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1. Introduction

1.1. Contact structures

Let Y be a closed 3–manifold. A field of 2–planes ξ ⊂ TY is a contact structure
if it is the kernel of a smooth 1–form θ on Y such that θ ∧ dθ 6= 0 at every point of
Y . Notice that since ξ is oriented by the restriction of dθ the manifold Y is necessarily
orientable. Moreover, an orientation on Y induces a coorientation on ξ and vice–versa.
When Y has a prescribed orientation, ξ is said to be positive (negative, respectively), if
the orientation on Y induced by ξ coincides with (is the opposite of, respectively) the
given one. In this paper we shall only consider oriented 3–manifolds. Therefore, from
now on by the expression “3–manifold” we shall always mean “oriented 3–manifold”, and
all contact structures will be implicitly assumed to be positive (for an introduction to
contact structures and a guide to the literature we refer the reader to [Be, El3, Gi]).

By the work of Martinet and Lutz [Ma] we know that every closed, oriented 3–manifold
Y admits a positive contact structure. Eliashberg defined a special class of contact struc-
tures, which he called overtwisted, and proved that in any homotopy class of cooriented
2–plane fields on a 3–manifold there exists a positive overtwisted contact structure, which
is unique up to isotopy [El1]. This showed that the really interesting contact structures
are the non–overtwisted ones, which Eliashberg called tight. For such contact structures,
the questions of existence and uniqueness in a given homotopy class are known to have a
negative answer, in general.

1.2. Symplectic fillings

All the tight contact structures known at present are fillable in one sense or another,
i.e., loosely speaking, they are a 3–dimensional phenomenon induced by a 4–dimensional
one. A 4–manifold with contact boundary is a pair (X, ξ), where X is a connected,
oriented smooth 4–manifold with boundary and ξ is a contact structure on ∂X (positive
with respect to the boundary orientation). A compatible symplectic form on (X, ξ) is
a symplectic form ω on X such that ω|ξ > 0 at every point of ∂X. A contact 3–
manifold (Y, ζ) is called symplectically fillable if there exists a 4–manifold with contact
boundary (X, ξ) carrying a compatible symplectic form ω and an orientation–preserving
diffeomorphism φ : Y → ∂X such that φ∗(ζ) = ξ. The triple (X, ξ, ω) is said to be a
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symplectic filling of Y . More generally, (Y, ζ) is called symplectically semi–fillable if the
diffeomorphism φ sends Y onto a connected component of ∂X. In this case (X, ξ, ω) is
called a symplectic semi–filling of Y . If (Y, ζ) is symplectically semi–fillable, then ζ is
tight by a theorem of Eliashberg and Gromov (see [El2, La]).

1.3. Basic questions

The following fundamental question about the fillability of contact 3–manifolds (cf. [El3],
question 8.2.1, and [Ki], question 4.142) remained unanswered for some time:

Question 1.1. Does every oriented 3–manifold admit a fillable contact structure?

Eliashberg’s Legendrian surgery construction [El1, Go] provides a rich source of contact
3–manifolds which are filled by Stein surfaces (a special kind of 4–manifolds with contact
boundary carrying exact compatible symplectic forms). Symplectically fillable contact
structures are not necessarily fillable by Stein surfaces. For example, the 3–torus S1 ×
S1 × S1 carries infinitely many isomorphism classes of symplectically fillable contact
structures, but Eliashberg showed [El4] that only one of them can be filled by a Stein
surface.

Gompf studied systematically the fillability of Seifert 3–manifolds using Eliashberg’s
construction. This led him to formulate the following:

Conjecture 1.2 ([Go]). The Poincaré homology sphere, oriented as the boundary of the
positive E8 plumbing, does not admit positive contact structures which are fillable by a
Stein surface.

Another basic question one may ask concerns the uniqueness of symplectic fillings. One
may loosely formulate the uniqueness question as follows (cf. question 10.2 in [El2]):

Question 1.3. To what extent does a 3–manifold determine its symplectic fillings?

A 3–manifold may have several symplectic fillings. Via Legendrian surgery one can
construct, for instance, non–diffeomorphic (even after blow–up) symplectic fillings of cer-
tain 3–manifolds. On the other hand, S3 is known to have just one symplectic filling up
to blow–ups and diffeomorphisms [El2], and the same is true for the lens spaces L(n, 1)
when n 6= 4 (when n = 4 there are two possibilities) [McD].

1.4. Recent developments

Some progress in the understanding of contact structures has recently come from study-
ing the spaces of solutions to the Seiberg–Witten equations. One of the outcomes of [LM]
was a proof of the existence, for every natural number n, of integral homology 3–spheres
carrying more than n homotopic, non–isomorphic tight contact structures. Generalizing
to a non–compact setting the results of [Ta1, Ta2], Kronheimer and Mrowka [KM] in-
troduced monopole invariants for smooth 4–manifolds with contact boundary, and used
them to strengthen the results of [LM] as well as to prove new results, as for example
that on every oriented 3–manifold there is only a finite number of homotopy classes of
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symplectically semi–fillable contact structures. In the paper [Li] we applied the results
of [KM] to establish the following:

Theorem 1.4 ([Li], Theorem 1.4). Let (X, ξ) be a 4–manifold with contact boundary
equipped with a compatible symplectic form. Suppose that a connected component of the
boundary of X admits a metric with positive scalar curvature. Then, the boundary of X
is connected and b+2 (X) = 0.

Notice how, as a consequence of this theorem, a symplectic semi–filling of a 3–manifold
carrying positive scalar curvature metrics is necessarily a symplectic filling.

The following corollary of theorem 1.4 proves, in particular, Gompf’s conjecture and
provides a negative answer to question 1.1.

Corollary 1.5 ([Li], Corollary 1.5). Let Y denote the Poincaré homology sphere oriented
as the boundary of the positive E8 plumbing. Then, Y has no symplectically semi–fillable
contact structures. Moreover, Y#− Y is not symplectically semi–fillable with any choice
of orientation.

2. Statement of results

In this paper we prove new results concerning questions 1.1 and 1.3. In fact, we
produce new examples of oriented irreducible 3–manifolds which are not symplectically
semi–fillable, and a new uniqueness result for the intersection forms of the symplectic
fillings of certain rational homology 3–spheres. All the proofs are based on theorem 1.4
using an approach which generalizes the argument we used in [Li] to obtain corollary 1.5.

Since our main tool, theorem 1.4, applies to 3–manifolds having positive scalar cur-
vature metrics, it is natural to consider the most familiar examples of 3–manifolds with
that property, i.e. the links of the classical complex 2–dimensional Kleinian singulari-
ties [Kl]. Being quotients of S3 by the standard action of a finite subgroup of SO(4),
they all carry positive scalar curvature metrics. Moreover, each link, with its standard
orientation, bounds the minimal resolution of the corresponding singularity [DV], which
is orientation–preserving diffeomorphic to the boundaries of the smooth 4–manifolds ob-
tained by plumbing together several copies of the (−2)–disc bundle over the 2–sphere,
according to a diagram of type An (with n vertices), Dn+2 (with n+ 2 vertices), E6, E7

or E8 (see figure 1). The boundaries of these plumbings are all well–known 3–manifolds.
For example, plumbing on An gives the lens space L(n+1, n), while plumbing on E8 gives
the Poincaré sphere. From now on we shall simply refer to these plumbings as the “neg-
ative plumbings” on the corresponding diagrams, and we shall call “positive plumbings”
those obtained in a similar way using the disc bundle with Euler number +2.

Observe that every link of a Kleinian singularity with its standard orientation has sym-
plectic fillings. In fact, it is not difficult to see that the Milnor fiber of the corresponding
singularity gives a symplectic filling. Alternatively, using Eliashberg’s Legendrian surgery
construction it is easy to show that all the minimal resolutions described above are Stein
4–manifold with boundary, and therefore are symplectic fillings of their boundaries. Thus,
the answer to the existence problem for symplectic fillings of these oriented 3–manifolds
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Figure 1. Resolution diagrams of the Kleinian singularities

is already well–known. For this reason, and for another reason which is related to the
nature of our proofs, in this paper we shall only consider the positive plumbings, i.e.
we shall study the existence of symplectic fillings for the links of the classical Kleinian
singularities endowed with the orientations opposite to the standard ones.

Our first result generalizes corollary 1.5.

Theorem 2.1. Let Xi, i = 1, 2, 3 be the oriented boundary of, respectively, the positive
E6, E7 and E8 plumbing. Then, for any closed oriented 3–manifold M , Xi#M is not
symplectically semi–fillable.

Remark 2.1. It follows from theorem 2.1 that, for i = 1, 2, 3,Xi#−Xi is not sympletically
semi–fillable with any choice of orientation.

Let Yn be the oriented boundary of the positive Dn+2 plumbing. Using Kirby calculus
it is easy to show that Yn is also the oriented boundary of the smooth 4–manifold with
boundary Mn described in figure 2. Moreover, using Eliashberg’s Legendrian surgery one
can show that Mn is a Stein 4–manifold with boundary (in [Go] it is explained how to do
this). This implies that all the blowups of Mn are symplectic fillings of Yn. The following
theorem says that, on the other hand, the intersection lattice of any symplectic filling of
Yn is isomorphic to the intersection lattice of some blowup of Mn.

Theorem 2.2. For any n > 1, let Yn be the oriented boundary of the positive Dn+2

plumbing. Then, the intersection lattice of any symplectic semi–filling of Yn is isomorphic
to (Zm,⊕i(−1)), for some m ≥ 0.
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Figure 2. The manifold Mn

The oriented boundary of the positive An plumbing is the lens space L(n + 1, 1). As
we recalled in the introduction, Eliashberg and McDuff proved strong results on the sym-
plectic fillings of these 3–manifolds. By applying theorem 1.4 we will prove the following
theorem, which is consistent with their work.

Theorem 2.3. The intersection lattice of any symplectic semi–filling of L(n, 1) is iso-
morphic to (Zm, (−n)⊕i (−1)) for some m ≥ 1 if n 6= 4. If n = 4, then it is either
isomorphic to (Zm, (−4)⊕i (−1)) for some m ≥ 1, or to (Zm,⊕i(−1)) for some m ≥ 0.

We note that, conversely, it is well known that every intersection lattice appearing in
the statement of theorem 2.3 is realized by a symplectic filling of L(n, 1).

Remark 2.2. Theorem 1.4 can be also applied to study the uniqueness problem for sym-
plectic fillings of any lens space L(p, q), but the combinatorial analysis needed to treat
the general case is more complicated. We plan to return to this in a future paper.

3. Proofs

In this section we shall call intersection lattice a lattice (i.e. a finitely generated free
abelian group) endowed with an integral symmetric bilinear form. By an automorphism of
a intersection lattice we shall mean an isometric automorphism of the underlying lattice,
i.e. an automorphism which preserves the intersection form.

Let Q : Z4 × Z4 → Z be the integral symmetric bilinear form given, with respect to
the standard basis of Z4, by the matrix

−2 1 0 0
1 −2 1 1
0 1 −2 0
0 1 0 −2


Denote by L the intersection lattice (Z4, Q) and, for any N ∈ N, by ΛN the intersection
lattice

(
ZN ,⊕i(−1)

)
, where ⊕i(−1) is the standard negative diagonal intersection form.

Lemma 3.1. Up to automorphisms of ΛN , there is at most one isometric embedding
of L into ΛN . Such an embedding exists if and only if N ≥ 4 and, if v1, . . . , v4 are
standard generators of Z4 and e1, . . . , eN are standard generators of ZN , it is given, up
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to automorphisms of ΛN , by sending v1 to −e1 + e3, v2 to e1 + e2, v3 to −e1 − e3 and v4

to −e2 + e4.

Proof. Clearly, if an embedding exists then N ≥ 4. Moreover, by applying an automor-
phism of ΛN one can change the sign of any of the ei’s as well as exchange any two of
them. Therefore, with an automorphism of ΛN one can realize any change of signs or
permutation of its generators. Let ϕ : L→ ΛN be an arbitrary isometric embedding, i.e.
an embedding of free abelian groups which preserves the intersection forms. We will argue
that there exists an automorphism ψ of ΛN such that ψ ◦ϕ coincides with the embedding
given in the second part of the statement. Since v2 has self–intersection −2, it is clear
that, up to composing with an automorphism of ΛN , we may assume ϕ(v2) = e1 + e2.
Similarly, using the fact that the vi’s must intersect as prescribed by the matrix Q, it is
an easy exercise to show that, up to sign changes and permutations of the ei’s, the images
of the vi’s must be the ones given in the statement.

Let R = (Z6,−E6) denote the intersection lattice of the negative E6 plumbing.

Lemma 3.2. For any N ≥ 1, there exist no isometric embeddings of R into ΛN .

Proof. The statement is clear if N ≤ 5. If N ≥ 6, observe that there is an obvious
isometric embedding of L into R. Arguing by contradiction, suppose there exists an
isometric embedding of R into ΛN . This induces an embedding of L into ΛN which, up
to composing with an automorphism of ΛN , may be assumed to be the one given in the
statement of lemma 3.1. Keeping the notation from that lemma and abusing it at the
same time, denote by v1, . . . , v4 the standard generators of L as well their images inside
ΛN . By looking at the intersection matrix −E6 one can easily see that the image of R
inside ΛN contains a vector, say v5, having self–intersection −2 and such that v5 · vi = 0
and v5 · vj = 1, with {i, j} = {1, 3}. But since v1 = −e1 + e3 and v3 = −e1 − e3, this is
clearly impossible.

Proof of theorem 2.1. Xi is the quotient of S3 by the action of a finite subgroup of SO(4)
acting linearly, for i = 1, 2, 3. This implies that Xi carries metrics with positive scalar
curvature, and by theorem 1.4 if Xi is symplectically semi–fillable then it is symplectically
fillable. Moreover, we claim thatXi cannot be the oriented boundary of a smooth, oriented
4–manifold W with b+2 (W ) = 0. Arguing by contradiction, if ∂W = Xi and Ê5+i denotes
the negative plumbing of type E5+i, i = 1, 2, 3, then the closed, smooth oriented 4–
manifold M = W ∪Xi Ê5+i has a negative definite intersection form. By a well–known
theorem of Donaldson [Do1, Do2] it follows that its intersection lattice must be isomorphic
to the lattice Λb2(M) =

(
Zb2(M),⊕i(−1)

)
. Therefore the lattice

(
Z5+i,−E5+i

)
embeds

inside Λb2(M). On the other hand, for i = 1, 2, 3 the intersection lattice R =
(
Z6,−E6

)
clearly embeds inside

(
Z5+i,−E5+i

)
. Thus, composing the two embeddings one gets an

isometric embedding of R into Λb2(M), contradicting lemma 3.2. This proves the claim.
Therefore, in view of theorem 1.4 Xi is not symplectically semi–fillable for i = 1, 2, 3. The
statement of the theorem follows from a general result of Eliashberg ([El2], theorem 8.1):
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given two closed oriented 3–manifolds X and M , if X#M is symplectically semi–fillable,
then both X and M are symplectically semi–fillable.

Let Dn+2 =
(
Zn+2,−Dn+2

)
be the intersection lattice of the negative Dn+2 plumbing.

Lemma 3.3. Suppose that n ≥ 2. Then, up to automorphisms of ΛN , there is at most
one isometric embedding of Dn+2 into ΛN . Such an embedding exists if and only if
N ≥ n+ 2, and the intersection lattice of the vectors orthogonal to the image of Dn+2 is
isomorphic to ΛN−n−2.

Proof. Observe that, since n ≥ 2, Dn+2 contains D4, which is an isometric copy of the
lattice L = (Z4, Q) defined at the beginning of the section. Denote by v1, v2, . . . , vn+2

standard generators of Dn+2 such that v1, . . . , v4 are the standard generators of L =
D4 ⊂ Dn+2. We shall prove by induction on n ≥ 2 that, up to automorphisms of ΛN , an
isometric embedding of Dn+2 into ΛN exists if and only if N ≥ n+ 2 and, if it does, it is
given by sending v1 to −e1 + e + 3, v2 to e1 + e2, v3 to −e1 − e3, v4 to −e2 + e4 and vi
to −ei−1 + ei for i = 5, . . . , n+ 2. Moreover, the orthogonal lattice of the image of Dn+2

is isomorphic to ΛN−n−2. For n = 2 this is exactly the statement of lemma 3.1, apart
from the claim that the orthogonal lattice is reduced to {0}, which is an easy exercise.
We need to prove that the above statement holds for Dn+3 if it holds for Dn+2. The
condition N ≥ n + 3 is clearly necessary for the existence of an isometric embedding of
Dn+3 into ΛN . Given such an embedding ϕ, by the induction hypothesis we may assume,
after possibly composing ϕ with an automorphism of ΛN , that ϕ is given as above on
the generators v1, . . . , vn+2 of Dn+2 ⊂ Dn+3. It is easy to see that, up to automorphisms
of ΛN , the image of vn+3 must be equal to −en+2 + en+3. This proves the uniqueness
of the embedding. To establish the statement on the orthogonal complement, observe
that ϕ(Dn+2) is contained inside Λn+2 ⊂ ΛN , with {0} as its orthogonal lattice inside
Λn+2, by the inductive hypothesis. Since the image of Dn+3 is contained inside Λn+3 and
ϕ(vn+3) = −en+2 + en+3, the conclusion follows immediately.

Proof of theorem 2.2. Yn is the quotient of S3 by the standard orthogonal action of the
binary dihedral group of order 4n. Therefore, it carries metrics with positive scalar
curvature. It follows by theorem 1.4 that every symplectic semi–filling W of Yn is a
symplectic filling and b+2 (W ) = 0. As in the proof of theorem 2.1, if D̂n+2 denotes the
negative plumbing on the Dn+2 diagram, by Donaldson’s theorem the closed, negative
definite 4–manifold M = W ∪Yn D̂n+2 has standard diagonal intersection form Λb2(M).
Therefore the intersection lattice Dn+2 of D̂n+2 embeds isometrically inside Λb2(M), and
it is easy to check that, since H1(D̂n+2 ;Z) = 0, the intersection lattice of W inside Λb2(M)

coincides with the orthogonal to the image of Dk+2. The conclusion follows by applying
lemma 3.3.

Lemma 3.4. Let An = (Zn,−An) be the intersection lattice of the negative An plumbing,
n ≥ 1. Then, up to automorphisms of ΛN , if n 6= 3 there is at most one isometric
embedding of An into ΛN , if n = 3 there are at most two. If n 6= 3 such an embedding
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exists if and only if N ≥ n+ 1, if n = 3 it exists if and only if N ≥ 3. The intersection
lattice orthogonal to the image of An is isomorphic to

(
ZN−n, (−n− 1)⊕i (−1)

)
if n 6= 3,

and to either
(
ZN−n, (−4)⊕i (−1)

)
or ΛN−4 if n = 3.

Proof. Let v1, . . . , vn denote standard generators of An, and e1, . . . , eN standard genera-
tors of ΛN . Let ϕ : An → ΛN be an isometric embedding. If n equals 1 (or 2, respectively),
arguing as in the proof of lemma 3.1 it is easy to see that, up to automorphisms of ΛN ,
we may assume ϕ(v1) = −e1 +e2 (and ϕ(v2) = −e2 +e3, respectively). If n = 3 there are
two possibilities, up to automorphisms, for ϕ(v3): either e1 + e2 or −e3 + e4. If n ≥ 4 it
is easy to check that the first possibility for ϕ(v3) cannot occur, because there would be
no possible candidate for ϕ(v4). It follows that ϕ(vi) = −ei + ei+1, i = 3, . . . , n, up to
automorphisms of ΛN . This discussion shows that for the existence of ϕ it is necessary
and sufficient that N ≥ n + 1 if n 6= 3, and N ≥ 3 if n = 3. The statement about the
orthogonal lattices can be easily established directly for n ≤ 3, and proved by induction
as in lemma 3.3 for n ≥ 4.

Proof of theorem 2.3. The proof is based on lemma 3.4 in the same way as the proof of
theorem 2.2 is based on lemma 3.3, and is therefore omitted.

References

[Be] D Bennequin, Entrelacements et equations de Pfaff, Astérisque 107–108 (1983), 83–161
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ematics 209, Springer–Verlag (1971) 142–163

[McD] D McDuff, The structure of Rational and Ruled symplectic 4–manifolds, J. Am. Math.
Soc. 3 (1990) 679–712

[Sl] P Slodowy, Platonic solids, Kleinian singularities, and Lie groups, Lecture Notes in
Math. 1008, pp. 102–138.

[Ta1] C H Taubes, The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1
(1995) 809–822

[Ta2] C H Taubes, More constraints on symplectic manifolds from Seiberg–Witten equations,
Math. Res. Lett. 2 (1995), 9–14

Dipartimento di Matematica, Università di Pisa, I-56127 Pisa, ITALY
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