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1. Introduction

Recent advances in understanding the topology of symplectic 4-manifolds gave us the
hope to characterize symplectic 4-manifolds — at least up to homeomorphism. By a
theorem of Gompf [G1] any finitely presented group can be given as the fundamental group
of a closed symplectic 4-manifold. Therefore in the following we will concentrate only on
simply connected manifolds. Combining results of Donaldson [D] and Freedman [F] it can
be shown that a simply connected symplectic 4-manifold X is determined by its Euler
characteristic e(X), signature σ(X) and its spin property — up to homeomorphism. This
observation naturally raises the question: Which pairs (e, σ) ∈ Z× Z can be represented
as (Euler characteristic, signature) of a simply connected, symplectic 4-manifold. (For
the present purpose we disregard the spinness of the 4-manifolds; we hope to return to the
discussion of spin 4-manifolds in a future project.) These type of questions are usually
called “geography questions”. For historic reasons, in 4-manifold geography one records
χh(X) = 1

4(e(X) + σ(X)) and c21(X) = 3σ(X) + 2e(X) rather than e(X) and σ(X).
Since blowing up and down can be performed within the symplectic category, and for

the blown up manifold X′ we have χh(X′) = χh(X) and c21(X′) = c21(X) − 1, we restrict
our attention to minimal symplectic 4-manifolds, i.e., for those which do not contain
(−1)-spheres.

Remark 1.1. As a consequence of the work of Taubes [T], [K], a simply connected,
minimal symplectic 4-manifold X is irreducible, i.e., if X decomposes as a connected
sum X1#X2, then either X1 or X2 is homeomorphic to the 4-sphere S4 . Consequently,
the geography of minimal, simply connected, symplectic 4-manifolds forms a part of the
geography problem of irreducible, simply connected 4-manifolds.

Easy to see that the simple connectivity ofX implies that χh(X) ≥ 1. As a consequence
of Taubes’ work [T], [K], we also know that for a minimal symplectic 4-manifold c21(X) ≥
0. Hence the geography problem reads as follows:
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Question 1.2. Which pairs (a, b) ∈ N × N correspond to minimal, simply connected,
symplectic 4-manifolds X as a = χh(X) and b = c21(X)?

Combining earlier results [FS1], [G1], [P], [S1], one can see that pairs satisfying 0 ≤
b ≤ 8a (with at most finitely many exceptions) do correspond to simply connected,
minimal symplectic 4-manifolds. The region b > 8a (or equivalently, when the signature
σ is positive), however, turned out to be more mysterious. The famous Bogomolov-
Miyaoka-Yau inequality asserts, that if S is a Kähler surface then c21(S) ≤ 9χh(S) holds.
Consequently, the two natural questions arising in this context are the following

q1: Which pairs (a, b) satisfying 8a < b ≤ 9a correspond to simply connected, minimal
symplectic 4-manifolds?

q2: Is there a bound — similar to the Bogomolov-Miyaoka-Yau inequality above —
for c21 of a symplectic 4-manifold in terms of its topological data, e.g., its holomorphic
Euler characteristic χh?

In this note we will concentrate on the (partial) answer of q1. Most examples of
symplectic 4-manifolds with positive signature originate from complex geometry [Ch1],
[Ch2], [H], [MT], [So], [PPX]; these examples either have large fundamental group or
satisfy c21(S) ≤ 8 6

10
χh(S). (There is a unique simply connected, complex surface satisfying

c21 = 9χh — the complex projective plane CP2. In the above remark we disregarded this
trivial example.) In the following we will prove the following statement.

Theorem 1.3. There are simply connected, minimal, symplectic 4-manifolds Cn for which
c21(Cn)/χh(Cn)→ 9 as n→∞.

For related examples and constructions see also [FS2], [S2], [Sz].
Acknowledgement: The author would like to thank Zoltán Szabó for many helpful

discussions, and the organizers of the sixth Gökova Topology Conference for the inspiring
and beautiful conference.

2. Manifolds on the Bogomolov-Miyaoka-Yau line

Suppose that Σ2 is the Riemann surface of genus 2 and γ : Σ2 → Σ2 is a map with
exactly 3 fixed points and γ5 = idΣ2 . (We will prove the existence of such γ in Section 4,
cf. also [Ch2], [GS] or [S2].) It is easy to see that ∪4

i=0Graph(γi) ⊂ Σ2 × Σ2 consists of
5 curves F0, . . . , F4 (each of genus 2) and the homology class

∑4
i=0[Fi] is divisible by 5.

The desingularization of the 5-fold (cyclic) branched cover of Σ2 × Σ2 (branched along
∪4
i=0Fi) will be denoted by H1. Easy computation shows the following.

Lemma 2.1. The Euler characteristic e(H1) of H1 is equal to 75, its signature is σ(H1) =
25, hence c21(H1) = 225 and χh(H1) = 1

12
(c2(H1)+c21(H1)) = 25. Consequently c21(H1) =

9χh(H1), so H1 is on the Bogomolov-Miyaoka-Yau line. The composition H1 → Σ2 ×
Σ2

pr−→ Σ2 provides a Lefschetz fibration on H1 with fibers of genus 16. There are 3
singular fibers in this fibration, and the inverse image of F0 ⊂ Σ2 × Σ2 (the diagonal)
provides a section of H1 → Σ2: an embedded Riemann surface T (of genus 2) intersecting
each fiber in a single point. Since [F0]2 = −2, the self-intersection of T is −1.
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Suppose that ϕn : Σn+1 → Σ2 is an n-fold (unbranched) cover of Σ2 — here Σn+1

denotes the Riemann surface of genus n+1. Pulling back the branched coverH1 → Σ2×Σ2

via the map ϕn × ϕn : Σn+1 × Σn+1 → Σ2 × Σ2, we get a manifold H(n2), which is a
5-fold branched cover of Σn+1 ×Σn+1 and an n2-fold (unbranched) cover of H1.

Proposition 2.2. The Euler characteristic of H(n2) is equal to 75n2, σ(H(n2)) = 25n2,
hence c21(H(n2)) = 225n2 and χh(H(n2)) = 25n2. The map H(n2)→ Σn+1 × Σn+1

pr−→
Σn+1 provides a Lefschetz fibration on H(n2); now the genus of the generic fiber is 15n+1.
The inverse image of a section of H1 gives a section of H(n2)→ Σn+1; the corresponding
submanifold is a Riemann surface of genus (n + 1) with self-intersection −n.

3. Construction of the 4-manifolds Cn

Our goal in the following is to reduce the fundamental group of H(n2) by various
operations to achieve a simply connected, symplectic 4-manifold.

It is known that for a Lefschetz fibration f : M4 → B2 with generic connected fiber F ,
then

π1(F )→ π1(M)→ π1(B) → 0
is an exact sequence (see, e.g., [GS]). Fix now points p1, . . . , p30n+4 inCP1 = Σ0 and q1, q2

in the 2-dimensional torus T 2 = Σ1. Specify the curve Bn = ∪30n+4
i=1 T 2×{pi}

⋃
∪2
j=1{qj}×

CP1 ⊂ T 2 × CP1, take the double branched cover of T 2 × CP1 branched along Bn and
desingularize the resulting complex surface. It is easy to see that the resulting smooth
4-manifold Zn admits a genus-(15n + 1) Lefschetz fibration Zn → T 2 with two simply
connected fibers (corresponding the fiber components of the branch locus Bn) — Compose
the branched cover map Zn → T 2×CP1 with the projection T 2×CP1 → T 2. Define Xn
as the fiber sum of H(n2) and Zn.

Proposition 3.1. The 4-manifold Xn admits a genus-(15n+ 1) Lefschetz fibration with
a section Tn of genus (n + 2) and self-intersection −(n + 1). Furthermore, Xn can be
equipped with a symplectic structure such that Tn is a symplectic submanifold. The map
Xn → Tn (mapping an element x ∈ Fy of a fiber Fy ⊂ Xn to Fy ∩ Tn) induces an
isomorphism between the fundamental groups.

Proof. Since the fiber sum of two Lefschetz fibrations is a Lefschetz fibration again, the
first statement is obvious. By gluing a section of H(n2) and a section of Zn (which is a
torus of self-intersection −1) together we get Tn. Applying the construction of Gompf
[G2], [GS], the Lefschetz fibered 4-manifold Xn can be endowed with an appropriate
symplectic structure — this symplectic structure can be chosen in a way that Tn ⊂ Xn
becomes a symplectic submanifold. Since the fibration on Xn admits simply connected
fibers (the introduction of these singular fibers is the reason of taking the above fiber
sum), the inclusion of the generic fiber F ↪→ Xn induces the trivial homomorphism on
the fundamental groups. Hence the exact sequence described earlier in this section reduces
to an isomorphism between the fundamental groups of the total and the base space of the
Lefschetz fibration, proving the last assertion of the proposition.
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It is easy to see that e(Zn) = 120n+ 12 and σ(Zn) = −60n− 8, hence

Lemma 3.2. The Euler characteristic e(Xn) = 75n2 + 180n + 12 and the signature
σ(Xn) = 25n2− 60n− 8. Consequently χh(Xn) = 25n2 + 30n+ 1 and c21(Xn) = 225n2 +
180n.

For constructing the desired simply connected 4-manifolds we need to describe one
more construction. Fix distinct points p1, . . . , p6 ∈ CP1 and consider the curve B =
∪6
i=1CP

1 × {pi}
⋃
∪2
j=1{pj} × CP1 ⊂ CP1 × CP1. The desingularization of the double

branched cover of CP1 × CP1 branched along B — the resulting complex surface will be
denoted by X(1, 3) — admits a genus-2 Lefschetz fibration over CP1 with a section of self-
intersection −1. Standard argument shows [GS] that X(1, 3) ≈ CP2#13CP2, hence the
signature and the Euler characteristic of X(1, 3) are easy to determine. Consider now k

copies of the generic fiber and one copy of the section in the fibration X(1, 3)→ CP1. By
resolving the k transverse double points we get an embedded surface Gk of genus 2k and
self-intersection 2k− 1. The section and the fibers are obviously symplectic submanifolds
of the symplectic (in fact, Kähler) 4-manifold X(1, 3); consequently we can perform the
resolution in a way that Gk ⊂ X(1, 3) is symplectic for each k.

Lemma 3.3. The complement X(1, 3)−νGk of the tubular neighborhood of Gk in X(1, 3)
is simply connected.

Proof. The 4-manifoldX(1, 3) is simply connected because it admits a Lefschetz fibration
with at least one simply connected fiber over CP1, cf. the exact sequence at the beginning
of Section 3. The same simply connected fiber (intersecting Gk in a single point) shows
that the normal circle of Gk ⊂ X(1, 3) is nullhomotopic in X(1, 3) − νGk, which proves
the lemma.

Consider now the pairs (X2n, T2n) and (X(1, 3), Gn+1). Both pairs consist of a sym-
plectic 4-manifold together with a symplectic submanifold. Moreover, the genera of T2n

and Gn+1 are both equal to 2n + 2 and [Gn+1]2 = 2n + 1 = −[T2n]2. Applying the
symplectic normal sum operation introduced by Gompf [G1], we get a symplectic 4-
manifold Cn = (X2n − νT2n) ∪ (X(1, 3) − νGn+1). Elementary computation shows that
e(Cn) = 300n2 + 368n+ 32 and σ(Cn) = 100n2 − 120n− 20, consequently

Theorem 3.4. The symplectic 4-manifold Cn is simply connected and χh(Cn) = 100n2+
62n+ 3, c21(Cn) = 900n2 + 376n+ 4.

Proof. The facts that π1(T2n) → π1(X2n) is an isomorphism and that π1(X(1, 3) −
νGn+1) = 1 combined with the Seifert-Van Kampen theorem now imply that π1(Cn) = 1.
The rest of the theorem is just elementary computation.

Proof of Theorem 1.3. Since Cn is simply connected and symplectic, moreover c21(Cn)/χh(Cn) =
(900n2 + 376n+ 4)/(100n2 + 62n+ 3)→ 9, the theorem follows.
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Remark 3.5. Similar strategy can be carried out by replacing Zn and X(1, 3) with
manifolds having smaller Euler characteristics and signatures. In this way we might have
smaller linear terms in the expressions of χh(Cn) and c21(Cn), but the endresult will not
be changed significantly.

4. Appendix

Finally we show the existence of the map γ : Σ2 → Σ2 required at the beginning of
Section 2: Take the (singular) curve A = {[x0 : x1 : x2] ∈ CP2 | x5

0 − x3
1x2(x1 + x2) = 0}

in CP2 and blow up CP2 in [0 : 0 : 1] (the singular point of the curve A). The proper
transform Ã still has one singular point, but the proper transform D of an additional blow-
up will be smooth. Hence we have found a smooth curve D in CP2#2CP2; restricting the
blow-down map CP2#2CP2 → CP2 to D and composing it with the projection CP2− [1 :
0 : 0] → {x0 = 0} ≈ CP1 (mapping [x0 : x1 : x2] to [0 : x1 : x2]) we get a map
ϕ : D → CP1. This map is simply an explicit description of the 5-fold cyclic branched
cover D → CP1 branched in three points Q1, Q2, Q3 ∈ CP1. Consequently we have a
Z5-action (the generator is denoted by γ : D → D) on D; the fixed points of γ are the
inverse images of Qi (i = 1, 2, 3) (still denoted by Qi in D). An easy application of the
adjunction formula shows that D has genus 2, consequently the above map γ acts on Σ2

as required.
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