CP 1 of degree d ≥ 2. Then the pullback bundle E = u∗H → Σ has degree d.
Choose A ∈ A(E) to be the pullback of the tautological connection on H and J ∈ J (Σ)
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to be the pullback of the standard complex structure on CP 1. Then the kernel of ∂̄J,A
has dimension at least 2.

Suppose that d ≥ 2. We prove that M̃J,d is simply connected for every J and every
τ . By Theorem 5.1 it suffices to prove this for some J . Consider the homotopy exact
sequence of the fibration (13). It has the form

π1(G)→ π1(M̃Σ,d)→ π1(MΣ,d)→ π0(G)→ 0. (14)

We have proved that π1(MΣ,d) ∼= Z2g whenever d ≥ 2. Since π0(G) ∼= Z2g and the
homomorphism π1(MΣ,d) → π0(G) is surjective it follows that this homomorphism is
injective. Hence the homomorphism π1(M̃Σ,d)→ π1(MΣ,d) is zero. Now π1(G) = Z and
the image of the homomorphism π1(G)→ π1(M̃Σ,d) is generated by the loop

S1 → M̃Σ,d(J, τ ) : eit 7→ (A, eitΘ0).

We have proved that, for d ≥ 2, there exists a complex structure J ∈ J (Σ) and a
connection A ∈ A(E) such that dimc ker ∂̄J,A ≥ 2. For this choice the aforementioned
loop is obviously contractible. Hence the homomorphism π1(G) → π1(M̃Σ,d) is zero for
some J and, by Theorem 5.1 it is zero for every J . Hence the exact sequence (14) shows
that M̃Σ,d is simply connected.

7. Symplectic fixed points

Theorem 5.1 shows how to construct a homomorphism of symplectic mapping class
groups

Diff(Σ, ω)/Ham(Σ, ω) −→ Diff(M(J, τ ), Ω)/Ham(M(J, τ ), Ω).

Here Diff(Σ, ω) denotes the group of orientation and area preserving diffeomorphisms
of Σ and Ham(Σ, ω) denotes the subgroup of Hamiltonian symplectomorphisms. Let
f ∈ Diff(Σ, ω) and choose a lift f̃ of f to a unitary automorphism of E. Any two such
lifts f̃ , f̃ ′ : E → E are related by

f̃ ′ = m(u) ◦ f̃ = f̃ ◦m(u ◦ f)

for some u ∈ G, where m(u) : E → E denotes the obvious action of u. Let R → J (Σ) :
t 7→ Jt be a smooth family of complex structures such that

Jt+1 = f∗Jt.

Denote by ψt :M(J0, τ ) →M(Jt, τ ) the symplectomorphisms induced by the solutions
of (7) and (8) with τt = τ and σt = 0. Then the symplectomorphism

φd,f = φd,f,{Jt} := ψ1
−1 ◦ f̃∗ :M(J0, τ )→M(J0, τ )

is independent of the choice of the lift f̃ and, by Theorem 5.1, its Hamiltonian isotopy
class is independent of the path {Jt}.
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We examine the components of the path space Ωφd,f . Denote by P̃d,f̃ the space of
all smooth paths R → A(E) × C∞(Σ, E) : t 7→ (A(t), Θ0(t)) that satisfy [A(t), Θ0(t)] ∈
M(Jt, τ ) and the periodicity condition

A(t + 1) = f̃∗A(t), Θ0(t + 1) = f̃∗Θ0(t).

The group Gf of gauge transformations R→ G : t 7→ u(t) that satisfy

u(t + t) = u(t) ◦ f

acts on this space and the quotient will be denoted by

Pd,f̃ = P̃d,f̃/Gf .

This space can be naturally identified with a subset of Ωφd,f via the map that assigns
to every path t 7→ [A(t), Θ0(t)] in Pd,f̃ the path γ : R → M(J0, τ ) given by γ(t) =
ψt
−1([A(t), Θ0(t)]). Evidently the set Ωφd,f is the union of the sets Pd,f̃ over all unitary

lifts of f . The next lemma shows that each set Pd,f̃ is a component of Ωφd,f and that

π0(Ωφd,f ) ∼=
H1(Σ;Z)

im(1l− f∗)
.

This identification is not canonical.

Lemma 7.1. Suppose that d ≥ 2. Then, for every unitary lift f̃ : E → E of f, the space
Pd,f̃ is a connected component of Ωφd,f . Two such lifts f̃ and f̃ ′ determine the same
component if and only if there exists a u ∈ G such that f̃ ′ = f̃ ◦m(u) and[

u−1du

2πi

]
∈ im(1l− f∗) ⊂ H1(Σ;Z). (15)

Proof. By Proposition 6.1, the space of all solutions of the vortex equations (4) is simply
connected. Hence P̃d,f̃ is connected and hence, so is Pd,f̃ . Now let f̃ and f̃ ′ be two
unitary lifts of f . Then the following are equivalent.

(i): Pd,f̃ = Pd,f̃ ′ .
(ii): Pd,f̃ ∩ Pd,f̃ ′ 6= ∅.
(iii): There exists a u ∈ G that satisfies f̃ ′ = f̃ ◦m(u) and (15)

We prove that (iii) implies (i). Suppose that u : Σ→ S1 satisfies (15) and choose a closed
1-form σ ∈ Ω1(Σ) with integer periods such that the 1-form u−1du/2πi−σ+f∗σ is exact.
Choose v : Σ→ S1 such that v−1dv/2πi = σ. Then (v ◦ f)u : Σ→ S1 is homotopic to v.
Hence there exists a path R→ G : t 7→ v(t) such that v(0) = v and

v(t + 1) = (v(t) ◦ f)u.

Let t 7→ (A(t), Θ0(t)) be a path in P̃d,f̃ and denote

A′(t) = v(t)∗A(t), Θ′0(t) = v(t)−1Θ0(t), f̃ ′ = f̃ ◦m(u).
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Then

A′(t + 1) = v(t + 1)∗A(t + 1)

= v(t + 1)∗f̃∗A(t)

= u∗(v(t) ◦ f)∗f̃∗A(t)

= u∗f̃∗v(t)∗A(t)

= f̃ ′
∗
A′(t).

A similar identity holds with A(t) replaced by Θ0(t). This shows that the path t 7→
(A′(t), Θ′0(t)) lies in P̃d,f̃ ′ . Thus we have proved that there is a bijection

P̃d,f̃ → P̃d,f̃ ′ : {A(t), Θ0(t)}t 7→ {v(t)∗A(t), v(t)−1Θ0(t)}t.

This proves (i). That (i) implies (ii) is obvious since Pd,f̃ 6= ∅. That (ii) implies (iii)
follows by reversing the arguments in the proof that (iii) implies (i). This step is left as
an exercise to the reader.

A fixed point of φd,f in the class Pd,f̃ can be represented by a path

R → A(E) × C∞(Σ, iR) ×C∞(Σ, E)×Ω0,1(Σ, E)
t 7→ (A(t), Ψ(t), Θ0(t), Θ1(t))

that satisfies the equations

∂̄Jt,AΘ0 = 0, ∗iFA +
|Θ0|2

2
= τ, (16)

∗t(Ȧ − dΨ) = iIm 〈Θ0, Θ1〉, i(Θ̇0 + ΨΘ0) = ∂̄J,A
∗Θ1, (17)

∂̄Jt,A ∂̄Jt,A
∗Θ1 +

|Θ0|2
2

Θ1 =
1
2
(∂Jt,AΘ0) ◦ J̇t, (18)

and the periodicity condition

A(t + 1) = f̃∗A(t), Ψ(t + 1) = Ψ(t) ◦ f,

Θ0(t + 1) = f̃∗Θ0(t), Θ1(t + 1) = f̃∗Θ1(t).
(19)

Here (16) asserts that [A(t), Θ0(t)] ∈ M(Jt, τ ) for every t, (17) and (18) assert that the
path t 7→ [A(t), Θ0(t)] is horizontal with respect to the universal connection, and (19)
asserts that the path t 7→ [A(t), Θ0(t)] belongs to Pd,f̃ . Two such paths represent the
same fixed point if and only if they are related by

(A, Ψ, Θ0, Θ1) 7→ (B + u−1du, Ψ + u−1u̇, u−1Θ0, u
−1Θ1)

for some u ∈ Gf .
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8. Mapping tori

We examine the Seiberg-Witten equations on a mapping torus. As before, let Σ be
a compact oriented smooth 2-manifold of genus g equipped with a volume form ω. Let
f ∈ Diff(Σ, ω) and denote by

Yf = R× Σ/ ∼
the mapping torus. The equivalence relation is given by

(t + 1, z) ∼ (t, f(z)).

Choose a smooth function R→ J (Σ) such that Jt+1 = f∗Jt and denote by

〈·, ·〉t = ω(·, Jt·) + iω(·, ·)

the Hermitian form on TΣ induced by Jt and ω. Such a family of complex structures
determines a metric on Yf and a spinc structure.

The canonical spinc structure

The canonical spinc structure on Yf , determined by the family {Jt} of almost complex
structures, will be denoted by γf : TYf → End(Wf ). The Hermitian rank-2 bundle
Wf → Yf is given by

Wf =
{

(t, z, Θ0, Θ1) | t ∈ R, z ∈ Σ, Θ0 ∈ C, Θ1 ∈ Λ0,1
Jt

T ∗z Σ
}/
∼ .

The equivalence relation is

(t + 1, z, Θ0, Θ1) ∼ (t, f(z), Θ0 , Θ1 ◦ df(z)−1)

and γf has the form

γf (t, z; τ, ζ)
(

Θ0

Θ1

)
=
(
−iτΘ0 −

√
2Θ1(ζ)

iτΘ1 + 〈·, ζ〉tΘ0/
√

2

)
for t, τ ∈ R and ζ ∈ TzΣ. This structure is isomorphic to γv in Example 3.1 for the
vector field v = ∂/∂t. To see this identify TΣ with the bundle Λ0,1T ∗Σ via θ1 7→ Θ1 =
−〈·, θ1〉/

√
2.

Lemma 8.1. Let η = η2 − η1 ∧ dt ∈ Ω2(Yf , iR), i.e. η2(t) ∈ Ω2(Σ, iR) and η1(t) ∈
Ω1(Σ, iR) satisfy ηi(t + 1) = f∗ηi(t). Then

γf (∗3(η2 − η1 ∧ dt)) = (ΘΘ∗)0

if and only if

∗iη2 +
|Θ0|2 − |Θ1|2

2
= 0, ∗η1 − i

√
2Im 〈Θ0 , Θ1〉 = 0.
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Proof. The Hodge ∗-operator on 2-forms on Yf is given by

∗3(η2 − η1 ∧ dt) = ∗2η2dt + ∗2η1,

where ∗2 denotes the Hodge ∗-operator on Σ. Let v : Σ→ TΣ be the vector field dual to
Im η1. Then Jv is dual to ∗Im η1 = −Im η1 ◦ J and

θ1(Jv) = 〈η0,1
1 , θ1〉, 〈·, Jv〉 = 2η0,1

1

Hence

γf (∗3(η2 − η1 ∧ dt))
(

θ0

θ1

)
= γf ((∗2η2)dt + ∗2η1)

(
θ0

θ1

)
=

(
−i(∗2η2)θ0 − i

√
2θ1(Jv)

i(∗2η2)θ1 + i〈·, Jv〉θ0/
√

2

)
=

(
−(∗2iη2)θ0 − i

√
2〈η0,1

1 , θ1〉
(∗2iη2)θ1 + i

√
2η0,1

1 θ0

)
.

Compare this with the formula

(ΘΘ∗)0θ =
(

λθ0 + 〈Θ1, θ1〉Θ0

−λθ1 + 〈Θ0, θ0〉Θ1

)
, λ =

|Θ0|2 − |Θ1|2
2

to obtain ∗iη2 + λ = 0 and

〈Θ0, Θ1〉 = i
√

2η0,1
1 = iη1/

√
2− η1 ◦ J/

√
2 = iη1/

√
2 + ∗η1/

√
2

Since η1 is an imaginary valued 1-form, this is equivalent to iIm 〈Θ0, Θ1〉 = ∗η1/
√

2. This
proves the lemma.

The canonical spinc connection

Computation in local coordinates shows that the vertical tangent bundle of the fibration
Yf → S1 is invariant under the Levi-Civita connection. The direct sum of this bundle
with C is isomorphic to Wf and this gives rise to a spinc-connection ∇ = ∇f on Wf . In
explicit terms ∇f agrees with the Levi-Civita connection of the metric ω(·, Jt·) over each
slice {t} ×Σ and the covariant derivative in the direction ∂/∂t is given by

∇tΘ1 = Θ̇1 +
1
2
Θ1 ◦ JJ̇.

If Θ1 is of type (0, 1) then so is ∇tΘ1. Let Af denote the Hermitian connection on
det(Wf )1/2 induced by ∇f . The curvature of Af is the 2-form

FAf = − iKt

2
ω − αt

2
∧ dt,

where Kt : Σ→ R denotes the Gauss curvature of the metric ω(·, Jt·) and αt ∈ Ω1(Σ, iR)
is defined by

(Imαt)J = ∇̇+
1
2
J∇J̇ .
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The Seiberg-Witten equations

Let E → Σ be a Hermitian line bundle and choose a lift f̃ : E → E of f to a unitary
automorphism of E:

E
f̃−→ E

↓ ↓
Σ f−→ Σ

.

Such a lift determines a Hermitian line bundle Ef̃ = R×Ef/ ∼ over Yf where

(t + 1, z, θ0) ∼ (t, f(z), f̃(z)θ0).

A connection on Ef̃ has the form A(t)+Ψ(t) dt where A(t) ∈ A(E) and Ψ(t) ∈ Ω0(Σ, iR)
satisfy (19). The curvature of this connection is given by

FA+Ψ dt = FA − (Ȧ − dΨ) ∧ dt.

Now consider the twisted spinc structure

γd,f̃ : TYf → End(Wd,f̃ ), Wd,f̃ = Wf ⊗ Ef̃ .

The Dirac operator on the Riemann surface with the standard spinc structure is equal to
the Cauchy-Riemann operator determined by J and multiplied by a factor

√
2 (cf. [26,

Theorem 6.17]). Abbreviate

∇tΘ0 = Θ̇0 + ΨΘ0, ∇tΘ1 = Θ̇1 + ΨΘ1 +
1
2
Θ1 ◦ JJ̇

For Θ0 = Θ0(t) ∈ C∞(Σ, E) and Θ1 = Θ1(t) ∈ Ω0,1(Σ, E). Then the Dirac equations for
the twisted spinc structure have the form

−i∇tΘ0 +
√

2 ∂̄J,A
∗Θ1 = 0, i∇tΘ1 +

√
2∂̄J,AΘ0 = 0. (20)

By Lemma 8.1, the second equation in (2) decomposes as

∗i(FA + η2) +
Kt

2
+
|Θ0|2 − |Θ1|2

2
= 0, (21)

∗t
(
Ȧ− dΨ +

αt
2

+ η1

)
= i
√

2Im 〈Θ0, Θ1〉. (22)

Here η = η2 − η1 ∧ dt ∈ Ω2(Yf , iR) is the perturbation. Together with the periodicity
conditions (19) these are the Seiberg-Witten equations on Yf for the spinc structure γd,f̃ .
The goal is now to relate the solutions of these equations to those of (16), (17), (18),
and (19) which correspond to the fixed points of φd,f in the class Pd,f̃ .

As a first step we choose a perturbation

η = η2 − η1 ∧ dt, η2 = i

(
τ

2
+

Kt

2

)
ω, η1 = −αt

2
.
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If τ is independent of t then this form is closed. Next we would like to get rid of the
various factors

√
2. For this it is convenient to rename Θ0 and the metric on Σ by:

Θ0
new =

√
2Θ0

old, ωnew =
1
2
ωold, Kt

new = 2Kt
old.

Then the Hodge ∗-operator on 1-forms (on Σ) remains unchanged, the Hodge ∗-operators
on 2-forms are related by ∗new = 2∗old, and the norm of a 1-form in the new metric is
by a factor

√
2 bigger. Moreover, the product Ktω and the 1-form αt are invariant under

this scaling. All this is just change in notation and the Seiberg-Witten equations now
have the following form.

i∇tΘ0 = ∂̄J,A
∗Θ1, −i∇tΘ1 = ∂̄J,AΘ0, (23)

∗iFA +
|Θ0|2 − |Θ1|2

2
= τ, (24)

∗t
(
Ȧ− dΨ

)
= iIm 〈Θ0, Θ1〉. (25)

The comparison between (23), (24), (25) and (16), (17), (18) involves an adiabatic limit
argument.

The Chern-Simons-Dirac functional

Fix a path of connections A0(t) ∈ A(E) such that A0(t + 1) = f̃∗A0(t). Consider
the Chern-Simons-Dirac functional on Yf with the spinc structure γd,f̃ , the basepoint
Af + A0, the perturbation η = iτω/2− FAf , and the above renaming of ω and Θ0. This
functional has the form

CSDτ(A, Ψ, Θ) =
1
2

∫ 1

0

∫
Σ

(A −A0) ∧ (Ȧ + Ȧ0) dt

−
∫ 1

0

∫
Σ

(
Ψ(FA + iτω) + Re 〈Θ1, ∂̄Jt,AΘ0〉ω

)
dt

+
1
2

∫ 1

0

∫
Σ

(
Re 〈i∇tΘ0, Θ0〉 − Re 〈i∇tΘ1, Θ1〉

)
ω dt

If Θ1 = 0 and (A(t), Θ0(t)) ∈ M̃(Jt, τ ) then

CSDτ (A, Ψ, Θ) =
1
2

∫ 1

0

∫
Σ

(
(A −A0) ∧ (Ȧ + Ȧ0) + Re 〈iΘ̇0, Θ0〉ω

)
dt.

This is the symplectic action of the path t 7→ [A(t), Θ0(t)].
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9. Adiabatic limits

The main idea is to change the parameters in the equations (23), (24), and (25). We
multiply the metric on Σ by a small constant ε2 and simultaneously divide τ by the the
same constant:

ωε = ε2ω, τε = ε−2τ.

This does not affect the product τω and hence the original perturbation η remains un-
changed. The new equations have the form

i∇tΘ0 = ε−2 ∂̄J,A
∗Θ1, −i∇tΘ1 = ∂̄J,AΘ0, (26)

ε−2 ∗ iFA +
|Θ0|2 − ε−2|Θ1|2

2
= ε−2τ, (27)

∗t
(
Ȧ− dΨ

)
= iIm 〈Θ0, Θ1〉. (28)

Here the Hodge ∗-operators are to be understood with respect to the old metric and the
dependence of ε is made explicit. Now it is convenient to rename the variables Θ0 and
Θ1 by

Θ0
new = εΘ0

old, Θ1
new = ε−1Θ1

old.

Then the Seiberg-Witten equations (26), (27), and (28) translate into the form

i∇tΘ0 = ∂̄Jt,A
∗Θ1, −i∇tΘ1 = ε−2∂̄Jt ,AΘ0, (29)

ε−2

(
∗iFA +

|Θ0|2
2
− τ

)
=
|Θ1|2

2
, (30)

∗t
(
Ȧ− dΨ

)
= iIm 〈Θ0, Θ1〉. (31)

This already looks promising. The first equation in (29) and (31) are reminiscent of
the equations for parallel transport in (17) and the other two equations give the vortex
equations in the limit ε→ 0. The crucial point is to control the behaviour of Θ1 and its
derivatives in the small ε limit. The first step in this direction is the following observation,
which relates the section Θ1 in the Seiberg-Witten equations to the variable Θ1 in (18).

Lemma 9.1. Every solution of (29), (30), and (31) satisfies

∂̄Jt,A ∂̄Jt,A
∗Θ1 +

|Θ0|2
2

Θ1 −
1
2
(∂Jt,AΘ0) ◦ J̇t = ε2∇t∇tΘ1. (32)

Proof. First recall that

∇t∂̄Jt,AΘ0 =
d

dt
(∂̄Jt,AΘ0) + Ψ∂̄Jt ,AΘ0 +

1
2
(∂̄Jt,AΘ0) ◦ JJ̇.

Since
idAΘ0 = (∂J,AΘ0) ◦ J − (∂̄J,AΘ0) ◦ J
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this gives the commutator identity

∇t∂̄Jt,AΘ0 − ∂̄Jt,A∇tΘ0 = (Ȧ − dΨ)0,1Θ0 +
1
2
(∂Jt,AΘ0) ◦ JtJ̇t. (33)

Moreover, (31) is equivalent to

i(Ȧ − dΨ)0,1 =
1
2
〈Θ0, Θ1〉.

Hence

∂̄Jt,A ∂̄Jt,A
∗Θ1 = i∂̄Jt ,A∇tΘ0

= i∇t∂̄Jt,AΘ0 − i(Ȧ− dΨ)0,1Θ0 −
i

2
(∂Jt ,AΘ0) ◦ JtJ̇t

= ε2∇t∇tΘ1 −
1
2
〈Θ0, Θ1〉Θ0 +

1
2
(∂Jt,AΘ0) ◦ J̇t.

This proves the lemma.

Remark 9.1. It is interesting to consider the special case of the product

Y = S1 × Σ

with the product metric and the product spinc structure

γd : TY → End(Wd),

where Wd = S1 × (E ⊕Λ0,1T ∗Σ⊗E) and E → Σ is a Hermitian line bundle of degree d.
In this case J can be chosen independent of t, the adiabatic limit is not required, and (32)
with ε = 1 takes the form

∂̄Jt ,A ∂̄Jt ,A
∗Θ1 −∇t∇tΘ1 +

|Θ0|2
2

Θ1 = 0.

Take the inner product with Θ1 and integrate to obtain∫ 1

0

∫
Σ

(
| ∂̄A

∗Θ1|2 + |∇tΘ1|2 +
1
2
|Θ0|2 |Θ1|2

)
ω dt = 0.

This implies that either Θ0 ≡ 0 or Θ1 ≡ 0. Since the mean value of τ −∗iFA is positive it
follows that Θ1 ≡ 0. Moreover, by choosing an appropriate gauge transformation, we may
assume without loss of generality that Ψ(t) = 0 for all t. Then it follows that A(t) = A
and Θ0(t) = Θ0 are independent of t and satisfy the vortex equations. In other words, the
moduli space of solutions of the Seiberg-Witten equations over S1 × Σ can be identified
with the symmetric product and a standard perturbation argument now shows that

SW(S1 ×Σ, γd) = χ(SdΣ) = T (S1 ×Σ, ed). (34)

All the other invariants are zero and this proves Theorem 1.1 in the product case. A
similar argument works whenever some iterate of f is the identity.
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The proof of Theorem 1.1 in the general case is considerably deeper. It is obvious
from (30) that the square of the L2-norm of Θ0 is bounded below by twice the mean value
of τ − ∗iFA. Hence one can introduce Θ′1(t) ∈ Ω0,1

Jt
(Σ, E) as the unique solution of (18).

In particular, one has to prove that the difference Θ1 − Θ′1 converges to zero as ε → 0.
This requires some pointwise estimates on the functions Θ0, Θ1, Θ′1 and their derivatives
that are reminiscent of some of the estimates that appear in the work of Taubes [29, 30].
This is related to the convergence question. From the other side one needs a singular
perturbation result which asserts that near every nondegenerate solution of (16), (17),
(18), and (19) (corresponding to a fixed point of φd,f in the class Pd,f̃ ) there is, for
ε > 0 sufficiently small, a solution of the Seiberg-Witten equations (29), (30), and (31)
that satisfies the same periodicity condition (19) (contributing to the Seiberg-Witten
invariant SW(Yf , γd,f̃ )). Once the one-to-one correspondence between gauge equivalence
classes of solutions has been established, one needs to compare the fixed point index with
µSW. This amounts to a comparison of the spectral flows. The full details of the proof
will appear elsewhere.

10. Floer homology

There is a 4-dimensional version of the adiabatic limit argument. After the appropriate
choices of perturbation, change in parameters, and scaling the Seiberg-Witten equations
over the tube R× Yf take the form

∇sΘ0 + i∇tΘ0 = ∂̄Jt ,A
∗Θ1, ∇sΘ1 − i∇tΘ1 = ε−2∂̄Jt,AΘ0. (35)

ε−2

(
∗iFA +

|Θ0|2
2
− τ

)
=
|Θ1|2

2
+ i(∂tΦ− ∂sΨ), (36)

(∂sA− dΦ) + ∗t (∂tA− dΨ) = iIm 〈Θ0, Θ1〉. (37)

Here s is the real parameter and A+Φ ds+Ψ dt is the connection on the bundle R×Ef̃ →
R × Yf . In the adiabatic limit ε → 0 the solutions of these equations degenerate to
holomorphic curves in the moduli spaceMΣ,d(J, τ ) ∼= SdΣ. Explicitly, the limit equations
have the form

∂̄Jt,AΘ0 = 0, ∗iFA + |Θ0|2/2 = τ, (38)

(∂sA− dΦ) + ∗t (∂tA− dΨ) = iIm 〈Θ0, Θ1〉, (39)

∇sΘ0 + i∇tΘ0 = ∂̄Jt,A
∗Θ1, (40)

∂̄Jt,A ∂̄Jt,A
∗Θ1 +

|Θ0|2
2

Θ1 =
1
2
(∂Jt ,AΘ0) ◦ J̇t. (41)

The small ε analysis should now give rise to a proof of the following analogue of the
Atiyah-Floer conjecture [1, 3, 4, 5].
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Conjecture 10.1. For every f ∈ Diff(Σ, ω) and every lift f̃ of f to a unitary auto-
morphism of a line bundle E → Σ of degree d there is a natural isomorphism between
Seiberg-Witten and symplectic Floer homologies

HFSW(Yf , γd,f̃)→ HFsymp(φd,f ,Pd,f̃).
These isomorphisms intertwine the natural product structures:

HFSW(Yf , γd,f̃) ⊗HFSW(Yg, γd,g̃) → HFSW(Yfg , γd,f̃g̃)
↓ ↓ ↓

HFsymp(φd,f ,Pd,f̃) ⊗HFsymp(φd,g,Pd,g̃) → HFsymp(φd,fg ,Pd,f̃g̃)
.

Theorem 2.1 asserts that the Seiberg-Witten and the symplectic Floer homology groups
have the same Euler characteristic. The comparison of the spectral flows shows in fact
that they can be modeled on the same chain complex. The adiabatic limit argument
should prove that the boundary operators agree for ε sufficiently small.

One of the difficulties in the proof of Conjecture 10.1 lies in the presence of holomorphic
spheres with negative Chern number. Such spheres exist inMΣ,d whenever the genus g
and the degree d satisfy

g

2
+ 1 < d < g − 1. (42)

In this case the new approaches to Floer homology in the presence of holomorphic spheres
with negative Chern number are required (cf. Fukaya–Ono [10], Liu–Tian [18], Ruan [24],
and Hofer–Salamon [13, 25]). If (42) does not hold then the standard theory applies
(cf. [6, 7, 8, 12, 21, 22, 28, 25, 27]). In this case the proof of Conjecture 10.1 should be
quite analogous to the proof of the Atiyah-Floer conjecture for mapping tori in Dostoglou–
Salamon [3, 4, 5].
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E-mail address : salamon@math.ethz.ch

143


